Skip to content

trainindata/hyperparameter-optimization

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PythonVersion License https://github.com/solegalli/hyperparameter-optimization/blob/master/LICENSE Sponsorship https://www.trainindata.com/

Hyperparameter tuning for Machine Learning - Code Repository

Launched: May, 2021

Updated: September, 2024

Actively maintained.

Links

Table of Contents

  1. Metrics

    1. Classification (accuracy, precision, recall, roc-auc, etc)
    2. Regression (MSE, RMSE, R2, etc)
  2. Cross-Validation

    1. K-fold, LOOCV, LPOCV, Stratified CV
    2. Group CV and variants
    3. CV for time series
    4. Nested CV
  3. Basic Search Algorithms

    1. Manual Search
    2. Grid Search
    3. Random Search
  4. Bayesian Optimization

    1. with Gaussian Processes
    2. with Random Forests (SMAC) and GBMs
    3. with Parzen windows (Tree-structured Parzen Estimators or TPE)
    4. Simulated annealing
  5. Multi-fidelity Optimization

    1. Successive Halving
    2. Hyperband
  6. Python tools

    1. Scikit-learn
    2. Scikit-optimize
    3. Hyperopt
    4. Optuna

Links

About

Code repository for the online course Hyperparameter Optimization for Machine Learning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%