Skip to content

Commit

Permalink
Refactor all machine (#5104)
Browse files Browse the repository at this point in the history
* refactor all machines
* fix unit test
* fix python legacy and jupyter notebook
  • Loading branch information
LiuYuHui authored Aug 10, 2020
1 parent 551a102 commit 5794acb
Show file tree
Hide file tree
Showing 69 changed files with 244 additions and 411 deletions.
17 changes: 8 additions & 9 deletions doc/ipython-notebooks/multiclass/Tree/DecisionTrees.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -197,10 +197,10 @@
"outputs": [],
"source": [
"# create ID3ClassifierTree object\n",
"id3 = sg.create_machine(\"ID3ClassifierTree\", labels=labels)\n",
"id3 = sg.create_machine(\"ID3ClassifierTree\")\n",
"\n",
"# learn the tree from training features\n",
"is_successful = id3.train(train_feats)"
"is_successful = id3.train(train_feats, labels)"
]
},
{
Expand Down Expand Up @@ -412,10 +412,10 @@
" train_lab = sg.create_labels(labels)\n",
"\n",
" # create ID3ClassifierTree object\n",
" id3 = sg.create_machine(\"ID3ClassifierTree\", labels=train_lab)\n",
" id3 = sg.create_machine(\"ID3ClassifierTree\")\n",
"\n",
" # learn the tree from training features\n",
" id3.train(train_feats)\n",
" id3.train(train_feats, train_lab)\n",
"\n",
" # apply to test dataset\n",
" output = id3.apply(test_feats)\n",
Expand Down Expand Up @@ -610,9 +610,9 @@
"# steps in C4.5 Tree training bundled together in a python method\n",
"def train_tree(feats,types,labels):\n",
" # C4.5 Tree object\n",
" tree = sg.create_machine(\"C45ClassifierTree\", labels=labels, m_nominal=types)\n",
" tree = sg.create_machine(\"C45ClassifierTree\", m_nominal=types)\n",
" # supply training matrix and train\n",
" tree.train(feats)\n",
" tree.train(feats, labels)\n",
" \n",
" return tree\n",
"\n",
Expand Down Expand Up @@ -1406,10 +1406,9 @@
" # create CHAID tree object\n",
" c = sg.create_machine(\"CHAIDTree\", dependent_vartype=dependent_var_type,\n",
" feature_types=feature_types,\n",
" num_breakpoints=num_bins,\n",
" labels = labels)\n",
" num_breakpoints=num_bins)\n",
" # train using training features\n",
" c.train(feats)\n",
" c.train(feats, labels)\n",
" \n",
" return c\n",
"\n",
Expand Down
8 changes: 3 additions & 5 deletions doc/ipython-notebooks/neuralnets/autoencoders.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -276,8 +276,7 @@
"\n",
"nn.put('max_num_epochs', 50)\n",
"\n",
"nn.put('labels', Ytrain)\n",
"_ = nn.train(Xtrain)"
"_ = nn.train(Xtrain, Ytrain)"
]
},
{
Expand Down Expand Up @@ -404,10 +403,9 @@
"# train the network\n",
"conv_nn.put('epsilon', 0.0)\n",
"conv_nn.put('max_num_epochs', 50)\n",
"conv_nn.put('labels', Ytrain)\n",
"\n",
"# start training. this might take some time\n",
"_ = conv_nn.train(Xtrain)"
"_ = conv_nn.train(Xtrain, Ytrain)"
]
},
{
Expand Down Expand Up @@ -462,7 +460,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
"version": "3.6.9"
}
},
"nbformat": 4,
Expand Down
17 changes: 6 additions & 11 deletions doc/ipython-notebooks/neuralnets/neuralnets_digits.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -236,8 +236,7 @@
"# uncomment this line to allow the training progress to be printed on the console\n",
"#from shogun import MSG_INFO; net_no_reg.io.put('loglevel', MSG_INFO)\n",
"\n",
"net_no_reg.put('labels', Ytrain)\n",
"net_no_reg.train(Xtrain) # this might take a while, depending on your machine\n",
"net_no_reg.train(Xtrain, Ytrain) # this might take a while, depending on your machine\n",
"\n",
"# compute accuracy on the validation set\n",
"print(\"Without regularization, accuracy on the validation set =\", compute_accuracy(net_no_reg, Xval, Yval), \"%\")"
Expand Down Expand Up @@ -265,8 +264,7 @@
"net_l2.put('max_num_epochs', 600)\n",
"net_l2.put('seed', 10)\n",
"\n",
"net_l2.put('labels', Ytrain)\n",
"net_l2.train(Xtrain) # this might take a while, depending on your machine\n",
"net_l2.train(Xtrain, Ytrain) # this might take a while, depending on your machine\n",
"\n",
"# compute accuracy on the validation set\n",
"print(\"With L2 regularization, accuracy on the validation set =\", compute_accuracy(net_l2, Xval, Yval), \"%\")"
Expand Down Expand Up @@ -294,8 +292,7 @@
"net_l1.put('max_num_epochs', 600)\n",
"net_l1.put('seed', 10)\n",
"\n",
"net_l1.put('labels', Ytrain)\n",
"net_l1.train(Xtrain) # this might take a while, depending on your machine\n",
"net_l1.train(Xtrain, Ytrain) # this might take a while, depending on your machine\n",
"\n",
"# compute accuracy on the validation set\n",
"print(\"With L1 regularization, accuracy on the validation set =\", compute_accuracy(net_l1, Xval, Yval), \"%\")"
Expand Down Expand Up @@ -336,8 +333,7 @@
"net_dropout.put('gd_learning_rate', 0.5)\n",
"net_dropout.put('gd_mini_batch_size', 100)\n",
"\n",
"net_dropout.put('labels', Ytrain)\n",
"net_dropout.train(Xtrain) # this might take a while, depending on your machine\n",
"net_dropout.train(Xtrain, Ytrain) # this might take a while, depending on your machine\n",
"\n",
"# compute accuracy on the validation set\n",
"print(\"With dropout, accuracy on the validation set =\", compute_accuracy(net_dropout, Xval, Yval), \"%\")"
Expand Down Expand Up @@ -431,8 +427,7 @@
"net_conv.put(\"seed\", 10)\n",
"\n",
"# start training\n",
"net_conv.put('labels', Ytrain)\n",
"net_conv.train(Xtrain)\n",
"net_conv.train(Xtrain, Ytrain)\n",
"\n",
"# compute accuracy on the validation set\n",
"print(\"With a convolutional network, accuracy on the validation set =\", compute_accuracy(net_conv, Xval, Yval), \"%\")"
Expand Down Expand Up @@ -511,7 +506,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
"version": "3.6.9"
}
},
"nbformat": 4,
Expand Down
5 changes: 2 additions & 3 deletions doc/ipython-notebooks/neuralnets/rbms_dbns.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -370,8 +370,7 @@
"nn.put(\"l2_coefficient\", 0.0001)\n",
"\n",
"# start training\n",
"nn.put('labels', sg.create_labels(Ytrain))\n",
"nn.train(sg.create_features(Xtrain))"
"nn.train(sg.create_features(Xtrain), sg.create_labels(Ytrain))"
]
},
{
Expand Down Expand Up @@ -426,7 +425,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
"version": "3.6.9"
}
},
"nbformat": 4,
Expand Down
8 changes: 4 additions & 4 deletions examples/meta/src/binary/domainadaptationsvm.sg.in
Original file line number Diff line number Diff line change
Expand Up @@ -14,8 +14,8 @@ svm_kernel.init(feats_train, feats_train)
#![create_kernel]

#![create_svm_and_train]
Machine svm = create_machine("SVMLight", kernel=svm_kernel, labels=labels_train, C1=1.0, C2=1.0)
svm.train()
Machine svm = create_machine("SVMLight", kernel=svm_kernel, C1=1.0, C2=1.0)
svm.train(feats_train, labels_train)
#![create_svm_and_train]

#![create_kernel]
Expand All @@ -24,11 +24,11 @@ svm_kernel2.init(feats_train, feats_train)
#![create_kernel]

#![obtain_dasvm_from_the_previous_svm]
Machine dasvm = create_machine("DomainAdaptationSVM", C1=1.0, C2=1.0, kernel=svm_kernel2, labels=labels_train, presvm=as_svm(svm), B=1.0)
Machine dasvm = create_machine("DomainAdaptationSVM", C1=1.0, C2=1.0, kernel=svm_kernel2, presvm=as_svm(svm), B=1.0)
#![obtain_dasvm_from_the_previous_svm]

#![train_and_apply]
dasvm.train()
dasvm.train(feats_train, labels_train)
Labels labels_predict = dasvm.apply(feats_test)
RealVector labels_vector = labels_predict.get_real_vector("labels")
RealVector weights = svm.get_real_vector("m_alpha")
Expand Down
2 changes: 1 addition & 1 deletion examples/meta/src/evaluation/cross_validation.sg.in
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ Labels reg_labels_test = create_labels(reg_lab_test)

#![create_machine_REGRESSION]
real tau = 0.001
Machine lrr = create_machine("LinearRidgeRegression", tau=tau, labels=reg_labels_train)
Machine lrr = create_machine("LinearRidgeRegression", tau=tau)
#![create_instance_REGRESSION]

#![create_cross_validation_REGRESSION]
Expand Down
3 changes: 1 addition & 2 deletions examples/meta/src/multiclass/chaid_tree.sg.in
Original file line number Diff line number Diff line change
Expand Up @@ -18,11 +18,10 @@ ft[1] = 2

#![create_instance]
CHAIDTree classifier(0, ft, 10)
classifier.set_labels(labels_train)
#![create_instance]

#![train_and_apply]
classifier.train(features_train)
classifier.train(features_train, labels_train)
MulticlassLabels labels_predict = classifier.apply_multiclass(features_test)
#![train_and_apply]

Expand Down
3 changes: 1 addition & 2 deletions examples/meta/src/multiclass/relaxed_tree.sg.in
Original file line number Diff line number Diff line change
Expand Up @@ -17,13 +17,12 @@ Kernel k = create_kernel("GaussianKernel")

#![create_instance]
RelaxedTree machine()
machine.set_labels(labels_train)
machine.set_machine_for_confusion_matrix(mll)
machine.set_kernel(k)
#![create_instance]

#![train_and_apply]
machine.train(features_train)
machine.train(features_train, labels_train)
MulticlassLabels labels_predict = machine.apply_multiclass(features_test)
#![train_and_apply]

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ Labels labels_test = create_labels(f_labels_test)
#![create_features]

#![create_instance]
Machine network = create_machine("NeuralNetwork", labels=labels_train, auto_quick_initialize=True, max_num_epochs=4, epsilon=0.0, optimization_method="NNOM_GRADIENT_DESCENT", gd_learning_rate=0.01, gd_mini_batch_size=3, max_norm=1.0, dropout_input=0.5)
Machine network = create_machine("NeuralNetwork", auto_quick_initialize=True, max_num_epochs=4, epsilon=0.0, optimization_method="NNOM_GRADIENT_DESCENT", gd_learning_rate=0.01, gd_mini_batch_size=3, max_norm=1.0, dropout_input=0.5)
#![create_instance]

#![add_layers]
Expand All @@ -27,7 +27,7 @@ network.put("seed", 10)
#![add_layers]

#![train_and_apply]
network.train(features_train)
network.train(features_train, labels_train)
Labels labels_predict = network.apply(features_test)
#![train_and_apply]

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ Labels labels_test = create_labels(f_labels_test)

#![create_instance]
int num_feats = features_train.get_int("num_features")
Machine network = create_machine("NeuralNetwork", labels=labels_train, auto_quick_initialize=True, l2_coefficient=0.01, dropout_hidden=0.5, max_num_epochs=50, gd_mini_batch_size=num_feats, gd_learning_rate=0.1, gd_momentum=0.9)
Machine network = create_machine("NeuralNetwork", auto_quick_initialize=True, l2_coefficient=0.01, dropout_hidden=0.5, max_num_epochs=50, gd_mini_batch_size=num_feats, gd_learning_rate=0.1, gd_momentum=0.9)
#![create_instance]

#![add_layers]
Expand All @@ -26,7 +26,7 @@ network.put("seed", 1)
#![add_layers]

#![train_and_apply]
network.train(features_train)
network.train(features_train, labels_train)
Labels labels_predict = network.apply(features_test)
#![train_and_apply]

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ Labels labels_test = create_labels(f_labels_test)

#![create_instance]
int num_feats = features_train.get_int("num_features")
Machine network = create_machine("NeuralNetwork", labels=labels_train, auto_quick_initialize=True, l2_coefficient=0.1, epsilon=0.0, max_num_epochs=40, gd_learning_rate=0.1, gd_momentum=0.9)
Machine network = create_machine("NeuralNetwork", auto_quick_initialize=True, l2_coefficient=0.1, epsilon=0.0, max_num_epochs=40, gd_learning_rate=0.1, gd_momentum=0.9)
#![create_instance]

#![add_layers]
Expand All @@ -27,7 +27,7 @@ network.put("seed", 1)
#![add_layers]

#![train_and_apply]
network.train(features_train)
network.train(features_train, labels_train)
Labels labels_predict = network.apply(features_test)
#![train_and_apply]

Expand Down
4 changes: 2 additions & 2 deletions examples/meta/src/regression/chaid_tree.sg.in
Original file line number Diff line number Diff line change
Expand Up @@ -14,11 +14,11 @@ ft[0] = 2
#![set_feature_types]

#![create_machine]
Machine chaidtree = create_machine("CHAIDTree", labels=labels_train, dependent_vartype=2, feature_types=ft, num_breakpoints=50)
Machine chaidtree = create_machine("CHAIDTree", dependent_vartype=2, feature_types=ft, num_breakpoints=50)
#![create_machine]

#![train_and_apply]
chaidtree.train(feats_train)
chaidtree.train(feats_train, labels_train)
Labels labels_predict = chaidtree.apply(feats_test)
#![train_and_apply]

Expand Down
4 changes: 2 additions & 2 deletions examples/undocumented/python/kernel_histogram_word_string.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,8 +17,8 @@ def kernel_histogram_word_string (fm_train_dna=traindat,fm_test_dna=testdat,labe
feats_test=sg.create_string_features(charfeat, order-1, order, 0, False)

labels=sg.create_labels(label_train_dna)
pie=sg.create_machine("PluginEstimate", pos_pseudo=ppseudo_count, neg_pseudo=npseudo_count, labels=labels)
pie.train(feats_train)
pie=sg.create_machine("PluginEstimate", pos_pseudo=ppseudo_count, neg_pseudo=npseudo_count)
pie.train(feats_train, labels)

kernel=sg.create_kernel("HistogramWordStringKernel", estimate=pie)
kernel.init(feats_train, feats_train)
Expand Down
4 changes: 2 additions & 2 deletions examples/undocumented/python/kernel_salzberg_word_string.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,8 +17,8 @@ def kernel_salzberg_word_string (fm_train_dna=traindat,fm_test_dna=testdat,label
feats_test=sg.create_string_features(charfeat, order-1, order, gap, reverse)

labels=sg.create_labels(label_train_dna)
pie=sg.create_machine("PluginEstimate", labels=labels)
pie.train(feats_train)
pie=sg.create_machine("PluginEstimate")
pie.train(feats_train, labels)

kernel=sg.create_kernel("SalzbergWordStringKernel", plugin_estimate=pie, labels=labels)
kernel.init(feats_train, feats_train)
Expand Down
3 changes: 1 addition & 2 deletions examples/undocumented/python/multiclass_c45classifiertree.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,9 +34,8 @@ def multiclass_c45classifiertree(train=traindat,test=testdat,labels=label_traind
feats_train.add_subset(trsubset)

c=C45ClassifierTree()
c.set_labels(train_labels)
c.set_feature_types(ft)
c.train(feats_train)
c.train(feats_train, train_labels)

train_labels.remove_subset()
feats_train.remove_subset()
Expand Down
3 changes: 1 addition & 2 deletions examples/undocumented/python/multiclass_id3classifiertree.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,8 +30,7 @@ def multiclass_id3classifiertree(train=train_data,labels=train_labels,test=test_

# ID3 Tree formation
id3=ID3ClassifierTree()
id3.set_labels(feats_labels)
id3.train(feats_train)
id3.train(feats_train, feats_labels)

# Classify test data
output=id3.apply_multiclass(feats_test).get_labels()
Expand Down
3 changes: 1 addition & 2 deletions examples/undocumented/python/stochasticgbmachine.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,8 +28,7 @@ def stochasticgbmachine(train=traindat,train_labels=label_traindat,ft=feat_types
# train
feats.add_subset(np.int32(p[0:int(num)]))
labels.add_subset(np.int32(p[0:int(num)]))
s.set_labels(labels)
s.train(feats)
s.train(feats, labels)
feats.remove_subset()
labels.remove_subset()

Expand Down
4 changes: 2 additions & 2 deletions examples/undocumented/python/structure_discrete_hmsvm_bmrm.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,8 +29,8 @@ def structure_discrete_hmsvm_bmrm (m_data_dict=data_dict):
model = sg.create_structured_model("HMSVMModel", features=features, labels=labels,
state_model_type="SMT_TWO_STATE", num_obs=num_obs)

sosvm = sg.create_machine("DualLibQPBMSOSVM", model=model, labels=labels, m_lambda=5000.0)
sosvm.train()
sosvm = sg.create_machine("DualLibQPBMSOSVM", model=model, m_lambda=5000.0)
sosvm.train(features, labels)
#print sosvm.get_w()

predicted = sosvm.apply(features)
Expand Down
12 changes: 6 additions & 6 deletions examples/undocumented/python/structure_factor_graph_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -112,9 +112,9 @@ def structure_factor_graph_model(tr_samples = samples, tr_labels = labels, w = w
model.add("factor_types", ftype[2])

# --- training with BMRM ---
bmrm = sg.create_machine("DualLibQPBMSOSVM", model=model, labels=tr_labels, m_lambda=0.01)
bmrm = sg.create_machine("DualLibQPBMSOSVM", model=model, m_lambda=0.01)
#bmrm.set_verbose(True)
bmrm.train()
bmrm.train(tr_samples, tr_labels)
#print 'learned weights:'
#print bmrm.get_w()
#print 'ground truth weights:'
Expand Down Expand Up @@ -142,9 +142,9 @@ def structure_factor_graph_model(tr_samples = samples, tr_labels = labels, w = w
#print hbm.get_train_errors()

# --- training with SGD ---
sgd = sg.create_machine("StochasticSOSVM", model=model, labels=tr_labels, m_lambda=0.01)
sgd = sg.create_machine("StochasticSOSVM", model=model, m_lambda=0.01)
#sgd.set_verbose(True)
sgd.train()
sgd.train(tr_samples, tr_labels)

# evaluation
#print('SGD: Average training error is %.4f' % SOSVMHelper.average_loss(sgd.get_w(), model))
Expand All @@ -154,9 +154,9 @@ def structure_factor_graph_model(tr_samples = samples, tr_labels = labels, w = w
#print hp.get_train_errors()

# --- training with FW ---
fw = sg.create_machine("FWSOSVM", model=model, labels=tr_labels, m_lambda=0.01,
fw = sg.create_machine("FWSOSVM", model=model, m_lambda=0.01,
gap_threshold=0.01)
fw.train()
fw.train(tr_samples, tr_labels)

# evaluation
#print('FW: Average training error is %.4f' % SOSVMHelper.average_loss(fw.get_w(), model))
Expand Down
Loading

0 comments on commit 5794acb

Please sign in to comment.