Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added user info to movielens 100k and 1m #2178

Open
wants to merge 1 commit into
base: staging
Choose a base branch
from

Conversation

daviddavo
Copy link
Collaborator

Description

Added capability to get user fields like gender, age, occupation and zip code to movielens dataset.

Related Issues

References

Checklist:

  • I have followed the contribution guidelines and code style for this project.
  • I have added tests covering my contributions.
  • I have updated the documentation accordingly.
  • I have signed the commits, e.g. git commit -s -m "your commit message".
  • This PR is being made to staging branch AND NOT TO main branch.

@daviddavo
Copy link
Collaborator Author

The tests fail because some problem with dependencies but I have not touched the dependencies

@daviddavo
Copy link
Collaborator Author

Seems to be kind of an open issue in PyTorch. It is simply faster to do it "by hand", instead of using the Dataset class, even if you use the official TensorDataset it will use a collate function that is a python list comprehension, way slower than using tensors and slices.

@miguelgfierro
Copy link
Collaborator

@daviddavo I'm testing it in my local computer

@@ -136,6 +143,31 @@ def item_has_header(self):
"Western",
)

# 1m data occupation index to string mapper. For 100k, the occupation labels are already in the dataset.
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@daviddavo the extra info is only for 100k and 1M?

@@ -47,6 +47,7 @@ def __init__(
has_header=False,
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I got these errors:

(recommenders311) miguel@miguel:~/MS/recommenders$ pytest tests/data_validation/recommenders/datasets/test_movielens.py --disable-warnings --durations 0
========================================================================= test session starts =========================================================================
platform linux -- Python 3.11.9, pytest-8.2.2, pluggy-1.5.0
rootdir: /home/miguel/MS/recommenders
configfile: pyproject.toml
plugins: anyio-4.4.0, cov-5.0.0, typeguard-4.3.0, hypothesis-6.104.2, mock-3.14.0
collected 71 items

tests/data_validation/recommenders/datasets/test_movielens.py ...................................FFFFFF..FFFF....................FF.. [100%]

=================================== FAILURES ====================================
___________________ test_download_and_extract_movielens[100k] ___________________
size = '100k', tmp = '/tmp/pytest-of-miguel/pytest-77/tmphd6aiueo'

    @pytest.mark.parametrize("size", ["100k", "1m", "10m", "20m"])
    def test_download_and_extract_movielens(size, tmp):
        """Test movielens data download and extract"""
        zip_path = os.path.join(tmp, "ml.zip")
        download_movielens(size, dest_path=zip_path)
        assert len(os.listdir(tmp)) == 1
        assert os.path.exists(zip_path) is True

        rating_path = os.path.join(tmp, "rating.dat")
        item_path = os.path.join(tmp, "item.dat")
>       extract_movielens(
            size, rating_path=rating_path, item_path=item_path, zip_path=zip_path
        )
E       TypeError: extract_movielens() missing 1 required positional argument: 'user_path'

tests/data_validation/recommenders/datasets/test_movielens.py:125: TypeError
----------------------------- Captured stderr call ------------------------------
100%|██████████| 4.81k/4.81k [00:01<00:00, 3.97kKB/s]
____________________ test_download_and_extract_movielens[1m] ____________________

size = '1m', tmp = '/tmp/pytest-of-miguel/pytest-77/tmpt47xilf3'

    @pytest.mark.parametrize("size", ["100k", "1m", "10m", "20m"])
    def test_download_and_extract_movielens(size, tmp):
        """Test movielens data download and extract"""
        zip_path = os.path.join(tmp, "ml.zip")
        download_movielens(size, dest_path=zip_path)
        assert len(os.listdir(tmp)) == 1
        assert os.path.exists(zip_path) is True

        rating_path = os.path.join(tmp, "rating.dat")
        item_path = os.path.join(tmp, "item.dat")
>       extract_movielens(
            size, rating_path=rating_path, item_path=item_path, zip_path=zip_path
        )
E       TypeError: extract_movielens() missing 1 required positional argument: 'user_path'

tests/data_validation/recommenders/datasets/test_movielens.py:125: TypeError
----------------------------- Captured stderr call ------------------------------
100%|██████████| 5.78k/5.78k [00:01<00:00, 4.59kKB/s]
___________________ test_download_and_extract_movielens[10m] ____________________

size = '10m', tmp = '/tmp/pytest-of-miguel/pytest-77/tmpjrveosih'

    @pytest.mark.parametrize("size", ["100k", "1m", "10m", "20m"])
    def test_download_and_extract_movielens(size, tmp):
        """Test movielens data download and extract"""
        zip_path = os.path.join(tmp, "ml.zip")
        download_movielens(size, dest_path=zip_path)
        assert len(os.listdir(tmp)) == 1
        assert os.path.exists(zip_path) is True

        rating_path = os.path.join(tmp, "rating.dat")
        item_path = os.path.join(tmp, "item.dat")
>       extract_movielens(
            size, rating_path=rating_path, item_path=item_path, zip_path=zip_path
        )
E       TypeError: extract_movielens() missing 1 required positional argument: 'user_path'

tests/data_validation/recommenders/datasets/test_movielens.py:125: TypeError
----------------------------- Captured stderr call ------------------------------
100%|██████████| 64.0k/64.0k [00:03<00:00, 16.4kKB/s]
___________________ test_download_and_extract_movielens[20m] ____________________

size = '20m', tmp = '/tmp/pytest-of-miguel/pytest-77/tmpw2vclyex'

    @pytest.mark.parametrize("size", ["100k", "1m", "10m", "20m"])
    def test_download_and_extract_movielens(size, tmp):
        """Test movielens data download and extract"""
        zip_path = os.path.join(tmp, "ml.zip")
        download_movielens(size, dest_path=zip_path)
        assert len(os.listdir(tmp)) == 1
        assert os.path.exists(zip_path) is True

        rating_path = os.path.join(tmp, "rating.dat")
        item_path = os.path.join(tmp, "item.dat")
>       extract_movielens(
            size, rating_path=rating_path, item_path=item_path, zip_path=zip_path
        )
E       TypeError: extract_movielens() missing 1 required positional argument: 'user_path'

tests/data_validation/recommenders/datasets/test_movielens.py:125: TypeError
----------------------------- Captured stderr call ------------------------------
100%|██████████| 194k/194k [00:10<00:00, 18.7kKB/s]
_ test_load_pandas_df[100k-100000-1682-1-Toy Story (1995)-Animation|Children's|Comedy-1995] _

size = '100k', num_samples = 100000, num_movies = 1682, movie_example = 1
title_example = 'Toy Story (1995)'
genres_example = "Animation|Children's|Comedy", year_example = '1995'
tmp = '/tmp/pytest-of-miguel/pytest-77/tmp0woedy4a'

    @pytest.mark.parametrize(
        "size, num_samples, num_movies, movie_example, title_example, genres_example, year_example",
        [
            (
                "100k",
                100000,
                1682,
                1,
                "Toy Story (1995)",
                "Animation|Children's|Comedy",
                "1995",
            ),
            (
                "1m",
                1000209,
                3883,
                1,
                "Toy Story (1995)",
                "Animation|Children's|Comedy",
                "1995",
            ),
            (
                "10m",
                10000054,
                10681,
                1,
                "Toy Story (1995)",
                "Adventure|Animation|Children|Comedy|Fantasy",
                "1995",
            ),
            (
                "20m",
                20000263,
                27278,
                1,
                "Toy Story (1995)",
                "Adventure|Animation|Children|Comedy|Fantasy",
                "1995",
            ),
        ],
    )
    def test_load_pandas_df(
        size,
        num_samples,
        num_movies,
        movie_example,
        title_example,
        genres_example,
        year_example,
        tmp,
    ):
        """Test MovieLens dataset load as pd.DataFrame"""
        # Test if correct data are loaded
        header = ["a", "b", "c"]
        df = load_pandas_df(size=size, local_cache_path=tmp, header=header)
        assert len(df) == num_samples
        assert len(df.columns) == len(header)
        # Test if raw-zip file, rating file, and item file are cached
>       assert len(os.listdir(tmp)) == 3
E       AssertionError: assert 4 == 3
E        +  where 4 = len(['u.data', 'u.user', 'u.item', 'ml-100k.zip'])
E        +    where ['u.data', 'u.user', 'u.item', 'ml-100k.zip'] = <built-in function listdir>('/tmp/pytest-of-miguel/pytest-77/tmp0woedy4a')
E        +      where <built-in function listdir> = os.listdir

tests/data_validation/recommenders/datasets/test_movielens.py:192: AssertionError
----------------------------- Captured stderr call ------------------------------
100%|██████████| 4.81k/4.81k [00:01<00:00, 4.20kKB/s]
_ test_load_pandas_df[1m-1000209-3883-1-Toy Story (1995)-Animation|Children's|Comedy-1995] _

size = '1m', num_samples = 1000209, num_movies = 3883, movie_example = 1
title_example = 'Toy Story (1995)'
genres_example = "Animation|Children's|Comedy", year_example = '1995'
tmp = '/tmp/pytest-of-miguel/pytest-77/tmpnjmy_mcj'

    @pytest.mark.parametrize(
        "size, num_samples, num_movies, movie_example, title_example, genres_example, year_example",
        [
            (
                "100k",
                100000,
                1682,
                1,
                "Toy Story (1995)",
                "Animation|Children's|Comedy",
                "1995",
            ),
            (
                "1m",
                1000209,
                3883,
                1,
                "Toy Story (1995)",
                "Animation|Children's|Comedy",
                "1995",
            ),
            (
                "10m",
                10000054,
                10681,
                1,
                "Toy Story (1995)",
                "Adventure|Animation|Children|Comedy|Fantasy",
                "1995",
            ),
            (
                "20m",
                20000263,
                27278,
                1,
                "Toy Story (1995)",
                "Adventure|Animation|Children|Comedy|Fantasy",
                "1995",
            ),
        ],
    )
    def test_load_pandas_df(
        size,
        num_samples,
        num_movies,
        movie_example,
        title_example,
        genres_example,
        year_example,
        tmp,
    ):
        """Test MovieLens dataset load as pd.DataFrame"""
        # Test if correct data are loaded
        header = ["a", "b", "c"]
        df = load_pandas_df(size=size, local_cache_path=tmp, header=header)
        assert len(df) == num_samples
        assert len(df.columns) == len(header)
        # Test if raw-zip file, rating file, and item file are cached
>       assert len(os.listdir(tmp)) == 3
E       AssertionError: assert 4 == 3
E        +  where 4 = len(['users.dat', 'ml-1m.zip', 'ratings.dat', 'movies.dat'])
E        +    where ['users.dat', 'ml-1m.zip', 'ratings.dat', 'movies.dat'] = <built-in function listdir>('/tmp/pytest-of-miguel/pytest-77/tmpnjmy_mcj')
E        +      where <built-in function listdir> = os.listdir

tests/data_validation/recommenders/datasets/test_movielens.py:192: AssertionError
----------------------------- Captured stderr call ------------------------------
100%|██████████| 5.78k/5.78k [00:01<00:00, 4.63kKB/s]
_ test_load_item_df[100k-1682-1-Toy Story (1995)-Animation|Children's|Comedy-1995] _

size = '100k', num_movies = 1682, movie_example = 1
title_example = 'Toy Story (1995)'
genres_example = "Animation|Children's|Comedy", year_example = '1995'
tmp = '/tmp/pytest-of-miguel/pytest-77/tmpq4bt6q3n'

    @pytest.mark.parametrize(
        "size, num_movies, movie_example, title_example, genres_example, year_example",
        [
            ("100k", 1682, 1, "Toy Story (1995)", "Animation|Children's|Comedy", "1995"),
            ("1m", 3883, 1, "Toy Story (1995)", "Animation|Children's|Comedy", "1995"),
            (
                "10m",
                10681,
                1,
                "Toy Story (1995)",
                "Adventure|Animation|Children|Comedy|Fantasy",
                "1995",
            ),
            (
                "20m",
                27278,
                1,
                "Toy Story (1995)",
                "Adventure|Animation|Children|Comedy|Fantasy",
                "1995",
            ),
        ],
    )
    def test_load_item_df(
        size,
        num_movies,
        movie_example,
        title_example,
        genres_example,
        year_example,
        tmp,
    ):
        """Test movielens item data load (not rating data)"""
>       df = load_item_df(size, local_cache_path=tmp, title_col="title")

tests/data_validation/recommenders/datasets/test_movielens.py:264:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

size = '100k', local_cache_path = '/tmp/pytest-of-miguel/pytest-77/tmpq4bt6q3n'
movie_col = 'itemID', title_col = 'title', genres_col = None, year_col = None

    def load_item_df(
        size="100k",
        local_cache_path=None,
        movie_col=DEFAULT_ITEM_COL,
        title_col=None,
        genres_col=None,
        year_col=None,
    ):
        """Loads Movie info.

        Args:
            size (str): Size of the data to load. One of ("100k", "1m", "10m", "20m").
            local_cache_path (str): Path (directory or a zip file) to cache the downloaded zip file.
                If None, all the intermediate files will be stored in a temporary directory and removed after use.
            movie_col (str): Movie id column name.
            title_col (str): Movie title column name. If None, the column will not be loaded.
            genres_col (str): Genres column name. Genres are '|' separated string.
                If None, the column will not be loaded.
            year_col (str): Movie release year column name. If None, the column will not be loaded.

        Returns:
            pandas.DataFrame: Movie information data, such as title, genres, and release year.
        """
        size = size.lower()
        if size not in DATA_FORMAT:
            raise ValueError(f"Size: {size}. " + ERROR_MOVIE_LENS_SIZE)

        with download_path(local_cache_path) as path:
            filepath = os.path.join(path, "ml-{}.zip".format(size))
>           _, item_datapath = _maybe_download_and_extract(size, filepath)
E           ValueError: too many values to unpack (expected 2)

recommenders/datasets/movielens.py:335: ValueError
----------------------------- Captured stderr call ------------------------------
100%|██████████| 4.81k/4.81k [00:01<00:00, 3.37kKB/s]
_ test_load_item_df[1m-3883-1-Toy Story (1995)-Animation|Children's|Comedy-1995] _

size = '1m', num_movies = 3883, movie_example = 1
title_example = 'Toy Story (1995)'
genres_example = "Animation|Children's|Comedy", year_example = '1995'
tmp = '/tmp/pytest-of-miguel/pytest-77/tmpirqfi1bs'

    @pytest.mark.parametrize(
        "size, num_movies, movie_example, title_example, genres_example, year_example",
        [
            ("100k", 1682, 1, "Toy Story (1995)", "Animation|Children's|Comedy", "1995"),
            ("1m", 3883, 1, "Toy Story (1995)", "Animation|Children's|Comedy", "1995"),
            (
                "10m",
                10681,
                1,
                "Toy Story (1995)",
                "Adventure|Animation|Children|Comedy|Fantasy",
                "1995",
            ),
            (
                "20m",
                27278,
                1,
                "Toy Story (1995)",
                "Adventure|Animation|Children|Comedy|Fantasy",
                "1995",
            ),
        ],
    )
    def test_load_item_df(
        size,
        num_movies,
        movie_example,
        title_example,
        genres_example,
        year_example,
        tmp,
    ):
        """Test movielens item data load (not rating data)"""
>       df = load_item_df(size, local_cache_path=tmp, title_col="title")

tests/data_validation/recommenders/datasets/test_movielens.py:264:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

size = '1m', local_cache_path = '/tmp/pytest-of-miguel/pytest-77/tmpirqfi1bs'
movie_col = 'itemID', title_col = 'title', genres_col = None, year_col = None

    def load_item_df(
        size="100k",
        local_cache_path=None,
        movie_col=DEFAULT_ITEM_COL,
        title_col=None,
        genres_col=None,
        year_col=None,
    ):
        """Loads Movie info.

        Args:
            size (str): Size of the data to load. One of ("100k", "1m", "10m", "20m").
            local_cache_path (str): Path (directory or a zip file) to cache the downloaded zip file.
                If None, all the intermediate files will be stored in a temporary directory and removed after use.
            movie_col (str): Movie id column name.
            title_col (str): Movie title column name. If None, the column will not be loaded.
            genres_col (str): Genres column name. Genres are '|' separated string.
                If None, the column will not be loaded.
            year_col (str): Movie release year column name. If None, the column will not be loaded.

        Returns:
            pandas.DataFrame: Movie information data, such as title, genres, and release year.
        """
        size = size.lower()
        if size not in DATA_FORMAT:
            raise ValueError(f"Size: {size}. " + ERROR_MOVIE_LENS_SIZE)

        with download_path(local_cache_path) as path:
            filepath = os.path.join(path, "ml-{}.zip".format(size))
>           _, item_datapath = _maybe_download_and_extract(size, filepath)
E           ValueError: too many values to unpack (expected 2)

recommenders/datasets/movielens.py:335: ValueError
----------------------------- Captured stderr call ------------------------------
100%|██████████| 5.78k/5.78k [00:01<00:00, 4.72kKB/s]
_ test_load_item_df[10m-10681-1-Toy Story (1995)-Adventure|Animation|Children|Comedy|Fantasy-1995] _

size = '10m', num_movies = 10681, movie_example = 1
title_example = 'Toy Story (1995)'
genres_example = 'Adventure|Animation|Children|Comedy|Fantasy'
year_example = '1995', tmp = '/tmp/pytest-of-miguel/pytest-77/tmp068p6mvt'

    @pytest.mark.parametrize(
        "size, num_movies, movie_example, title_example, genres_example, year_example",
        [
            ("100k", 1682, 1, "Toy Story (1995)", "Animation|Children's|Comedy", "1995"),
            ("1m", 3883, 1, "Toy Story (1995)", "Animation|Children's|Comedy", "1995"),
            (
                "10m",
                10681,
                1,
                "Toy Story (1995)",
                "Adventure|Animation|Children|Comedy|Fantasy",
                "1995",
            ),
            (
                "20m",
                27278,
                1,
                "Toy Story (1995)",
                "Adventure|Animation|Children|Comedy|Fantasy",
                "1995",
            ),
        ],
    )
    def test_load_item_df(
        size,
        num_movies,
        movie_example,
        title_example,
        genres_example,
        year_example,
        tmp,
    ):
        """Test movielens item data load (not rating data)"""
>       df = load_item_df(size, local_cache_path=tmp, title_col="title")

tests/data_validation/recommenders/datasets/test_movielens.py:264:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

size = '10m', local_cache_path = '/tmp/pytest-of-miguel/pytest-77/tmp068p6mvt'
movie_col = 'itemID', title_col = 'title', genres_col = None, year_col = None

    def load_item_df(
        size="100k",
        local_cache_path=None,
        movie_col=DEFAULT_ITEM_COL,
        title_col=None,
        genres_col=None,
        year_col=None,
    ):
        """Loads Movie info.

        Args:
            size (str): Size of the data to load. One of ("100k", "1m", "10m", "20m").
            local_cache_path (str): Path (directory or a zip file) to cache the downloaded zip file.
                If None, all the intermediate files will be stored in a temporary directory and removed after use.
            movie_col (str): Movie id column name.
            title_col (str): Movie title column name. If None, the column will not be loaded.
            genres_col (str): Genres column name. Genres are '|' separated string.
                If None, the column will not be loaded.
            year_col (str): Movie release year column name. If None, the column will not be loaded.

        Returns:
            pandas.DataFrame: Movie information data, such as title, genres, and release year.
        """
        size = size.lower()
        if size not in DATA_FORMAT:
            raise ValueError(f"Size: {size}. " + ERROR_MOVIE_LENS_SIZE)

        with download_path(local_cache_path) as path:
            filepath = os.path.join(path, "ml-{}.zip".format(size))
>           _, item_datapath = _maybe_download_and_extract(size, filepath)
E           ValueError: too many values to unpack (expected 2)

recommenders/datasets/movielens.py:335: ValueError
----------------------------- Captured stderr call ------------------------------
100%|██████████| 64.0k/64.0k [00:03<00:00, 16.5kKB/s]
_ test_load_item_df[20m-27278-1-Toy Story (1995)-Adventure|Animation|Children|Comedy|Fantasy-1995] _

size = '20m', num_movies = 27278, movie_example = 1
title_example = 'Toy Story (1995)'
genres_example = 'Adventure|Animation|Children|Comedy|Fantasy'
year_example = '1995', tmp = '/tmp/pytest-of-miguel/pytest-77/tmp81nnj7fw'

    @pytest.mark.parametrize(
        "size, num_movies, movie_example, title_example, genres_example, year_example",
        [
            ("100k", 1682, 1, "Toy Story (1995)", "Animation|Children's|Comedy", "1995"),
            ("1m", 3883, 1, "Toy Story (1995)", "Animation|Children's|Comedy", "1995"),
            (
                "10m",
                10681,
                1,
                "Toy Story (1995)",
                "Adventure|Animation|Children|Comedy|Fantasy",
                "1995",
            ),
            (
                "20m",
                27278,
                1,
                "Toy Story (1995)",
                "Adventure|Animation|Children|Comedy|Fantasy",
                "1995",
            ),
        ],
    )
    def test_load_item_df(
        size,
        num_movies,
        movie_example,
        title_example,
        genres_example,
        year_example,
        tmp,
    ):
        """Test movielens item data load (not rating data)"""
>       df = load_item_df(size, local_cache_path=tmp, title_col="title")

tests/data_validation/recommenders/datasets/test_movielens.py:264:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

size = '20m', local_cache_path = '/tmp/pytest-of-miguel/pytest-77/tmp81nnj7fw'
movie_col = 'itemID', title_col = 'title', genres_col = None, year_col = None

    def load_item_df(
        size="100k",
        local_cache_path=None,
        movie_col=DEFAULT_ITEM_COL,
        title_col=None,
        genres_col=None,
        year_col=None,
    ):
        """Loads Movie info.

        Args:
            size (str): Size of the data to load. One of ("100k", "1m", "10m", "20m").
            local_cache_path (str): Path (directory or a zip file) to cache the downloaded zip file.
                If None, all the intermediate files will be stored in a temporary directory and removed after use.
            movie_col (str): Movie id column name.
            title_col (str): Movie title column name. If None, the column will not be loaded.
            genres_col (str): Genres column name. Genres are '|' separated string.
                If None, the column will not be loaded.
            year_col (str): Movie release year column name. If None, the column will not be loaded.

        Returns:
            pandas.DataFrame: Movie information data, such as title, genres, and release year.
        """
        size = size.lower()
        if size not in DATA_FORMAT:
            raise ValueError(f"Size: {size}. " + ERROR_MOVIE_LENS_SIZE)

        with download_path(local_cache_path) as path:
            filepath = os.path.join(path, "ml-{}.zip".format(size))
>           _, item_datapath = _maybe_download_and_extract(size, filepath)
E           ValueError: too many values to unpack (expected 2)

recommenders/datasets/movielens.py:335: ValueError
----------------------------- Captured stderr call ------------------------------
100%|██████████| 194k/194k [00:09<00:00, 19.6kKB/s]
_ test_load_spark_df[100k-100000-1682-1-Toy Story (1995)-Animation|Children's|Comedy-1995] _

size = '100k', num_samples = 100000, num_movies = 1682, movie_example = 1
title_example = 'Toy Story (1995)'
genres_example = "Animation|Children's|Comedy", year_example = '1995'
tmp = '/tmp/pytest-of-miguel/pytest-77/tmpi7dpzm72'
spark = <pyspark.sql.session.SparkSession object at 0x7fc65a36bbd0>

    @pytest.mark.spark
    @pytest.mark.parametrize(
        "size, num_samples, num_movies, movie_example, title_example, genres_example, year_example",
        [
            (
                "100k",
                100000,
                1682,
                1,
                "Toy Story (1995)",
                "Animation|Children's|Comedy",
                "1995",
            ),
            (
                "1m",
                1000209,
                3883,
                1,
                "Toy Story (1995)",
                "Animation|Children's|Comedy",
                "1995",
            ),
            (
                "10m",
                10000054,
                10681,
                1,
                "Toy Story (1995)",
                "Adventure|Animation|Children|Comedy|Fantasy",
                "1995",
            ),
            (
                "20m",
                20000263,
                27278,
                1,
                "Toy Story (1995)",
                "Adventure|Animation|Children|Comedy|Fantasy",
                "1995",
            ),
        ],
    )
    def test_load_spark_df(
        size,
        num_samples,
        num_movies,
        movie_example,
        title_example,
        genres_example,
        year_example,
        tmp,
        spark,
    ):
        """Test MovieLens dataset load into pySpark.DataFrame"""

        # Test if correct data are loaded
        header = ["1", "2", "3"]
        schema = StructType(
            [
                StructField("u", IntegerType()),
                StructField("m", IntegerType()),
            ]
        )
        with pytest.warns(Warning):
            df = load_spark_df(
                spark, size=size, local_cache_path=tmp, header=header, schema=schema
            )
            assert df.count() == num_samples
            # Test if schema is used when both schema and header are provided
            assert len(df.columns) == len(schema)
            # Test if raw-zip file, rating file, and item file are cached
>           assert len(os.listdir(tmp)) == 3
E           AssertionError: assert 4 == 3
E            +  where 4 = len(['u.data', 'u.user', 'u.item', 'ml-100k.zip'])
E            +    where ['u.data', 'u.user', 'u.item', 'ml-100k.zip'] = <built-in function listdir>('/tmp/pytest-of-miguel/pytest-77/tmpi7dpzm72')
E            +      where <built-in function listdir> = os.listdir

tests/data_validation/recommenders/datasets/test_movielens.py:488: AssertionError
----------------------------- Captured stderr call ------------------------------
100%|██████████| 4.81k/4.81k [00:01<00:00, 4.35kKB/s]

_ test_load_spark_df[1m-1000209-3883-1-Toy Story (1995)-Animation|Children's|Comedy-1995] _

size = '1m', num_samples = 1000209, num_movies = 3883, movie_example = 1
title_example = 'Toy Story (1995)'
genres_example = "Animation|Children's|Comedy", year_example = '1995'
tmp = '/tmp/pytest-of-miguel/pytest-77/tmpipedkdgk'
spark = <pyspark.sql.session.SparkSession object at 0x7fc65a36bbd0>

    @pytest.mark.spark
    @pytest.mark.parametrize(
        "size, num_samples, num_movies, movie_example, title_example, genres_example, year_example",
        [
            (
                "100k",
                100000,
                1682,
                1,
                "Toy Story (1995)",
                "Animation|Children's|Comedy",
                "1995",
            ),
            (
                "1m",
                1000209,
                3883,
                1,
                "Toy Story (1995)",
                "Animation|Children's|Comedy",
                "1995",
            ),
            (
                "10m",
                10000054,
                10681,
                1,
                "Toy Story (1995)",
                "Adventure|Animation|Children|Comedy|Fantasy",
                "1995",
            ),
            (
                "20m",
                20000263,
                27278,
                1,
                "Toy Story (1995)",
                "Adventure|Animation|Children|Comedy|Fantasy",
                "1995",
            ),
        ],
    )
    def test_load_spark_df(
        size,
        num_samples,
        num_movies,
        movie_example,
        title_example,
        genres_example,
        year_example,
        tmp,
        spark,
    ):
        """Test MovieLens dataset load into pySpark.DataFrame"""

        # Test if correct data are loaded
        header = ["1", "2", "3"]
        schema = StructType(
            [
                StructField("u", IntegerType()),
                StructField("m", IntegerType()),
            ]
        )
        with pytest.warns(Warning):
            df = load_spark_df(
                spark, size=size, local_cache_path=tmp, header=header, schema=schema
            )
            assert df.count() == num_samples
            # Test if schema is used when both schema and header are provided
            assert len(df.columns) == len(schema)
            # Test if raw-zip file, rating file, and item file are cached
>           assert len(os.listdir(tmp)) == 3
E           AssertionError: assert 4 == 3
E            +  where 4 = len(['users.dat', 'ml-1m.zip', 'ratings.dat', 'movies.dat'])
E            +    where ['users.dat', 'ml-1m.zip', 'ratings.dat', 'movies.dat'] = <built-in function listdir>('/tmp/pytest-of-miguel/pytest-77/tmpipedkdgk')
E            +      where <built-in function listdir> = os.listdir

tests/data_validation/recommenders/datasets/test_movielens.py:488: AssertionError
----------------------------- Captured stderr call ------------------------------
100%|██████████| 5.78k/5.78k [00:01<00:00, 4.72kKB/s]

=============================== slowest durations ===============================
229.46s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_load_pandas_df[20m-20000263-27278-1-Toy Story (1995)-Adventure|Animation|Children|Comedy|Fantasy-1995]
187.80s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_load_spark_df[20m-20000263-27278-1-Toy Story (1995)-Adventure|Animation|Children|Comedy|Fantasy-1995]
108.28s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_load_pandas_df[10m-10000054-10681-1-Toy Story (1995)-Adventure|Animation|Children|Comedy|Fantasy-1995]
105.43s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_load_spark_df[10m-10000054-10681-1-Toy Story (1995)-Adventure|Animation|Children|Comedy|Fantasy-1995]
79.74s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_load_spark_df_mock_100__with_custom_param__succeed
71.77s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_load_spark_df_mock_100__with_default_param__succeed
55.13s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_load_pandas_df_mock_100__with_default_param__succeed
54.47s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_load_pandas_df_mock_100__with_custom_param__succeed
14.17s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__has_default_col_names[100]
13.83s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_load_item_df[20m-27278-1-Toy Story (1995)-Adventure|Animation|Children|Comedy|Fantasy-1995]
12.26s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_load_user_df_error[20m]
10.89s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_download_and_extract_movielens[20m]
6.74s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_load_item_df[10m-10681-1-Toy Story (1995)-Adventure|Animation|Children|Comedy|Fantasy-1995]
6.13s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_load_user_df_error[10m]
5.83s setup    tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_spark_df__return_success[0-101-True-True]
5.76s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_spark_df__return_success[0-101-True-True]
5.19s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_load_spark_df[1m-1000209-3883-1-Toy Story (1995)-Animation|Children's|Comedy-1995]
4.80s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_load_pandas_df[1m-1000209-3883-1-Toy Story (1995)-Animation|Children's|Comedy-1995]
4.46s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_download_and_extract_movielens[10m]
3.49s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_spark_df__return_success[3-101-True-True]
3.30s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__has_default_col_names[10]
3.24s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_spark_df__return_success[10-101-True-True]
3.18s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_spark_df__return_success[10-101-False-False]
3.13s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df__return_success[10--1-None-False-True]
3.09s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_load_spark_df[100k-100000-1682-1-Toy Story (1995)-Animation|Children's|Comedy-1995]
2.96s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_spark_df__return_success[10-101-False-True]
2.86s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_spark_df__return_success[10-101-True-False]
2.85s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df__return_success[10--1-None-True-False]
2.78s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df__return_success[10--1-None-True-True]
2.78s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_spark_df__return_success[3-101-False-True]
2.65s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_spark_df__return_success[3-101-False-False]
2.64s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_spark_df__return_success[3-101-True-False]
2.53s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df__return_success[10--1-None-False-False]
2.38s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df_remove_default_col__return_success[4]
2.26s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_spark_df__data_serialization_default_param
2.26s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_load_pandas_df[100k-100000-1682-1-Toy Story (1995)-Animation|Children's|Comedy-1995]
2.25s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df__return_success[3--1-None-False-False]
2.25s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df__return_success[3--1-None-True-False]
2.15s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df__return_success[3--1-None-False-True]
2.07s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_spark_df__store_tmp_file
2.05s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_load_user_df[1m-6040-1-1-F-K-12 student-48067]
2.00s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df__return_success[3--1-None-True-True]
1.99s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_load_item_df[100k-1682-1-Toy Story (1995)-Animation|Children's|Comedy-1995]
1.98s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_load_item_df[1m-3883-1-Toy Story (1995)-Animation|Children's|Comedy-1995]
1.96s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_download_and_extract_movielens[1m]
1.95s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_download_and_extract_movielens[100k]
1.73s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_load_user_df[100k-943-1-24-M-technician-85711]
1.45s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df_remove_default_col__return_success[2]
1.40s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df_remove_default_col__return_success[3]
1.36s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df__return_success[10--1-2-True-True]
1.35s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df__return_success[10--1-2-True-False]
1.28s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df__return_success[3--1-2-False-True]
1.25s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df__return_success[10--1-2-False-True]
1.23s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df__return_success[3--1-2-True-True]
1.21s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df__return_success[3--1-2-True-False]
1.19s teardown tests/data_validation/recommenders/datasets/test_movielens.py::test_load_spark_df[20m-20000263-27278-1-Toy Story (1995)-Adventure|Animation|Children|Comedy|Fantasy-1995]
1.09s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df__return_success[10--1-2-False-False]
0.98s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df__return_success[3--1-2-False-False]
0.47s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_spark_df__return_success[0-101-True-False]
0.41s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_spark_df__return_success[0-101-False-True]
0.39s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_spark_df__return_success[0-101-False-False]
0.17s teardown tests/data_validation/recommenders/datasets/test_movielens.py::test_load_pandas_df[20m-20000263-27278-1-Toy Story (1995)-Adventure|Animation|Children|Comedy|Fantasy-1995]
0.09s teardown tests/data_validation/recommenders/datasets/test_movielens.py::test_load_item_df[20m-27278-1-Toy Story (1995)-Adventure|Animation|Children|Comedy|Fantasy-1995]
0.06s teardown tests/data_validation/recommenders/datasets/test_movielens.py::test_load_user_df_error[20m]
0.05s teardown tests/data_validation/recommenders/datasets/test_movielens.py::test_load_item_df[10m-10681-1-Toy Story (1995)-Adventure|Animation|Children|Comedy|Fantasy-1995]
0.03s teardown tests/data_validation/recommenders/datasets/test_movielens.py::test_download_and_extract_movielens[20m]
0.03s teardown tests/data_validation/recommenders/datasets/test_movielens.py::test_load_user_df_error[10m]
0.03s teardown tests/data_validation/recommenders/datasets/test_movielens.py::test_load_pandas_df[10m-10000054-10681-1-Toy Story (1995)-Adventure|Animation|Children|Comedy|Fantasy-1995]
0.02s teardown tests/data_validation/recommenders/datasets/test_movielens.py::test_load_spark_df[10m-10000054-10681-1-Toy Story (1995)-Adventure|Animation|Children|Comedy|Fantasy-1995]
0.02s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df__return_success[0--1-None-False-True]
0.02s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df__return_success[0--1-2-True-True]
0.02s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df__return_success[0--1-2-True-False]
0.02s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df__return_success[0--1-2-False-False]
0.02s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df__return_success[0--1-None-False-False]
0.02s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df__return_success[0--1-2-False-True]
0.01s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df__return_success[0--1-None-True-False]
0.01s call     tests/data_validation/recommenders/datasets/test_movielens.py::test_mock_movielens_schema__get_df__return_success[0--1-None-True-True]
0.01s teardown tests/data_validation/recommenders/datasets/test_movielens.py::test_download_and_extract_movielens[10m]
0.01s teardown tests/data_validation/recommenders/datasets/test_movielens.py::test_load_item_df[100k-1682-1-Toy Story (1995)-Animation|Children's|Comedy-1995]
0.01s teardown tests/data_validation/recommenders/datasets/test_movielens.py::test_load_item_df[1m-3883-1-Toy Story (1995)-Animation|Children's|Comedy-1995]
0.01s teardown tests/data_validation/recommenders/datasets/test_movielens.py::test_load_user_df[1m-6040-1-1-F-K-12 student-48067]
0.01s teardown tests/data_validation/recommenders/datasets/test_movielens.py::test_load_spark_df[1m-1000209-3883-1-Toy Story (1995)-Animation|Children's|Comedy-1995]

(131 durations < 0.005s hidden.  Use -vv to show these durations.)
============================ short test summary info ============================
FAILED tests/data_validation/recommenders/datasets/test_movielens.py::test_download_and_extract_movielens[100k] - TypeError: extract_movielens() missing 1 required positional argument: 'user...
FAILED tests/data_validation/recommenders/datasets/test_movielens.py::test_download_and_extract_movielens[1m] - TypeError: extract_movielens() missing 1 required positional argument: 'user...
FAILED tests/data_validation/recommenders/datasets/test_movielens.py::test_download_and_extract_movielens[10m] - TypeError: extract_movielens() missing 1 required positional argument: 'user...
FAILED tests/data_validation/recommenders/datasets/test_movielens.py::test_download_and_extract_movielens[20m] - TypeError: extract_movielens() missing 1 required positional argument: 'user...
FAILED tests/data_validation/recommenders/datasets/test_movielens.py::test_load_pandas_df[100k-100000-1682-1-Toy Story (1995)-Animation|Children's|Comedy-1995] - AssertionError: assert 4 == 3
FAILED tests/data_validation/recommenders/datasets/test_movielens.py::test_load_pandas_df[1m-1000209-3883-1-Toy Story (1995)-Animation|Children's|Comedy-1995] - AssertionError: assert 4 == 3
FAILED tests/data_validation/recommenders/datasets/test_movielens.py::test_load_item_df[100k-1682-1-Toy Story (1995)-Animation|Children's|Comedy-1995] - ValueError: too many values to unpack (expected 2)
FAILED tests/data_validation/recommenders/datasets/test_movielens.py::test_load_item_df[1m-3883-1-Toy Story (1995)-Animation|Children's|Comedy-1995] - ValueError: too many values to unpack (expected 2)
FAILED tests/data_validation/recommenders/datasets/test_movielens.py::test_load_item_df[10m-10681-1-Toy Story (1995)-Adventure|Animation|Children|Comedy|Fantasy-1995] - ValueError: too many values to unpack (expected 2)
FAILED tests/data_validation/recommenders/datasets/test_movielens.py::test_load_item_df[20m-27278-1-Toy Story (1995)-Adventure|Animation|Children|Comedy|Fantasy-1995] - ValueError: too many values to unpack (expected 2)
FAILED tests/data_validation/recommenders/datasets/test_movielens.py::test_load_spark_df[100k-100000-1682-1-Toy Story (1995)-Animation|Children's|Comedy-1995] - AssertionError: assert 4 == 3
FAILED tests/data_validation/recommenders/datasets/test_movielens.py::test_load_spark_df[1m-1000209-3883-1-Toy Story (1995)-Animation|Children's|Comedy-1995] - AssertionError: assert 4 == 3
=========== 12 failed, 59 passed, 6057 warnings in 2526.02s (0:42:06) ===========

@miguelgfierro
Copy link
Collaborator

@daviddavo we had a weekly meeting with @anargyri. How is this PR going?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants