Skip to content

Commit

Permalink
time evolution + detuning dev (#20)
Browse files Browse the repository at this point in the history
time evolution + detuning dev
  • Loading branch information
ryanhill1 authored Jul 11, 2024
2 parents 0eaa20d + 09c95af commit f53337b
Show file tree
Hide file tree
Showing 20 changed files with 363 additions and 577 deletions.
3 changes: 3 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,9 @@
<a href="https://github.com/qBraid/qbraid-algorithms/actions/workflows/main.yml">
<img src="https://github.com/qBraid/qbraid-algorithms/actions/workflows/main.yml/badge.svg?branch=main" alt="CI"/>
</a>
<a href="https://codecov.io/gh/qBraid/qbraid-algorithms">
<img src="https://codecov.io/gh/qBraid/qbraid-algorithms/graph/badge.svg?token=7jYcnneDys"/>
</a>
<a href="https://pypi.org/project/qbraid-algorithms/">
<img src="https://img.shields.io/pypi/v/qbraid-algorithms.svg?color=blue" alt="PyPI version"/>
</a>
Expand Down
Binary file removed docs/_static/cards/jupyter.png
Binary file not shown.
Binary file removed docs/_static/cards/python.png
Binary file not shown.
Binary file removed docs/_static/cards/terminal.png
Binary file not shown.
3 changes: 2 additions & 1 deletion docs/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@

import qbraid_algorithms

project = "qbraid-algorithms"
project = "qBraid"
copyright = "2024, qBraid Development Team"
author = "qBraid Development Team"

Expand All @@ -25,6 +25,7 @@
"sphinx.ext.autodoc",
"sphinx_autodoc_typehints",
"sphinx.ext.autosummary",
"sphinx_copybutton"
]

autodoc_mock_imports = ["torchvision"]
Expand Down
77 changes: 42 additions & 35 deletions docs/index.rst
Original file line number Diff line number Diff line change
@@ -1,6 +1,3 @@
Documentation
==============

.. raw:: html

<html>
Expand Down Expand Up @@ -49,47 +46,57 @@ Documentation
</head>
<body>
<h1 style="text-align: center">
<img src="_static/logo.png" alt="qbraid logo" style="width:50px;height:50px;">
<img src="_static/logo.png" alt="qbraid logo" style="width:60px;height:60px;">
<span> qBraid</span>
<span style="color:#808080"></span>
<span style="color:#808080"> | algorithms</span>
</h1>
<p style="text-align:center;font-style:italic;color:#808080">
A cloud-based platform for quantum computing.
Build hybrid quantum-classical algorithms with qBraid.
</p>
<div class="row">
<div class="column">
<a href="https://docs.qbraid.com/projects/lab/en/latest/lab/overview.html">
<div class="card">
<h3>Lab</h3>
<img src="_static/cards/jupyter.png" alt="terminal" style="width:60px;height:60px;">
</div>
</a>
</div>

<div class="column">
<a href="https://docs.qbraid.com/projects/cli/en/latest/guide/overview.html">
<div class="card">
<h3>CLI</h3>
<img src="_static/cards/terminal.png" alt="terminal" style="width:60px;height:60px;">
</div>
</a>
</div>

<div class="column">
<a href="https://docs.qbraid.com/en/latest/sdk/overview.html">
<div class="card">
<h3>SDK</h3>
<img src="_static/cards/python.png" alt="terminal" style="width:60px;height:60px;">
</div>
</a>
</div>
</div>

</body>
</html>

|
:Release: |release|

Overview
---------

Python package for building, simulating, and benchmarking hybrid quantum-classical algorithms.


Installation
-------------

qbraid-algorithms requires Python 3.9 or greater, and can be installed with pip as follows:

.. code-block:: bash
pip install qbraid-algorithms
Install from Source
^^^^^^^^^^^^^^^^^^^^

You can also install from source by cloning this repository and running a pip install command in the root directory of the repository:

.. code-block:: bash
git clone https://github.com/qBraid/qbraid-algorithms.git
cd qbraid-algorithms
pip3 install .
Resources
----------

- `User Guide <https://docs.qbraid.com/algorithms/user-guide>`_
- `Example Notebooks <https://github.com/qBraid/qbraid-algorithms/tree/main/examples>`_
- `API Reference <https://sdk.qbraid.com/projects/algorithms/en/stable/api/qbraid_algorithms.html>`_

|
.. toctree::
:maxdepth: 1
:caption: API Reference
Expand Down
3 changes: 3 additions & 0 deletions examples/sandbox/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
# qBraid-Algorithms Developer Sandbox

This sandbox directory is provided as a collaborative and temporary space where contributors can freely share experimental notebooks and early-stage code. Its main purpose is to increase transparency about ongoing work, thus enhancing collaboration. Feel free to push your notebooks and code frequently, regardless of their completeness or correctness. This directory will be removed with the release of version 0.1 of the `qbraid-algorithms` project.
6 changes: 3 additions & 3 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ dependencies = ["torch>=2.3.0,<3.0", "numpy>=1.17,<2.1", "scipy~=1.13.1", "bloqa

[project.urls]
Homepage = "https://github.com/qBraid/qbraid-algorithms"
Documentation = "https://docs.qbraid.com/en/stable/"
Documentation = "https://docs.qbraid.com"
"Bug Tracker" = "https://github.com/qBraid/qbraid-algorithms/issues"
Discord = "https://discord.gg/TPBU2sa8Et"
"Launch on Lab" = "https://account.qbraid.com/?gitHubUrl=https://github.com/qBraid/qbraid-algorithms.git"
Expand All @@ -38,7 +38,7 @@ Discord = "https://discord.gg/TPBU2sa8Et"
visualization = ["matplotlib"]
test = ["pytest", "pytest-cov"]
lint = ["isort", "ruff", "qbraid-cli"]
docs = ["sphinx~=7.3.7", "sphinx-autodoc-typehints>=1.24,<2.3", "sphinx-rtd-theme~=2.0.0", "docutils<0.22"]
docs = ["sphinx~=7.3.7", "sphinx-autodoc-typehints>=1.24,<2.3", "sphinx-rtd-theme~=2.0.0", "docutils<0.22", "sphinx-copybutton"]

[tool.setuptools_scm]
write_to = "qbraid_algorithms/_version.py"
Expand Down Expand Up @@ -67,7 +67,7 @@ exclude = '''

[tool.pylint.'MESSAGES CONTROL']
max-line-length = 100
disable = "W0108, W0511, W0401, R0902"
disable = "W0108,W0511,W0401,R0902,R0903,R0913"

[tool.pylint.MASTER]
ignore-paths = [
Expand Down
27 changes: 24 additions & 3 deletions qbraid_algorithms/qrc/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,10 +19,31 @@
QRCModel
MagnusExpansion
DetuningLayer
MagnusExpansion
AnalogProgramEvolver
Functions
----------
.. autosummary::
:toctree: ../stubs/
one_hot_encoding
pca_reduction
"""

from .magnus import MagnusExpansion
from .model import QRCModel
from .encoding import one_hot_encoding, pca_reduction
from .magnus_expansion import MagnusExpansion
from .qrc_model import DetuningLayer, QRCModel
from .time_evolution import AnalogProgramEvolver

__all__ = ["QRCModel", "MagnusExpansion"]
__all__ = [
"QRCModel",
"MagnusExpansion",
"DetuningLayer",
"AnalogProgramEvolver",
"one_hot_encoding",
"pca_reduction",
]
127 changes: 0 additions & 127 deletions qbraid_algorithms/qrc/dynamics.py

This file was deleted.

45 changes: 43 additions & 2 deletions qbraid_algorithms/qrc/encoding.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,12 +9,11 @@
# THERE IS NO WARRANTY for the qBraid-SDK, as per Section 15 of the GPL v3.

"""
Module for encoding of data.
Module for encoding of classical data.
"""
import numpy as np
import torch
from sklearn.preprocessing import OneHotEncoder


def one_hot_encoding(labels: np.ndarray, train: bool = True) -> torch.Tensor:
Expand All @@ -28,10 +27,52 @@ def one_hot_encoding(labels: np.ndarray, train: bool = True) -> torch.Tensor:
torch.Tensor: The one-hot encoded matrix where each row corresponds to a label.
"""
# pylint: disable-next=import-outside-toplevel
from sklearn.preprocessing import OneHotEncoder

encoder = OneHotEncoder(sparse_output=False)
reshaped_data = labels.reshape(-1, 1)
if train:
encoded_data = encoder.fit_transform(reshaped_data)
else:
encoded_data = encoder.transform(reshaped_data)
return encoded_data


def pca_reduction(
data: torch.Tensor,
n_components: int,
data_dim: int,
delta_max: int,
train: bool = True,
) -> torch.Tensor:
"""
Perform PCA reduction on the provided data using PyTorch's pca_lowrank to
reduce its dimensionality.
Args:
data (torch.Tensor): The input data tensor where each row represents a sample.
n_components (int): The number of principal components to retain.
data_dim (int): The dimension of the input data required for doing PCA.
delta_max (int): Scaling factor to bring PCA vals into a feasible range for local detuning.
train (bool, optional): Whether the data is training data. Defaults to True.
Returns:
torch.Tensor: The transformed data
"""
# pylint: disable-next=import-outside-toplevel
from sklearn.decomposition import PCA

# Perform PCA on training data
pca = PCA(n_components=n_components)
data_array: np.ndarray = data.data.numpy()
data_reshaped = data_array.reshape(-1, data_dim)
if train:
data_pca = pca.fit_transform(data_reshaped)
else:
data_pca = pca.transform(data_reshaped)

# Scale PCA values to feasible range of local detuning
scaled_data_pca = data_pca / np.max(np.abs(data_pca)) * delta_max

return scaled_data_pca
Loading

0 comments on commit f53337b

Please sign in to comment.