Skip to content

olegranmo/PyTsetlinMachineMultiGPU

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Tsetlin Machine Multi-GPU

CIFAR Demo

Code: CIFARDemo.py

from PyTsetlinMachineCUDA.tm import MultiClassConvolutionalTsetlinMachine2D
import numpy as np
from time import time
from keras.preprocessing.image import ImageDataGenerator

from keras.datasets import cifar10

import cv2

factor = 80
clauses = int(4000*factor)
T = int(75*10*factor)
s = 20.0
patch_size = 8

labels = [b'airplane', b'automobile', b'bird', b'cat', b'deer', b'dog', b'frog', b'horse', b'ship', b'truck']

(X_train, Y_train), (X_test, Y_test) = cifar10.load_data()

Y_test=Y_test.reshape(Y_test.shape[0])
for i in range(X_test.shape[0]):
        for j in range(X_test.shape[3]):
                X_test[i,:,:,j] = cv2.adaptiveThreshold(X_test[i,:,:,j], 1, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)#cv2.adaptiveThreshold(X_test[i,:,:,j], 1, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 5, 5)

datagen = ImageDataGenerator(
    rotation_range=15,
    horizontal_flip=True,
    width_shift_range=0.1,
    height_shift_range=0.1
    #zoom_range=0.3
    )
datagen.fit(X_train)

f = open("cifar10_%.1f_%d_%d_%d.txt" % (s, clauses, T,  patch_size), "w+")

tm = MultiClassConvolutionalTsetlinMachine2D(clauses, T, s, (patch_size, patch_size), number_of_gpus=16)

batch = 0
for X_batch, Y_batch in datagen.flow(X_train, Y_train, batch_size=10000):
        batch += 1
        
        Y_batch = Y_batch.reshape(Y_batch.shape[0]).astype(np.int32)
        X_batch = X_batch.reshape(X_batch.shape[0], 32, 32, 3).astype(np.uint8)

        for i in range(X_batch.shape[0]):
                for j in range(X_batch.shape[3]):
                        X_batch[i,:,:,j] = cv2.adaptiveThreshold(X_batch[i,:,:,j], 1, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2) 

        start_training = time()
        tm.fit(X_batch, Y_batch, epochs=1, incremental=True)
        stop_training = time()

        start_testing = time()
        result_test = 100*(tm.predict(X_test) == Y_test).mean()
        stop_testing = time()

        result_train = 100*(tm.predict(X_batch) == Y_batch).mean()
        print("%d %.2f %.2f %.2f %.2f" % (batch, result_train, result_test, stop_training-start_training, stop_testing-start_testing))
        print("%d %.2f %.2f %.2f %.2f" % (batch, result_train, result_test, stop_training-start_training, stop_testing-start_testing), file=f)
        f.flush()
f.close()

Output

python ./CIFARDemo.py

Preparing GPU #0
Preparing GPU #1
Preparing GPU #2
Preparing GPU #3
Preparing GPU #4
Preparing GPU #5
Preparing GPU #6
Preparing GPU #7
Preparing GPU #8
Preparing GPU #9
Preparing GPU #10
Preparing GPU #11
Preparing GPU #12
Preparing GPU #13
Preparing GPU #14
Preparing GPU #15

1 45.11 41.06 26.91 11.10
2 52.29 47.12 21.88 10.81
3 57.00 49.78 21.81 10.96
...

278 99.98 70.30 20.64 10.94
279 99.97 70.20 20.73 10.89
280 99.97 70.33 20.72 10.86

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages