MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks.
Developer: Fu Haitao from BBDM lab, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
-
Split data for cross validation and indenpendent test experiment via the script split_data.py:
python split_data.py fold_number DATANAME seed_indent seed_cross
-
To perform cross validation for finetuning the hyperparameters by running the script command_optimal (if you don't want to finetune the hyperparameters, just skip this step):
python command_optimal.py --dataName DATANAME --exp_name mid_dim/num_layer/alp_beta --seed_cross seed_cross --seed_indent seed_indent
-
To get the experiment results by running the script command_optimal.py:
python command_optimal.py --dataName DATANAME --exp_name optimal_cross --seed_cross seed_cross --seed_indent seed_indent
python command_optimal.py --dataName DATANAME --exp_name optimal_indent --seed_cross seed_cross --seed_indent seed_indent
numpy 1.18.0
pandas 1.1.0
scipy 1.4.1
scikit-learn 0.22
tensorflow 1.15.0
pytorch 1.6.0
python 3.7.1
Please feel free to contact us if you need any help: [email protected] OR [email protected]