Skip to content

Perceptron is a mathematical computational model for classifying only linearly separable data. Perceptron algorithm only works if the data is linearly separable.

License

Notifications You must be signed in to change notification settings

manharsharma007/Perceptron

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Perceptron

Steps :

  1. Use prepare_data() method to prepare the inputs and labels. The prepare data accepts three parameters #@files - input file to read #@indices - tuple of indices to fetch from the file #@labls - dictionary of labels and their corresponding category value for encoding labels
	example usage : data1,label1 = prepare_data('train.data', indices = (0,80), labls = {"class-1": -1, "class-2": 1})
  1. Create an object of Perceptron class. The constructor recieves two parameters
	#@@ __init__ - params : {input_size,gamma}
	####@ input_size - input size
	####@ gamma - Coeficient of the l2 regularization default is 0 (no regularisation)
  1. Implement a binary Perceptron
	######### Prepare the data ###########
	data1,label1 = prepare_data('train.data',(0,80), labls = {"class-1": -1, "class-2": 1}) 
	Perceptron1 = Perceptron(4) 	############ Constructor with 4 input size ################
	Perceptron1.train(data1,label1,20)	############ Train the Perceptron ##############

	print(Perceptron1.data_matrix(data1,label1)) ############ View the data matrix ##############

	print(Perceptron1.activation(Perceptron1.predict(inputs = [1,2,3,4])))  ###### Prediction of new data point #####
  1. Multiple classes
	data1,label1 = prepare_data('train.data',(0,120), labls = {"class-1": 1, "class-2": -1, "class-3": -1})
	Perceptron1 = Perceptron(4) 			  ############ Constructor with 4 input size ################
	Perceptron1.train(data1,label1,20)	############ Train the Perceptron ##############

	print(Perceptron1.data_matrix(data1,label1)) ############ View the data matrix ##############
  1. Perceptron with l2 Regularisation
	data1,label1 = prepare_data('train.data',(0,120), labls = {"class-1": 1, "class-2": -1, "class-3": -1})
	Perceptron1 = Perceptron(4, gamma = 0.01) ############ Constructor with 4 input size ################
	Perceptron1.train(data1,label1,20)	  ############ Train the Perceptron ##############

	print(Perceptron1.data_matrix(data1,label1)) ############ View the data matrix ##############

About

Perceptron is a mathematical computational model for classifying only linearly separable data. Perceptron algorithm only works if the data is linearly separable.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages