Skip to content
This repository has been archived by the owner on Jan 25, 2022. It is now read-only.

Commit

Permalink
Merge pull request #376 from kyamagu/cv331
Browse files Browse the repository at this point in the history
OpenCV 3.3.1 + updates
  • Loading branch information
amroamroamro authored Dec 9, 2017
2 parents 8d109eb + a041b85 commit b698c8d
Show file tree
Hide file tree
Showing 707 changed files with 25,392 additions and 14,856 deletions.
File renamed without changes.
44 changes: 22 additions & 22 deletions +cv/AGAST.m
Original file line number Diff line number Diff line change
@@ -1,37 +1,37 @@
%AGAST Detects corners using the AGAST algorithm
%
% keypoints = cv.AGAST(im)
% keypoints = cv.AGAST(im, 'OptionName', optionValue, ...)
% keypoints = cv.AGAST(im)
% keypoints = cv.AGAST(im, 'OptionName', optionValue, ...)
%
% ## Input
% * __im__ 8-bit grayscale image where keypoints (corners) are to be detected.
%
% ## Output
% * __keypoints__ Keypoints detected on the image. A 1-by-N structure array.
% It has the following fields:
% * __pt__ coordinates of the keypoint [x,y]
% * __size__ diameter of the meaningful keypoint neighborhood
% * __angle__ computed orientation of the keypoint (-1 if not applicable).
% Its possible values are in a range [0,360) degrees. It is measured
% relative to image coordinate system (y-axis is directed downward),
% ie in clockwise.
% * __response__ the response by which the most strong keypoints have been
% selected. Can be used for further sorting or subsampling.
% * __octave__ octave (pyramid layer) from which the keypoint has been
% extracted.
% * **class_id** object id that can be used to clustered keypoints by an
% object they belong to.
% It has the following fields:
% * __pt__ coordinates of the keypoint `[x,y]`
% * __size__ diameter of the meaningful keypoint neighborhood
% * __angle__ computed orientation of the keypoint (-1 if not applicable).
% Its possible values are in a range [0,360) degrees. It is measured
% relative to image coordinate system (y-axis is directed downward), i.e
% in clockwise.
% * __response__ the response by which the most strong keypoints have been
% selected. Can be used for further sorting or subsampling.
% * __octave__ octave (pyramid layer) from which the keypoint has been
% extracted.
% * **class_id** object id that can be used to clustered keypoints by an
% object they belong to.
%
% ## Options
% * __Threshold__ Threshold on difference between intensity of the central
% pixel and pixels on a circle around this pixel. default 10.
% * __NonmaxSuppression__ If it is true, non-maximum supression is applied
% to detected corners (keypoints). default true.
% pixel and pixels on a circle around this pixel. default 10.
% * __NonmaxSuppression__ If it is true, non-maximum supression is applied to
% detected corners (keypoints). default true.
% * __Type__ one of the four neighborhoods as defined in the paper:
% * **AGAST_5_8**
% * **AGAST_7_12d**
% * **AGAST_7_12s**
% * **OAST_9_16** (default)
% * **AGAST_5_8**
% * **AGAST_7_12d**
% * **AGAST_7_12s**
% * **OAST_9_16** (default)
%
% Detects corners using the AGAST algorithm by [mair2010].
%
Expand Down
162 changes: 83 additions & 79 deletions +cv/AKAZE.m

Large diffs are not rendered by default.

341 changes: 167 additions & 174 deletions +cv/ANN_MLP.m

Large diffs are not rendered by default.

68 changes: 33 additions & 35 deletions +cv/AgastFeatureDetector.m
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,8 @@
%

properties (SetAccess = private)
id % Object ID
% Object ID
id
end

properties (Dependent)
Expand All @@ -41,14 +42,13 @@
function this = AgastFeatureDetector(varargin)
%AGASTFEATUREDETECTOR Constructor
%
% obj = cv.AgastFeatureDetector()
% obj = cv.AgastFeatureDetector(..., 'OptionName',optionValue, ...)
% obj = cv.AgastFeatureDetector()
% obj = cv.AgastFeatureDetector(..., 'OptionName',optionValue, ...)
%
% ## Options
% * __Threshold__ See cv.AgastFeatureDetector.Threshold,
% default 10
% * __Threshold__ See cv.AgastFeatureDetector.Threshold, default 10
% * __NonmaxSuppression__ See
% cv.AgastFeatureDetector.NonmaxSuppression, default true
% cv.AgastFeatureDetector.NonmaxSuppression, default true
% * __Type__ See cv.AgastFeatureDetector.Type, default `OAST_9_16`
%
% See also: cv.AgastFeatureDetector.detect
Expand All @@ -59,7 +59,7 @@
function delete(this)
%DELETE Destructor
%
% obj.delete()
% obj.delete()
%
% See also: cv.AgastFeatureDetector
%
Expand All @@ -70,7 +70,7 @@ function delete(this)
function typename = typeid(this)
%TYPEID Name of the C++ type (RTTI)
%
% typename = obj.typeid()
% typename = obj.typeid()
%
% ## Output
% * __typename__ Name of C++ type
Expand All @@ -84,7 +84,7 @@ function delete(this)
function clear(this)
%CLEAR Clears the algorithm state
%
% obj.clear()
% obj.clear()
%
% See also: cv.AgastFeatureDetector.empty,
% cv.AgastFeatureDetector.load
Expand All @@ -95,11 +95,11 @@ function clear(this)
function b = empty(this)
%EMPTY Checks if detector object is empty
%
% b = obj.empty()
% b = obj.empty()
%
% ## Output
% * __b__ Returns true if the detector object is empty (e.g in the
% very beginning or after unsuccessful read).
% very beginning or after unsuccessful read).
%
% See also: cv.AgastFeatureDetector.clear,
% cv.AgastFeatureDetector.load
Expand All @@ -110,7 +110,7 @@ function clear(this)
function save(this, filename)
%SAVE Saves the algorithm parameters to a file
%
% obj.save(filename)
% obj.save(filename)
%
% ## Input
% * __filename__ Name of the file to save to.
Expand All @@ -126,21 +126,21 @@ function save(this, filename)
function load(this, fname_or_str, varargin)
%LOAD Loads algorithm from a file or a string
%
% obj.load(fname)
% obj.load(str, 'FromString',true)
% obj.load(..., 'OptionName',optionValue, ...)
% obj.load(fname)
% obj.load(str, 'FromString',true)
% obj.load(..., 'OptionName',optionValue, ...)
%
% ## Input
% * __fname__ Name of the file to read.
% * __str__ String containing the serialized model you want to
% load.
% load.
%
% ## Options
% * __ObjName__ The optional name of the node to read (if empty,
% the first top-level node will be used). default empty
% * __FromString__ Logical flag to indicate whether the input is
% a filename or a string containing the serialized model.
% default false
% the first top-level node will be used). default empty
% * __FromString__ Logical flag to indicate whether the input is a
% filename or a string containing the serialized model.
% default false
%
% This method reads algorithm parameters from the specified XML or
% YAML file (either from disk or serialized string). The previous
Expand All @@ -154,11 +154,11 @@ function load(this, fname_or_str, varargin)
function name = getDefaultName(this)
%GETDEFAULTNAME Returns the algorithm string identifier
%
% name = obj.getDefaultName()
% name = obj.getDefaultName()
%
% ## Output
% * __name__ This string is used as top level XML/YML node tag
% when the object is saved to a file or string.
% when the object is saved to a file or string.
%
% See also: cv.AgastFeatureDetector.save, cv.AgastFeatureDetector.load
%
Expand All @@ -171,28 +171,26 @@ function load(this, fname_or_str, varargin)
function keypoints = detect(this, img, varargin)
%DETECT Detects keypoints in an image or image set
%
% keypoints = obj.detect(img)
% keypoints = obj.detect(imgs)
% [...] = obj.detect(..., 'OptionName',optionValue, ...)
% keypoints = obj.detect(img)
% keypoints = obj.detect(imgs)
% [...] = obj.detect(..., 'OptionName',optionValue, ...)
%
% ## Input
% * __img__ Image (first variant), 8-bit grayscale image where
% keypoints (corners) are detected.
% keypoints (corners) are detected.
% * __imgs__ Image set (second variant), cell array of images.
%
% ## Output
% * __keypoints__ The detected keypoints. In the first variant,
% a 1-by-N structure array. In the second variant of the
% method, `keypoints{i}` is a set of keypoints detected in
% `imgs{i}`.
% * __keypoints__ The detected keypoints. In the first variant, a
% 1-by-N structure array. In the second variant of the method,
% `keypoints{i}` is a set of keypoints detected in `imgs{i}`.
%
% ## Options
% * __Mask__ A mask specifying where to look for keypoints
% (optional). It must be a logical or 8-bit integer matrix
% with non-zero values in the region of interest. In the
% second variant, it is a cell-array of masks for each input
% image, `masks{i}` is a mask for `imgs{i}`.
% Not set by default.
% (optional). It must be a logical or 8-bit integer matrix with
% non-zero values in the region of interest. In the second
% variant, it is a cell-array of masks for each input image,
% `masks{i}` is a mask for `imgs{i}`. Not set by default.
%
% See also: cv.AgastFeatureDetector.AgastFeatureDetector
%
Expand Down
49 changes: 25 additions & 24 deletions +cv/AlignMTB.m
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,8 @@
%

properties (SetAccess = private)
id % Object ID
% Object ID
id
end

properties (Dependent)
Expand All @@ -43,8 +44,8 @@
function this = AlignMTB(varargin)
%ALIGNMTB Creates AlignMTB object
%
% obj = cv.AlignMTB()
% obj = cv.AlignMTB('OptionName',optionValue, ...)
% obj = cv.AlignMTB()
% obj = cv.AlignMTB('OptionName',optionValue, ...)
%
% ## Options
% * __MaxBits__ default 6
Expand All @@ -59,7 +60,7 @@
function delete(this)
%DELETE Destructor
%
% obj.delete()
% obj.delete()
%
% See also: cv.AlignMTB
%
Expand All @@ -70,7 +71,7 @@ function delete(this)
function shift = calculateShift(this, img0, img1)
%CALCULATESHIFT Calculates shift between two images
%
% shift = obj.calculateShift(img0, img1)
% shift = obj.calculateShift(img0, img1)
%
% ## Input
% * __img0__ first image (`uint8` grayscale).
Expand All @@ -90,7 +91,7 @@ function delete(this)
function dst = shiftMat(this, src, shift)
%SHIFTMAT Helper function, that shift Mat filling new regions with zeros
%
% dst = obj.shiftMat(src, shift)
% dst = obj.shiftMat(src, shift)
%
% ## Input
% * __src__ input image.
Expand All @@ -107,14 +108,14 @@ function delete(this)
function [tb, eb] = computeBitmaps(this, img)
%COMPUTEBITMAPS Computes median threshold and exclude bitmaps of given image
%
% [tb,eb] = obj.computeBitmaps(img)
% [tb, eb] = obj.computeBitmaps(img)
%
% ## Input
% * __img__ input image (`uint8` grayscale).
%
% ## Output
% * __tb__ median threshold bitmap, of same size as `img` and
% `uint8` type.
% `uint8` type.
% * __eb__ exclude bitmap, of same size as `img` and `uint8` type.
%
% See also: cv.AlignMTB.process
Expand All @@ -128,11 +129,11 @@ function delete(this)
function dst = process(this, src)
%PROCESS Aligns images
%
% dst = obj.process(src)
% dst = obj.process(src)
%
% ## Input
% * __src__ cell array of input images (RGB), all of the same size
% and `uint8` type.
% and `uint8` type.
%
% ## Output
% * __dst__ cell array of aligned images, of same length as `src`.
Expand All @@ -148,7 +149,7 @@ function delete(this)
function clear(this)
%CLEAR Clears the algorithm state
%
% obj.clear()
% obj.clear()
%
% See also: cv.AlignMTB.empty, cv.AlignMTB.load
%
Expand All @@ -158,11 +159,11 @@ function clear(this)
function b = empty(this)
%EMPTY Returns true if the algorithm is empty
%
% b = obj.empty()
% b = obj.empty()
%
% ## Output
% * __b__ Returns true if the object is empty (e.g in the
% very beginning or after unsuccessful read).
% very beginning or after unsuccessful read).
%
% See also: cv.AlignMTB.clear, cv.AlignMTB.load
%
Expand All @@ -172,11 +173,11 @@ function clear(this)
function name = getDefaultName(this)
%GETDEFAULTNAME Returns the algorithm string identifier
%
% name = obj.getDefaultName()
% name = obj.getDefaultName()
%
% ## Output
% * __name__ This string is used as top level XML/YML node tag
% when the object is saved to a file or string.
% when the object is saved to a file or string.
%
% See also: cv.AlignMTB.save, cv.AlignMTB.load
%
Expand All @@ -186,7 +187,7 @@ function clear(this)
function save(this, filename)
%SAVE Saves the algorithm parameters to a file
%
% obj.save(filename)
% obj.save(filename)
%
% ## Input
% * __filename__ Name of the file to save to.
Expand All @@ -202,21 +203,21 @@ function save(this, filename)
function load(this, fname_or_str, varargin)
%LOAD Loads algorithm from a file or a string
%
% obj.load(fname)
% obj.load(str, 'FromString',true)
% obj.load(..., 'OptionName',optionValue, ...)
% obj.load(fname)
% obj.load(str, 'FromString',true)
% obj.load(..., 'OptionName',optionValue, ...)
%
% ## Input
% * __fname__ Name of the file to read.
% * __str__ String containing the serialized model you want to
% load.
% load.
%
% ## Options
% * __ObjName__ The optional name of the node to read (if empty,
% the first top-level node will be used). default empty
% * __FromString__ Logical flag to indicate whether the input is
% a filename or a string containing the serialized model.
% default false
% the first top-level node will be used). default empty
% * __FromString__ Logical flag to indicate whether the input is a
% filename or a string containing the serialized model.
% default false
%
% This method reads algorithm parameters from the specified XML or
% YAML file (either from disk or serialized string). The previous
Expand Down
Loading

0 comments on commit b698c8d

Please sign in to comment.