-
Notifications
You must be signed in to change notification settings - Fork 0
jimstevens2001/AI-Pacman
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
############################################################################### # # # Learning Pac-Man README # # # ############################################################################### ############################################################################### # # # EECS 833 : Final Project - Learning Pac-Man # # Date : 05/12/2008 # # Authors : Adam Smith, Jim Stevens, Fabrice Baijot # # Version : 4.0 # # Language : Python, version 2.5 and PyGame, version 1.7 # # System : cycle4.eecs.ku.edu # # Site : Dept. of Electrical Engineering and Computer Science # # The University of Kansas, Lawrence, KS 66045 # # Web Page : http://people.eecs.ku.edu/~asmith12/pacman # # # ############################################################################### ############################################################################### # Description # ############################################################################### This system implements a Pacman system in which Pacman can be be played by humans or controlled by an AI agent. The AI agent learns how to play the game using reinforcement learning techniques. The game is highly configurable and modular. The primary configuration options are described below and further details can be found in the project document. ############################################################################### # System Requirements # ############################################################################### Learning Pac-Man is implemented in the cross-platform Python environment. It can be used on any platform meeting these requirements: *Python 2.5 or later (http://www.python.org) *PyGame 1.7 or later (http://www.pygame.org) In addition, the training can be accelerated with the Psyco Just-In-Time compiler for Python. We have included a version of Psyco that is compatible with Python 2.5 for Linux systems (which is the default on the EECS network). To use psyco in another environment, download it from: http://psyco.sourceforge.net ############################################################################### # Usage # ############################################################################### > python main.py <config> The configuration files are stored in the config dictionary with a .txt extension. To use a particular config file, type the file name WITHOUT the directory or the .txt extension (e.g. test.txt will be executed as "python main.py test"). The configuration files contain a large number of parameters for the system. Most of these parameters are relatively static between runs of the system. The most important parameters are: *ai_mode: Set to True if Pac-Man should be an AI agent and False for a human player. *graphics_on: Set to True to enable Pygame based graphics and False to disable graphics. *training_iterations: The number of iterations of the main loop to run for the AI agent. *training_file_start/training_file_end: The files to load/store the training data for the AI agent. *difficulty: The probability that the ghosts will turn towards Pac-Man after each time they make a decision. *learning_algorithm: The learning algorithm that Pac-Man will use. Valid methods are "neuralnet", "approximation" and "explict" The following sample configuration files are provided: human: You can control Pac-Man using the arrow keys. awesome_nn: A highly trained Pac-Man using neural networks. super_awesome: Highly trained Pac-Man using linear function approximation. explicit: Pac-Man trained with explicit state tables (note: he is only aware of pellets and not ghosts). im_config: The config file used for the improvement tests. (graphics off) general_testing: The config file used for the generalization tests. (graphics off) If you have any questions about this system, please feel free to email [email protected], [email protected], or [email protected].
About
No description, website, or topics provided.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published