Skip to content

jamesjcai/scGEAToolbox

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

scGEAToolbox - a Matlab toolbox for single-cell RNA-seq data analyses

View scGEAToolbox on File Exchange

Quick Installation

Run the following code in MATLAB:

unzip('https://github.com/jamesjcai/scGEAToolbox/archive/main.zip');
addpath('./scGEAToolbox-main');

Getting Started Quickly Using the SCGEATOOL App

Run the following code in MATLAB to start:

scgeatool

Open in MATLAB Online

Read Documentation

scGEAToolbox Documentation

SEE ALSO - Standalone Application SCGEATOOL :: Single-Cell Gene Expression Analysis Tool

SCGEATOOL.exe is a standalone application running on Windows machines that do not have MATLAB installed. SCGEATOOL is a lightweight and blazing fast desktop application that provides interactive visualization functionality to analyze single-cell transcriptomic data. SCGEATOOL allows you to easily interrogate different views of your scRNA-seq data to quickly gain insights into the underlying biology. SCGEATOOL is a pre-compiled standalone application developed in MATLAB. Pre-compiled standalone releases are meant for those environments without access to MATLAB licenses. Standalone releases provide access to all of the functionality of the SCGEATOOL standard MATLAB release encapsulated in a single application. SCGEATOOL is open-sourced to allow you to experience the added flexibility and speed of the MATLAB environment when needed.

Help

If you have any questions or require assistance using scGEAToolbox, please contact me.

Citation

Cai JJ. scGEAToolbox: a Matlab toolbox for single-cell RNA sequencing data analysis. Bioinformatics. 2019;btz830. doi:10.1093/bioinformatics/btz830