FISS' faithful companion.
dalmatian is a collection of high-level functions for interacting with Firecloud via Pandas dataframes.
pip install firecloud-dalmatian
FireCloud uses the Google Cloud SDK (https://cloud.google.com/sdk/) to manage authorization. To use dalmatian, you must install the SDK and login locally with
gcloud auth application-default login
Dalmatian provides the WorkspaceManager class for interacting with FireCloud workspaces.
import dalmatian
wm = dalmatian.WorkspaceManager("namespace/workspace")
Create the workspace:
wm.create_workspace()
Upload samples and sample attributes (e.g., BAM paths). The attributes must be provided as a pandas DataFrame, in the following form:
- the index must be named 'sample_id', and contain the sample IDs
- the dataframe must contain the column 'participant_id'
- if a 'sample_set_id' columns is provided, the corresponding sample sets will be generated
wm.upload_samples(attributes_df, add_participant_samples=True)
If add_participant_samples=True
, all samples of a participant are stored in participant.samples_
.
Add or update workspace attributes:
attr = {
'attribute_name':'gs://attribute_path',
}
wm.update_attributes(attr)
Get attributes on samples, sample sets, participants:
samples_df = wm.get_samples()
sets_df = wm.get_sample_sets()
participants_df = wm.get_participants()
Create or update sets:
wm.update_sample_set('all_samples', samples_df.index)
wm.update_participant_set('all_participants', participant_df.index)
Copy/move data from workspace:
samples_df = wm.get_samples()
dalmatian.gs_copy(samples_df[attribute_name], dest_path)
dalmatian.gs_move(samples_df[attribute_name], dest_path)
Clone a workspace:
wm2 = dalmatian.WorkspaceManager(namespace2, workspace2)
wm2.create_workspace(wm)
Submit jobs:
wm.create_submission("config_namespace/config_name", sample_id, 'sample', use_callcache=True)
wm.create_submission("config_namespace/config_name", sample_set_id, 'sample_set', expression='this.samples', use_callcache=True)
wm.create_submission("config_namespace/config_name", participant_id, 'participant', expression='this.samples_', use_callcache=True)
Monitor jobs:
wm.get_submission_status()
Get runtime statistics (including cost estimates):
status_df = wm.get_sample_status(config_name)
workflow_status_df, task_dfs = wm.get_stats(status_df)
Re-run failed jobs (for a sample set):
status_df = wm.get_sample_set_status(config_name)
print(status_df['status'].value_counts()) # list sample statuses
wm.update_sample_set('reruns', status_df[status_df['status']=='Failed'].index)
wm.create_submission(config_namespace, config_name, sample_set_id, 'reruns', expression=this.samples, use_callcache=True)
Including additional FireCloud Tools (enumerated below)
workflow_time
create_workspace
delete_workspace
upload_samples
upload_participants
update_participant_samples
update_attributes
get_submission_status
get_storage
get_stats
publish_config
get_samples
get_sample_sets
update_sample_set
delete_sample_set
update_configuration
check_configuration
get_google_metadata
parse_google_stats
calculate_google_cost
list_methods
get_method
get_method_version
list_configs
get_config
get_config_version
print_methods
print_configs
get_wdl
compare_wdls
compare_wdl
redact_outdated_method_versions
update_method
get_vm_cost
Some functionality depends on the installed gsutil
.
When using PY3 this creates a potential issue of requiring multiple accessible python installs.
Remediate this issue by defining an env
variable for gsutil python
# replace path with path to local python 2.7 path.
# if using pyenv the following should work
# (assuming of course 2.7.12 is installed)
export CLOUDSDK_PYTHON=/usr/local/var/pyenv/versions/2.7.12/bin/python