This is the software of paper [1]. Please cite [1] if you use this code. Author: Yuchen Yuan Last updated: Oct 29, 2016
This software is implemented on MatConvNet [2] with CUDA 7.5 and cuDNN v3. CPU-only mode is also supported.
- Resources: Please download here
- Supported OS: This software is tested on 64-bit Ubuntu 14.04 and 64-bit Windows 8.1
- MatConvNet: Please download MatConvNet to the current path, and compile with instructions. Below is a compilation example:
run matlab/vl_setupnn.m
vl_compilenn('enableGpu', true, 'cudaMethod', 'nvcc', ...
'cudaRoot', '/usr/local/cuda-7.5', ...
'enableCudnn', true, 'cudnnRoot', '/usr/local/cuda/');
- CUDA: If run with GPU, please download and install CUDA
- cuDNN: If run with GPU, please download and install cuDNN
- Entrance: Please run
deepgene_demo.m
for an example use - Default input data path:
data/data_mat_all
- Default trained network path:
model
- Default result file:
result.txt
- GPU or CPU mode: Please set
gpus = 1
for GPU mode, orgpus = []
for CPU-only mode.
[1] Y. Yuan, Y. Shi et al. "DeepGene: an advanced cancer type classifier based on deep learning and somatic point mutations", BMC Bioinformatics, vol. xx, no. xx, pp. xx-yy, Month. 2016
[2] A. Vedaldi and K. Lenc, "MatConvNet-convolutional neural networks for MATLAB", arXiv preprint arXiv:1412.4564, 2014.