Paper: https://arxiv.org/abs/2110.15182
(preceded with $ are linux terminal commands)
Folders:
raw_data
: contains raw data examples of 2D & 3D TORI datasetsdatasets
: 2D & 3D TORI processed datasets from raw_data in Hodge Laplacian graph form, ready for training and validating a Dist2Cycle modelmodels
: trained models in 2D and 3D used to produce the results of the main papersrc
: all necessary dataset and model definitions, alongside utility functions
Files:
dependencies.txt
: code dependencies of python scripts & jupyter notebook
Python scripts:
gen_raw_data.py
Generate raw data instances from the TORI dataset
requires Shortloop
Help:$ python gen_raw_data.py -h
Example command:
$ python gen_raw_data.py --dim 2 --npts 100 121 10 --ncomplexes 1 --fvals 2 --k 10 --prefix raw_data/2D/EXAMPLES --shortlooppath <path_to_shortloop_folder>
gen_dataset.py
Generate Hodge Laplacian graphs from raw data, suitable for training and evaluation
Help:
$ python gen_dataset.py -h
Example command:
$ python gen_dataset.py --rawdataset raw_data/2D/EX_Alpha_D2_HDim2_k10 --datasetname EX_Alpha_D2_HDim2_k10 --datasetsavedir datasets/2D
training_suite.py
:
Train a Dist2Cycle model, based on model_params.json configuration file provided
Help:
$ python training_suite.py
Example command:
$ python training_suite.py --model Dist2Cycle --rawdataset raw_data/2D/EX_Alpha_D2_HDim2_k10 --datasetpath datasets/2D/LAZY_EX_Alpha_D2_HDim2_k10_boundary_1HD_Lfunc_k10_7_6_0.0 --modelparams model_params.json --savedir models/CUSTOM_MODEL
Jupyter notebooks:
Dist2Cycle_showcase.ipynb
:
The notebook loads a trained model and evaluates it against a validation dataset, providing complex and regression vizualizations.