Skip to content

CeSpGRN: Inferring cell specific GRN using single-cell gene expression data

License

Notifications You must be signed in to change notification settings

PeterZZQ/CeSpGRN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CeSpGRN: Inferring cell specific GRN using single-cell gene expression data

Zhang's Lab, Georgia Institute of Technology

Developed by Ziqi Zhang, Jongseok Han

Preprint: available soon

Description

CeSpGRN is a package that is able to infer cell specific GRN using single-cell gene expression data

  • src stores the inference algorithms.
  • test stores the scripts (testing scripts) and results (testing results are directly generated by the scripts, too large to be pushed onto github).
    • scripts_GGM: testing script for the GGM data
    • scripts_softODE: testing script for the softODE data
    • scripts_THP-1: testing script for the THP-1 data
  • simulator stores the simulation code:
    • GGM: simulator for GGM data
    • soft_boolODE: simulator for the softODE data
  • data stores the real and simulated data (available upon requests)

Dependency

(required)
pytorch >= 1.15.0 
numpy >= 1.19.5
scipy >= 1.7.1
networkx >= 2.5
sklearn >= 0.24.2

(optional)
matplotlib >= 3.4.3
statsmodels >= 0.12.2

Usage

  • Load in the count matrix as a numpy ndarray, the matrix should be of the shape (ncells, ngenes). e.g.
    import sys, os
    sys.path.append('./src/')
    import numpy as np 
    
    # load CeSpGRN
    import g_admm as CeSpGRN
    import kernel
    
    # read in count matrix
    counts = np.load("counts.npy")
  • Set the hyper-parameter including: bandwidth, neighborhoodsize, and lambda. e.g.
    # smaller bandwidth means that GRN of cells are more heterogeneous.
    bandwidth = 1
    # number of neighbor being considered when calculating the covariance matrix.
    n_neigh = 30
    # sparsity regulatorization, larger lamb means sparser result.
    lamb = 0.1
  • Calculate the kernel function, and covariance matrix for each cell, e.g.
    # calculate PCA of count matrix
    from sklearn.decompose import PCA
    pca_op = PCA(n_components = 10)
    X_pca = pca_op.fit_transform(counts)
    
    # using X_pca to calculate the kernel function
    K, K_trun = kernel.calc_kernel_neigh(X_pca, k = 5, bandwidth = bandwidth, truncate = True, truncate_param = n_neigh)
    
    # estimate covariance matrix, output is empir_cov of the shape (ncells, ngenes, ngenes)
    empir_cov = CeSpGRN.est_cov(X = counts, K_trun = K_trun, weighted_kt = True)
  • Estimating cell-specific GRN, e.g.
    # estimate cell-specific GRNs, thetas of the shape (ncells, ngenes, ngenes)
    cespgrn = CeSpGRN.G_admm_minibatch(X=counts[:, None, :], K=K, pre_cov=empir_cov, batchsize = 120)
    thetas = cespgrn.train(max_iters=max_iters, n_intervals=100, lamb=lamb)

An example run is shown in demo.py.

About

CeSpGRN: Inferring cell specific GRN using single-cell gene expression data

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published