Releases: JuliaGraphs/GraphNeuralNetworks.jl
Releases · JuliaGraphs/GraphNeuralNetworks.jl
v0.6.21
GraphNeuralNetworks v0.6.21
Merged pull requests:
- Add
DCGRU
temporal layer (#448) (@aurorarossi) - move mldatasets2gnngraph (#458) (@CarloLucibello)
- create GNNLux.jl package (#460) (@CarloLucibello)
- [GNNLux] GCNConv, ChebConv, GNNChain (#462) (@CarloLucibello)
- [GNNLux] more layers (#463) (@CarloLucibello)
- use GNNlib in GNN.jl (#464) (@CarloLucibello)
- [GNNlib] fix cuda ext (#465) (@CarloLucibello)
- tests for GNNlib (#466) (@CarloLucibello)
- fix docs (#467) (@CarloLucibello)
- [GNNLux] fix tests (#468) (@CarloLucibello)
- [GNNLux] more layers (#469) (@CarloLucibello)
- [GNNLux] TGCN temporal layer (#470) (@aurorarossi)
- [GNNLux] more layers pt. 3 (#471) (@CarloLucibello)
- [GNNGraphs] implement
remove_edges(g, p)
(#474) (@rbSparky) - [GNNLux] Added SGConv (#475) (@rbSparky)
- fix dense test (#479) (@CarloLucibello)
- [GNNLux] Adding MegNetConv Layer (#480) (@rbSparky)
- rng instead of seed for rand_graph (#482) (@CarloLucibello)
@functor
->@layer
(#484) (@CarloLucibello)- [GNNLux] Add A3TGCN temporal layer (#485) (@aurorarossi)
- [GNNLux] Add GConvLSTM, GConvGRU and DCGRU temporal layers (#487) (@aurorarossi)
- fix NNConv docs (#488) (@CarloLucibello)
- Add
EvolveGCNO
temporal layer (#489) (@aurorarossi) - [GNNLux] updates for Lux v1.0 (#490) (@CarloLucibello)
- [GNNLux] Adding NNConv Layer (#491) (@rbSparky)
- [GNNLux] add GMMConv, ResGatedGraphConv (#494) (@CarloLucibello)
Closed issues:
- Question about temporal graph neural networks (#112)
- add show methods for
WithGraph
andGNNChain
(#178) - Dropout inside GATConv layer (#258)
- Graph classification: multiple graphs associated with a common label (#282)
- convenience feature setter (#284)
@functor
default forGNNLayer
s (#288)- documentation proposal (#357)
- support Lux (#372)
- turn this into a monorepo (#433)
- use Flux.@layer instead of Flux.@functor (#452)
- random graph generators should take an
rng
instead of aseed
(#459) - Cannot create GNNGraph with unconnected nodes (#472)
- Implementation of recommender system based on GNN (#473)
- GNNs.jl's CI is failing for
GRAPH_T = :dense
(#476) GCNConv
layer fails when theGNNGraph
comes from an adjacency matrix (#486)
v0.6.20
GraphNeuralNetworks v0.6.20
Merged pull requests:
- Added
perturb_edges
function (#423) (@rbSparky) - Add
drop_nodes
transform (#426) (@rbSparky) - Added Personalized PageRank Diffusion [
ppr_diffusion
function] (#427) (@rbSparky) - Added
TAGConv
layer (#430) (@rbSparky) - create GNNlib.jl (#432) (@CarloLucibello)
- Create Register.yml (#434) (@CarloLucibello)
- Add
GConvLSTM
temporal layer (#437) (@aurorarossi) - Add
GConvGRU
temporal layer (#438) (@aurorarossi) - Add
DConv
layer (#441) (@aurorarossi) - CompatHelper: bump compat for KrylovKit to 0.8, (keep existing compat) (#442) (@github-actions[bot])
- Coloring refinement algorithm (#444) (@CarloLucibello)
- separate GNNGraphs from GNNlib (#446) (@CarloLucibello)
- Add possibility to pass weights to
GCNConv
(#447) (@aurorarossi) - temporarily reintegrate GNNGraphs tests (#449) (@CarloLucibello)
- CI for GNNGraphs.jl (#451) (@CarloLucibello)
- make GraphNeuralNetworks.jl depend on GNNGraphs.jl (#453) (@CarloLucibello)
- drop_nodes -> remove_nodes (#454) (@CarloLucibello)
- fix docs (#455) (@CarloLucibello)
Closed issues:
- Maybe state difference with GeometricFlux.jl. (#435)
v0.6.19
GraphNeuralNetworks v0.6.19
Merged pull requests:
- feat: Add GCNConv support for HeteroGraphConv (#367) (@askorupka)
- feat: support weights when generating from SimpleWeightedGraph (#371) (@askorupka)
- Add
TemporalSnapshotsGNNgraph
classification tutorial (#408) (@aurorarossi) - Creating dropout functionality in the GATConv and GATv2Conv Layers (#411) (@achiverram28)
- chore: update docs (layers compatible with GNNHeterograph) (#413) (@askorupka)
- Added
remove_edges
function (#414) (@rbSparky) - fix: remove SGConv GNNHeteroGraph support (#416) (@askorupka)
- fix: GCNConv support for GNNHeteroGraph (#417) (@askorupka)
- Added
remove_nodes
function (#420) (@rbSparky) - CompatHelper: bump compat for KrylovKit to 0.7, (keep existing compat) (#421) (@github-actions[bot])
- Added
TransformerConv
usage example (#422) (@rbSparky) - Fixes and more tests in
remove_nodes
function (#424) (@rbSparky) - chore: Update docs for HeteroGNN support (#425) (@askorupka)
- Bump julia-actions/setup-julia from 1 to 2 (#431) (@dependabot[bot])
Closed issues:
- Weights not included in GNNGraph made from SimpleWeightedDiGraph (#85)
v0.6.18
GraphNeuralNetworks v0.6.18
Merged pull requests:
- Add GATv2Conv support to HeteroGraphConv (#407) (@rbSparky)
- Remove duplicate of
GINConv
forTemporalSnapshotsGNNGraph
(#409) (@aurorarossi) - Fix ref in the docs (#410) (@aurorarossi)
Closed issues:
- Duplicated method definitions of GINConv (#406)
v0.6.17
GraphNeuralNetworks v0.6.17
Merged pull requests:
- feat: Add empty constructor for GNNHeteroGraph (#358) (@askorupka)
- Bump actions/cache from 3 to 4 (#359) (@dependabot[bot])
- feat: add degree functionality for GNNHeteroGraph (#360) (@askorupka)
- Fix ref
rand_temporal_hyperbolic_graph
(#361) (@aurorarossi) - Add
Flux.gpu
function forTemporalSnapshotsGNNGraph
type (#362) (@aurorarossi) - feat: Add CGConv support for HeteroGraphConv (#363) (@askorupka)
- feat: Add EdgeConv support for HeteroGraphConv (#364) (@askorupka)
- Remove
f
fromCGConv
signature (#365) (@aurorarossi) - fix: Stylistic fixes (#366) (@askorupka)
- fix: fix typos in the docs (#368) (@askorupka)
- chore: optimize test for heterograph (#370) (@askorupka)
- refinement: Self loops for HeteroGraph returns g instead of error if src != tgt (#373) (@askorupka)
- Bump codecov/codecov-action from 3 to 4 (#374) (@dependabot[bot])
- Adapt
GINConv
toTemporalSnapshotsGNNGraphs
(#376) (@aurorarossi) - Fix link ref
Heterographs
(#378) (@aurorarossi) - Update documentation for convolutions on
TemporalSnapshotsGNNGraph
s (#379) (@aurorarossi) g.ndata.e
documentation fix inGNNGraph
(#381) (@rbSparky)- Add SGConv support for HeteroGraphConv (#383) (@rbSparky)
- Add SAGEConv support to HeteroGraphConv (#384) (@rbSparky)
- Error in docs (#385) (@rbSparky)
- Add GINConv support to HeteroGraphConv (#390) (@rbSparky)
- Add ResGatedGraphConv support to HeteroGraphConv (#391) (@rbSparky)
- Adapt 4 convolutions to
TemporalSnapshotsGNNGraph
s (#392) (@aurorarossi) - Add more conv layers with TemporalSnapshotsGNNGraphs support (#393) (@rbSparky)
- Added Usage Examples for Graph Convolutional Layers (#396) (@rbSparky)
- Add example for gender classification on
TemporalBrains
dataset (#397) (@aurorarossi) - Add GATConv support for HeteroGraphConv (#400) (@rbSparky)
- New
add_self_loops(g)
for hetero graphs (#402) (@rbSparky) - Updating the gnngraphdocs.md (#403) (@achiverram28)
Closed issues:
v0.6.16
GraphNeuralNetworks v0.6.16
Merged pull requests:
- Add heterogeneous add_self_loop support (#345) (@AarSeBail)
- CompatHelper: bump compat for Adapt to 4, (keep existing compat) (#354) (@github-actions[bot])
- Custom Norm Func for GCNConv (#356) (@rbSparky)
Closed issues:
- GCNConv without normalization (#277)
v0.6.15
GraphNeuralNetworks v0.6.15
Merged pull requests:
- example correction (#347) (@eahenle)
- CompatHelper: add new compat entry for Statistics at version 1, (keep existing compat) (#350) (@github-actions[bot])
- Set compatibilities for standard packages (#352) (@bicycle1885)
- Relax CUDA compatibility (#353) (@bicycle1885)
Closed issues:
v0.6.14
GraphNeuralNetworks v0.6.14
Merged pull requests:
- batch wider eltype (#340) (@CarloLucibello)
- Remove type constraints on Flux.batch for GNNHeteroGraph (#342) (@AarSeBail)
Closed issues:
- The constraint in Flux.batch(gs::AbstractVector{<:GNNHeteroGraph}) does not seem to be strong enough (#341)
v0.6.13
GraphNeuralNetworks v0.6.13
Closed issues:
- Edge weights not properly documented for
GNNHeteroGraph
s (and implement new function to add new edge weights?) (#331)
Merged pull requests:
- Bump actions/checkout from 3 to 4 (#336) (@dependabot[bot])
- improve add_edges for graph and heterographs (#337) (@CarloLucibello)
- extend reduce_nodes and graph_indicator for heterographs (#339) (@CarloLucibello)