Create the file for tracker configuration
python tracking/create_default_local_file.py --workspace_dir . --data_dir <data_dir> --save_dir .
The above script will create local.py
files for tarining and testing in the following paths:
lib/train/admin/local.py # Training
lib/pytracking/evaluation/local.py # Testing
Please edit them with appropriate paths
For training:
# Multiple GPU
python tracking/train.py --script vit_crt --config baseline --save_dir . --mode multiple --nproc_per_node 4
# Single GPU
python tracking/train.py --script vit_crt --config baseline --save_dir . --mode single
- VOT2022-STB
Trax wrapper is in the following directory:
<your_path>/ViTCRTracking/pytracking/vot/vit_crt_exp_stb.py
- OTB/LaSOT/TrackingNet/GOT10K:
python tracking/test.py vit_crt baseline --dataset <dataset_name> --threads N --num_gpus N
Original PySOT and GOT10K toolkit are provided for comparison
To run the experiments it is possible to use the following checkpoint:
Put it in
<your_path>/ViTCRTracking/checkpoints/train/vit_crt/baseline
Raw results for each dataset reported in the article are provided to the following link:
Specifically they are:
- GOT10K
- TrackingNet
- LaSOT
- OTB100
- NfS
- TC128
- UAV123
- Thanks to PyTracking library that allows easily build a tracker.
- Thanks to STARK as starting point for our code
@article{ViTCRT,
title = {Tracking Vision Transformer With Class and Regression Tokens},
author = {Emanuel Di Nardo and Angelo Ciaramella},
journal = {Information Sciences},
year = {2022},
doi = {https://doi.org/10.1016/j.ins.2022.11.055}
}