ENSAE : Hidden Markov Models & Sequential Monte Carlo Methods
Based on the article "On particle filters applied to electricity load forecasting"
Code : Antoine Grelety, Samir Tanfous, Zakarya Ali
- Data treatment
- Import Temperatures.ipynb : take care of temperatures data
- utils.ipynb : add daytypes columns to RTE electricity load data
- /data : folder containing all the data
- Parameters initialization
- gibbs-parameters_init_v*.ipynb : Application of Gibbs Sampling to perform parameters initialization
- elec_forecast/gibbs_sampling_model.py : Python class with Gibbs sampling methods
- Models evaluation
- particle_filtering_*.ipynb : We use particle filter to estimate the model parameter and perform predictions
- elec_forecast/particle_filter.py : Python class with Particle Filter methods (PMMH, Prediction, Resampling)
- Robbins-Monro
- parameter_estimation_robbins_monro.ipynb : notebook dedicated to parameter estimation via Robbins-Monro algorithm
- elec_forecast/rm_estimation.py : Python class with Robbins-Monro algorithm methods