forked from cilium/ebpf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
linker.go
238 lines (198 loc) · 6.49 KB
/
linker.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
package ebpf
import (
"errors"
"fmt"
"sync"
"github.com/cilium/ebpf/asm"
"github.com/cilium/ebpf/btf"
)
// splitSymbols splits insns into subsections delimited by Symbol Instructions.
// insns cannot be empty and must start with a Symbol Instruction.
//
// The resulting map is indexed by Symbol name.
func splitSymbols(insns asm.Instructions) (map[string]asm.Instructions, error) {
if len(insns) == 0 {
return nil, errors.New("insns is empty")
}
if insns[0].Symbol() == "" {
return nil, errors.New("insns must start with a Symbol")
}
var name string
progs := make(map[string]asm.Instructions)
for _, ins := range insns {
if sym := ins.Symbol(); sym != "" {
if progs[sym] != nil {
return nil, fmt.Errorf("insns contains duplicate Symbol %s", sym)
}
name = sym
}
progs[name] = append(progs[name], ins)
}
return progs, nil
}
// The linker is responsible for resolving bpf-to-bpf calls between programs
// within an ELF. Each BPF program must be a self-contained binary blob,
// so when an instruction in one ELF program section wants to jump to
// a function in another, the linker needs to pull in the bytecode
// (and BTF info) of the target function and concatenate the instruction
// streams.
//
// Later on in the pipeline, all call sites are fixed up with relative jumps
// within this newly-created instruction stream to then finally hand off to
// the kernel with BPF_PROG_LOAD.
//
// Each function is denoted by an ELF symbol and the compiler takes care of
// register setup before each jump instruction.
// hasFunctionReferences returns true if insns contains one or more bpf2bpf
// function references.
func hasFunctionReferences(insns asm.Instructions) bool {
for _, i := range insns {
if i.IsFunctionReference() {
return true
}
}
return false
}
// applyRelocations collects and applies any CO-RE relocations in insns.
//
// Passing a nil target will relocate against the running kernel. insns are
// modified in place.
func applyRelocations(insns asm.Instructions, local, target *btf.Spec) error {
var relos []*btf.CORERelocation
var reloInsns []*asm.Instruction
iter := insns.Iterate()
for iter.Next() {
if relo := btf.CORERelocationMetadata(iter.Ins); relo != nil {
relos = append(relos, relo)
reloInsns = append(reloInsns, iter.Ins)
}
}
if len(relos) == 0 {
return nil
}
target, err := maybeLoadKernelBTF(target)
if err != nil {
return err
}
fixups, err := btf.CORERelocate(local, target, relos)
if err != nil {
return err
}
for i, fixup := range fixups {
if err := fixup.Apply(reloInsns[i]); err != nil {
return fmt.Errorf("apply fixup %s: %w", &fixup, err)
}
}
return nil
}
// flattenPrograms resolves bpf-to-bpf calls for a set of programs.
//
// Links all programs in names by modifying their ProgramSpec in progs.
func flattenPrograms(progs map[string]*ProgramSpec, names []string) {
// Pre-calculate all function references.
refs := make(map[*ProgramSpec][]string)
for _, prog := range progs {
refs[prog] = prog.Instructions.FunctionReferences()
}
// Create a flattened instruction stream, but don't modify progs yet to
// avoid linking multiple times.
flattened := make([]asm.Instructions, 0, len(names))
for _, name := range names {
flattened = append(flattened, flattenInstructions(name, progs, refs))
}
// Finally, assign the flattened instructions.
for i, name := range names {
progs[name].Instructions = flattened[i]
}
}
// flattenInstructions resolves bpf-to-bpf calls for a single program.
//
// Flattens the instructions of prog by concatenating the instructions of all
// direct and indirect dependencies.
//
// progs contains all referenceable programs, while refs contain the direct
// dependencies of each program.
func flattenInstructions(name string, progs map[string]*ProgramSpec, refs map[*ProgramSpec][]string) asm.Instructions {
prog := progs[name]
insns := make(asm.Instructions, len(prog.Instructions))
copy(insns, prog.Instructions)
// Add all direct references of prog to the list of to be linked programs.
pending := make([]string, len(refs[prog]))
copy(pending, refs[prog])
// All references for which we've appended instructions.
linked := make(map[string]bool)
// Iterate all pending references. We can't use a range since pending is
// modified in the body below.
for len(pending) > 0 {
var ref string
ref, pending = pending[0], pending[1:]
if linked[ref] {
// We've already linked this ref, don't append instructions again.
continue
}
progRef := progs[ref]
if progRef == nil {
// We don't have instructions that go with this reference. This
// happens when calling extern functions.
continue
}
insns = append(insns, progRef.Instructions...)
linked[ref] = true
// Make sure we link indirect references.
pending = append(pending, refs[progRef]...)
}
return insns
}
// fixupAndValidate is called by the ELF reader right before marshaling the
// instruction stream. It performs last-minute adjustments to the program and
// runs some sanity checks before sending it off to the kernel.
func fixupAndValidate(insns asm.Instructions) error {
iter := insns.Iterate()
for iter.Next() {
ins := iter.Ins
// Map load was tagged with a Reference, but does not contain a Map pointer.
if ins.IsLoadFromMap() && ins.Reference() != "" && ins.Map() == nil {
return fmt.Errorf("instruction %d: map %s: %w", iter.Index, ins.Reference(), asm.ErrUnsatisfiedMapReference)
}
fixupProbeReadKernel(ins)
}
return nil
}
// fixupProbeReadKernel replaces calls to bpf_probe_read_{kernel,user}(_str)
// with bpf_probe_read(_str) on kernels that don't support it yet.
func fixupProbeReadKernel(ins *asm.Instruction) {
if !ins.IsBuiltinCall() {
return
}
// Kernel supports bpf_probe_read_kernel, nothing to do.
if haveProbeReadKernel() == nil {
return
}
switch asm.BuiltinFunc(ins.Constant) {
case asm.FnProbeReadKernel, asm.FnProbeReadUser:
ins.Constant = int64(asm.FnProbeRead)
case asm.FnProbeReadKernelStr, asm.FnProbeReadUserStr:
ins.Constant = int64(asm.FnProbeReadStr)
}
}
var kernelBTF struct {
sync.Mutex
spec *btf.Spec
}
// maybeLoadKernelBTF loads the current kernel's BTF if spec is nil, otherwise
// it returns spec unchanged.
//
// The kernel BTF is cached for the lifetime of the process.
func maybeLoadKernelBTF(spec *btf.Spec) (*btf.Spec, error) {
if spec != nil {
return spec, nil
}
kernelBTF.Lock()
defer kernelBTF.Unlock()
if kernelBTF.spec != nil {
return kernelBTF.spec, nil
}
var err error
kernelBTF.spec, err = btf.LoadKernelSpec()
return kernelBTF.spec, err
}