We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
大佬您论文中说的standard dm的实现,有几个具体细节想请教您,因为想复线一下: 1.您是在room上做的没在maptr上实验哈 2.我理解你说的就是训练时 standard dm的实现:相当于改变两个数值,sigma_guide = 1.0,mu_guide = 0.0,然后想请教下损失函数是没有变化吗,还是每个gt加噪的实例预测X0然后和原本这个gt的坐标算loss,因为GS-DM没有训练分类损失, standard dm也没有这部分吗 3.推理时的standard dm,按论文中说的是从标准高斯噪声采样,那么这是坐标,请问类别信息会预测吗,具体是怎么得到类别预测的呢 超级感谢大佬答疑解惑
The text was updated successfully, but these errors were encountered:
你再有别的问题的话直接email我吧
Sorry, something went wrong.
好的,谢谢大佬!!!
No branches or pull requests
大佬您论文中说的standard dm的实现,有几个具体细节想请教您,因为想复线一下:
1.您是在room上做的没在maptr上实验哈
2.我理解你说的就是训练时 standard dm的实现:相当于改变两个数值,sigma_guide = 1.0,mu_guide = 0.0,然后想请教下损失函数是没有变化吗,还是每个gt加噪的实例预测X0然后和原本这个gt的坐标算loss,因为GS-DM没有训练分类损失, standard dm也没有这部分吗
3.推理时的standard dm,按论文中说的是从标准高斯噪声采样,那么这是坐标,请问类别信息会预测吗,具体是怎么得到类别预测的呢
超级感谢大佬答疑解惑
The text was updated successfully, but these errors were encountered: