forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
730 lines (622 loc) · 25.6 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
from setuptools import setup, Extension, distutils, Command, find_packages
import setuptools.command.build_ext
import setuptools.command.install
import setuptools.command.develop
import setuptools.command.build_py
import distutils.unixccompiler
import distutils.command.build
import distutils.command.clean
import platform
import subprocess
import shutil
import sys
import os
from tools.setup_helpers.env import check_env_flag
from tools.setup_helpers.cuda import WITH_CUDA, CUDA_HOME, CUDA_VERSION
from tools.setup_helpers.cudnn import WITH_CUDNN, CUDNN_LIB_DIR, CUDNN_INCLUDE_DIR
from tools.setup_helpers.nccl import WITH_NCCL, WITH_SYSTEM_NCCL, NCCL_LIB_DIR, \
NCCL_INCLUDE_DIR, NCCL_ROOT_DIR, NCCL_SYSTEM_LIB
from tools.setup_helpers.nnpack import WITH_NNPACK, NNPACK_LIB_PATHS, \
NNPACK_INCLUDE_DIRS
from tools.setup_helpers.nvtoolext import NVTOOLEXT_HOME
from tools.setup_helpers.split_types import split_types
DEBUG = check_env_flag('DEBUG')
IS_WINDOWS = (platform.system() == 'Windows')
IS_DARWIN = (platform.system() == 'Darwin')
IS_LINUX = (platform.system() == 'Linux')
WITH_DISTRIBUTED = not check_env_flag('NO_DISTRIBUTED') and not IS_WINDOWS
WITH_DISTRIBUTED_MW = WITH_DISTRIBUTED and check_env_flag('WITH_DISTRIBUTED_MW')
################################################################################
# Workaround setuptools -Wstrict-prototypes warnings
# I lifted this code from https://stackoverflow.com/a/29634231/23845
################################################################################
import distutils.sysconfig
cfg_vars = distutils.sysconfig.get_config_vars()
for key, value in cfg_vars.items():
if type(value) == str:
cfg_vars[key] = value.replace("-Wstrict-prototypes", "")
################################################################################
# Monkey-patch setuptools to compile in parallel
################################################################################
original_link = distutils.unixccompiler.UnixCCompiler.link
def parallelCCompile(self, sources, output_dir=None, macros=None,
include_dirs=None, debug=0, extra_preargs=None,
extra_postargs=None, depends=None):
# those lines are copied from distutils.ccompiler.CCompiler directly
macros, objects, extra_postargs, pp_opts, build = self._setup_compile(
output_dir, macros, include_dirs, sources, depends, extra_postargs)
cc_args = self._get_cc_args(pp_opts, debug, extra_preargs)
# compile using a thread pool
import multiprocessing.pool
def _single_compile(obj):
src, ext = build[obj]
self._compile(obj, src, ext, cc_args, extra_postargs, pp_opts)
num_jobs = multiprocessing.cpu_count()
max_jobs = os.getenv("MAX_JOBS")
if max_jobs is not None:
num_jobs = min(num_jobs, int(max_jobs))
multiprocessing.pool.ThreadPool(num_jobs).map(_single_compile, objects)
return objects
def patched_link(self, *args, **kwargs):
_cxx = self.compiler_cxx
self.compiler_cxx = None
result = original_link(self, *args, **kwargs)
self.compiler_cxx = _cxx
return result
distutils.ccompiler.CCompiler.compile = parallelCCompile
distutils.unixccompiler.UnixCCompiler.link = patched_link
################################################################################
# Custom build commands
################################################################################
dep_libs = [
'nccl', 'ATen',
'libshm', 'libshm_windows', 'gloo', 'THD', 'nanopb',
]
def build_libs(libs):
for lib in libs:
assert lib in dep_libs, 'invalid lib: {}'.format(lib)
if IS_WINDOWS:
build_libs_cmd = ['torch\\lib\\build_libs.bat']
else:
build_libs_cmd = ['bash', 'torch/lib/build_libs.sh']
my_env = os.environ.copy()
my_env["PYTORCH_PYTHON"] = sys.executable
if WITH_SYSTEM_NCCL:
my_env["NCCL_ROOT_DIR"] = NCCL_ROOT_DIR
if WITH_CUDA:
my_env["CUDA_BIN_PATH"] = CUDA_HOME
build_libs_cmd += ['--with-cuda']
if WITH_CUDNN:
my_env["CUDNN_LIB_DIR"] = CUDNN_LIB_DIR
my_env["CUDNN_INCLUDE_DIR"] = CUDNN_INCLUDE_DIR
if subprocess.call(build_libs_cmd + libs, env=my_env) != 0:
sys.exit(1)
if 'ATen' in libs:
from tools.nnwrap import generate_wrappers as generate_nn_wrappers
generate_nn_wrappers()
class build_deps(Command):
user_options = []
def initialize_options(self):
pass
def finalize_options(self):
pass
def run(self):
libs = []
if WITH_NCCL and not WITH_SYSTEM_NCCL:
libs += ['nccl']
libs += ['ATen', 'nanopb']
if IS_WINDOWS:
libs += ['libshm_windows']
else:
libs += ['libshm']
if WITH_DISTRIBUTED:
if sys.platform.startswith('linux'):
libs += ['gloo']
libs += ['THD']
build_libs(libs)
build_dep_cmds = {}
for lib in dep_libs:
# wrap in function to capture lib
class build_dep(build_deps):
description = 'Build {} external library'.format(lib)
def run(self):
build_libs([self.lib])
build_dep.lib = lib
build_dep_cmds['build_' + lib.lower()] = build_dep
class build_module(Command):
user_options = []
def initialize_options(self):
pass
def finalize_options(self):
pass
def run(self):
self.run_command('build_py')
self.run_command('build_ext')
class build_py(setuptools.command.build_py.build_py):
def run(self):
self.create_version_file()
setuptools.command.build_py.build_py.run(self)
@staticmethod
def create_version_file():
global version, cwd
print('-- Building version ' + version)
version_path = os.path.join(cwd, 'torch', 'version.py')
with open(version_path, 'w') as f:
f.write("__version__ = '{}'\n".format(version))
# NB: This is not 100% accurate, because you could have built the
# library code with DEBUG, but csrc without DEBUG (in which case
# this would claim to be a release build when it's not.)
f.write("debug = {}\n".format(repr(DEBUG)))
f.write("cuda = {}\n".format(repr(CUDA_VERSION)))
class develop(setuptools.command.develop.develop):
def run(self):
build_py.create_version_file()
setuptools.command.develop.develop.run(self)
def monkey_patch_THD_link_flags():
'''
THD's dynamic link deps are not determined until after build_deps is run
So, we need to monkey-patch them in later
'''
# read tmp_install_path/THD_deps.txt for THD's dynamic linkage deps
with open(tmp_install_path + '/THD_deps.txt', 'r') as f:
thd_deps_ = f.read()
thd_deps = []
# remove empty lines
for l in thd_deps_.split(';'):
if l != '':
thd_deps.append(l)
C.extra_link_args += thd_deps
class build_ext(setuptools.command.build_ext.build_ext):
def run(self):
# Print build options
if WITH_NUMPY:
print('-- Building with NumPy bindings')
else:
print('-- NumPy not found')
if WITH_CUDNN:
print('-- Detected cuDNN at ' + CUDNN_LIB_DIR + ', ' + CUDNN_INCLUDE_DIR)
else:
print('-- Not using cuDNN')
if WITH_CUDA:
print('-- Detected CUDA at ' + CUDA_HOME)
else:
print('-- Not using CUDA')
if WITH_NCCL and WITH_SYSTEM_NCCL:
print('-- Using system provided NCCL library at ' +
NCCL_SYSTEM_LIB + ', ' + NCCL_INCLUDE_DIR)
elif WITH_NCCL:
print('-- Building NCCL library')
else:
print('-- Not using NCCL')
if WITH_DISTRIBUTED:
print('-- Building with distributed package ')
monkey_patch_THD_link_flags()
else:
print('-- Building without distributed package')
# Do we actually need this here?
if WITH_NNPACK:
nnpack_dir = NNPACK_LIB_PATHS[0]
print('-- Detected NNPACK at ' + nnpack_dir)
else:
print('-- Not using NNPACK')
# cwrap depends on pyyaml, so we can't import it earlier
from tools.cwrap import cwrap
from tools.cwrap.plugins.THPPlugin import THPPlugin
from tools.cwrap.plugins.ArgcountSortPlugin import ArgcountSortPlugin
from tools.cwrap.plugins.AutoGPU import AutoGPU
from tools.cwrap.plugins.BoolOption import BoolOption
from tools.cwrap.plugins.KwargsPlugin import KwargsPlugin
from tools.cwrap.plugins.NullableArguments import NullableArguments
from tools.cwrap.plugins.CuDNNPlugin import CuDNNPlugin
from tools.cwrap.plugins.WrapDim import WrapDim
from tools.cwrap.plugins.AssertNDim import AssertNDim
from tools.cwrap.plugins.Broadcast import Broadcast
from tools.cwrap.plugins.ProcessorSpecificPlugin import ProcessorSpecificPlugin
from tools.autograd.gen_variable_type import gen_variable_type
from tools.jit.gen_jit_dispatch import gen_jit_dispatch
thp_plugin = THPPlugin()
cwrap('torch/csrc/generic/TensorMethods.cwrap', plugins=[
ProcessorSpecificPlugin(), BoolOption(), thp_plugin,
AutoGPU(condition='IS_CUDA'), ArgcountSortPlugin(), KwargsPlugin(),
AssertNDim(), WrapDim(), Broadcast()
])
cwrap('torch/csrc/cudnn/cuDNN.cwrap', plugins=[
CuDNNPlugin(), NullableArguments()
])
# Build ATen based Variable classes
autograd_gen_dir = 'torch/csrc/autograd/generated'
jit_gen_dir = 'torch/csrc/jit/generated'
for d in (autograd_gen_dir, jit_gen_dir):
if not os.path.exists(d):
os.mkdir(d)
gen_variable_type(
'torch/lib/tmp_install/share/ATen/Declarations.yaml',
autograd_gen_dir)
gen_jit_dispatch(
'torch/lib/tmp_install/share/ATen/Declarations.yaml',
jit_gen_dir)
if IS_WINDOWS:
build_temp = self.build_temp
build_dir = 'torch/csrc'
ext_filename = self.get_ext_filename('_C')
lib_filename = '.'.join(ext_filename.split('.')[:-1]) + '.lib'
_C_LIB = os.path.join(build_temp, build_dir, lib_filename).replace('\\', '/')
THNN.extra_link_args += [_C_LIB]
if WITH_CUDA:
THCUNN.extra_link_args += [_C_LIB]
else:
# To generate .obj files for AutoGPU for the export class
# a header file cannot build, so it has to be copied to someplace as a source file
if os.path.exists("torch/csrc/generated/AutoGPU_cpu_win.cpp"):
os.remove("torch/csrc/generated/AutoGPU_cpu_win.cpp")
shutil.copyfile("torch/csrc/cuda/AutoGPU.h", "torch/csrc/generated/AutoGPU_cpu_win.cpp")
# It's an old-style class in Python 2.7...
setuptools.command.build_ext.build_ext.run(self)
class build(distutils.command.build.build):
sub_commands = [
('build_deps', lambda self: True),
] + distutils.command.build.build.sub_commands
class install(setuptools.command.install.install):
def run(self):
if not self.skip_build:
self.run_command('build_deps')
setuptools.command.install.install.run(self)
class clean(distutils.command.clean.clean):
def run(self):
import glob
with open('.gitignore', 'r') as f:
ignores = f.read()
for wildcard in filter(bool, ignores.split('\n')):
for filename in glob.glob(wildcard):
try:
os.remove(filename)
except OSError:
shutil.rmtree(filename, ignore_errors=True)
# It's an old-style class in Python 2.7...
distutils.command.clean.clean.run(self)
################################################################################
# Configure compile flags
################################################################################
include_dirs = []
library_dirs = []
extra_link_args = []
if IS_WINDOWS:
extra_compile_args = ['/Z7', '/EHa', '/DNOMINMAX'
# /Z7 turns on symbolic debugging information in .obj files
# /EHa is about native C++ catch support for asynchronous
# structured exception handling (SEH)
# /DNOMINMAX removes builtin min/max functions
]
else:
extra_compile_args = ['-std=c++11', '-Wno-write-strings',
# Python 2.6 requires -fno-strict-aliasing, see
# http://legacy.python.org/dev/peps/pep-3123/
'-fno-strict-aliasing',
# Clang has an unfixed bug leading to spurious missing
# braces warnings, see
# https://bugs.llvm.org/show_bug.cgi?id=21629
'-Wno-missing-braces']
cwd = os.path.dirname(os.path.abspath(__file__))
lib_path = os.path.join(cwd, "torch", "lib")
# Check if you remembered to check out submodules
def check_file(f):
if not os.path.exists(f):
print("Could not find {}".format(f))
print("Did you run 'git submodule update --init'?")
sys.exit(1)
check_file(os.path.join(lib_path, "gloo", "CMakeLists.txt"))
check_file(os.path.join(lib_path, "nanopb", "CMakeLists.txt"))
check_file(os.path.join(lib_path, "pybind11", "CMakeLists.txt"))
tmp_install_path = lib_path + "/tmp_install"
include_dirs += [
cwd,
os.path.join(cwd, "torch", "csrc"),
lib_path + "/pybind11/include",
tmp_install_path + "/include",
tmp_install_path + "/include/TH",
tmp_install_path + "/include/THNN",
tmp_install_path + "/include/ATen",
]
library_dirs.append(lib_path)
# we specify exact lib names to avoid conflict with lua-torch installs
ATEN_LIB = os.path.join(lib_path, 'libATen.so.1')
THD_LIB = os.path.join(lib_path, 'libTHD.a')
NCCL_LIB = os.path.join(lib_path, 'libnccl.so.1')
# static library only
NANOPB_STATIC_LIB = os.path.join(lib_path, 'libprotobuf-nanopb.a')
if IS_DARWIN:
ATEN_LIB = os.path.join(lib_path, 'libATen.1.dylib')
NCCL_LIB = os.path.join(lib_path, 'libnccl.1.dylib')
if IS_WINDOWS:
ATEN_LIB = os.path.join(lib_path, 'ATen.lib')
NANOPB_STATIC_LIB = os.path.join(lib_path, 'protobuf-nanopb.lib')
main_compile_args = ['-D_THP_CORE']
main_libraries = ['shm']
main_link_args = [ATEN_LIB, NANOPB_STATIC_LIB]
main_sources = [
"torch/csrc/PtrWrapper.cpp",
"torch/csrc/Module.cpp",
"torch/csrc/Generator.cpp",
"torch/csrc/Size.cpp",
"torch/csrc/Exceptions.cpp",
"torch/csrc/Storage.cpp",
"torch/csrc/DynamicTypes.cpp",
"torch/csrc/assertions.cpp",
"torch/csrc/byte_order.cpp",
"torch/csrc/utils.cpp",
"torch/csrc/expand_utils.cpp",
"torch/csrc/utils/invalid_arguments.cpp",
"torch/csrc/utils/object_ptr.cpp",
"torch/csrc/utils/python_arg_parser.cpp",
"torch/csrc/utils/tensor_geometry.cpp",
"torch/csrc/utils/tuple_parser.cpp",
"torch/csrc/allocators.cpp",
"torch/csrc/serialization.cpp",
"torch/csrc/jit/init.cpp",
"torch/csrc/jit/ir.cpp",
"torch/csrc/jit/python_ir.cpp",
"torch/csrc/jit/test_jit.cpp",
"torch/csrc/jit/tracer.cpp",
"torch/csrc/jit/python_tracer.cpp",
"torch/csrc/jit/interned_strings.cpp",
"torch/csrc/jit/type.cpp",
"torch/csrc/jit/export.cpp",
"torch/csrc/jit/python_arg_flatten.cpp",
"torch/csrc/jit/python_compiled_function.cpp",
"torch/csrc/jit/passes/graph_fuser.cpp",
"torch/csrc/jit/passes/onnx.cpp",
"torch/csrc/jit/passes/dead_code_elimination.cpp",
"torch/csrc/jit/passes/common_subexpression_elimination.cpp",
"torch/csrc/jit/passes/peephole.cpp",
"torch/csrc/jit/passes/inplace_check.cpp",
"torch/csrc/jit/passes/onnx/peephole.cpp",
"torch/csrc/jit/generated/aten_dispatch.cpp",
"torch/csrc/autograd/init.cpp",
"torch/csrc/autograd/engine.cpp",
"torch/csrc/autograd/function.cpp",
"torch/csrc/autograd/variable.cpp",
"torch/csrc/autograd/saved_variable.cpp",
"torch/csrc/autograd/input_buffer.cpp",
"torch/csrc/autograd/profiler.cpp",
"torch/csrc/autograd/python_function.cpp",
"torch/csrc/autograd/python_cpp_function.cpp",
"torch/csrc/autograd/python_variable.cpp",
"torch/csrc/autograd/python_engine.cpp",
"torch/csrc/autograd/python_hook.cpp",
"torch/csrc/autograd/functions/jit_closure.cpp",
"torch/csrc/autograd/generated/VariableType.cpp",
"torch/csrc/autograd/generated/Functions.cpp",
"torch/csrc/autograd/generated/python_variable_methods.cpp",
"torch/csrc/autograd/generated/python_functions.cpp",
"torch/csrc/autograd/generated/python_nn_functions.cpp",
"torch/csrc/autograd/functions/batch_normalization.cpp",
"torch/csrc/autograd/functions/convolution.cpp",
"torch/csrc/autograd/functions/basic_ops.cpp",
"torch/csrc/autograd/functions/tensor.cpp",
"torch/csrc/autograd/functions/accumulate_grad.cpp",
"torch/csrc/autograd/functions/special.cpp",
"torch/csrc/autograd/functions/utils.cpp",
"torch/csrc/autograd/functions/init.cpp",
"torch/csrc/autograd/functions/onnx/convolution.cpp",
"torch/csrc/autograd/functions/onnx/batch_normalization.cpp",
"torch/csrc/autograd/functions/onnx/basic_ops.cpp",
"torch/csrc/onnx/onnx.pb.cpp",
"torch/csrc/onnx/onnx.cpp",
]
main_sources += split_types("torch/csrc/Tensor.cpp")
try:
import numpy as np
include_dirs += [np.get_include()]
extra_compile_args += ['-DWITH_NUMPY']
WITH_NUMPY = True
except ImportError:
WITH_NUMPY = False
if WITH_DISTRIBUTED:
extra_compile_args += ['-DWITH_DISTRIBUTED']
main_sources += [
"torch/csrc/distributed/Module.cpp",
]
if WITH_DISTRIBUTED_MW:
main_sources += [
"torch/csrc/distributed/Tensor.cpp",
"torch/csrc/distributed/Storage.cpp",
]
extra_compile_args += ['-DWITH_DISTRIBUTED_MW']
include_dirs += [tmp_install_path + "/include/THD"]
main_link_args += [THD_LIB]
if IS_WINDOWS and not WITH_CUDA:
main_sources += ["torch/csrc/generated/AutoGPU_cpu_win.cpp"]
if WITH_CUDA:
nvtoolext_lib_name = None
if IS_WINDOWS:
cuda_lib_path = CUDA_HOME + '/lib/x64/'
nvtoolext_lib_path = NVTOOLEXT_HOME + '/lib/x64/'
nvtoolext_include_path = os.path.join(NVTOOLEXT_HOME, 'include')
library_dirs.append(nvtoolext_lib_path)
include_dirs.append(nvtoolext_include_path)
nvtoolext_lib_name = 'nvToolsExt64_1'
# MSVC doesn't support runtime symbol resolving, `nvrtc` and `cuda` should be linked
main_libraries += ['nvrtc', 'cuda']
else:
cuda_lib_dirs = ['lib64', 'lib']
for lib_dir in cuda_lib_dirs:
cuda_lib_path = os.path.join(CUDA_HOME, lib_dir)
if os.path.exists(cuda_lib_path):
break
extra_link_args.append('-Wl,-rpath,' + cuda_lib_path)
nvtoolext_lib_name = 'nvToolsExt'
library_dirs.append(cuda_lib_path)
cuda_include_path = os.path.join(CUDA_HOME, 'include')
include_dirs.append(cuda_include_path)
include_dirs.append(tmp_install_path + "/include/THCUNN")
extra_compile_args += ['-DWITH_CUDA']
extra_compile_args += ['-DCUDA_LIB_PATH=' + cuda_lib_path]
main_libraries += ['cudart', nvtoolext_lib_name]
main_sources += [
"torch/csrc/cuda/Module.cpp",
"torch/csrc/cuda/Storage.cpp",
"torch/csrc/cuda/Stream.cpp",
"torch/csrc/cuda/AutoGPU.cpp",
"torch/csrc/cuda/utils.cpp",
"torch/csrc/cuda/expand_utils.cpp",
"torch/csrc/cuda/serialization.cpp",
"torch/csrc/jit/fusion_compiler.cpp",
]
main_sources += split_types("torch/csrc/cuda/Tensor.cpp")
if WITH_NCCL:
if WITH_SYSTEM_NCCL:
main_link_args += [NCCL_SYSTEM_LIB]
include_dirs.append(NCCL_INCLUDE_DIR)
else:
main_link_args += [NCCL_LIB]
extra_compile_args += ['-DWITH_NCCL']
main_sources += [
"torch/csrc/cuda/nccl.cpp",
]
if WITH_CUDNN:
main_libraries += ['cudnn']
library_dirs.append(CUDNN_LIB_DIR)
# NOTE: these are at the front, in case there's another cuDNN in CUDA path
include_dirs.insert(0, CUDNN_INCLUDE_DIR)
if not IS_WINDOWS:
extra_link_args.insert(0, '-Wl,-rpath,' + CUDNN_LIB_DIR)
main_sources += [
"torch/csrc/cudnn/BatchNorm.cpp",
"torch/csrc/cudnn/Conv.cpp",
"torch/csrc/cudnn/cuDNN.cpp",
"torch/csrc/cudnn/GridSampler.cpp",
"torch/csrc/cudnn/AffineGridGenerator.cpp",
"torch/csrc/cudnn/Types.cpp",
"torch/csrc/cudnn/Handles.cpp",
]
extra_compile_args += ['-DWITH_CUDNN']
if WITH_NNPACK:
include_dirs.extend(NNPACK_INCLUDE_DIRS)
main_link_args.extend(NNPACK_LIB_PATHS)
main_sources += [
"torch/csrc/nnpack/NNPACK.cpp",
]
extra_compile_args += ['-DWITH_NNPACK']
if DEBUG:
if IS_WINDOWS:
extra_link_args.append('/DEBUG:FULL')
else:
extra_compile_args += ['-O0', '-g']
extra_link_args += ['-O0', '-g']
if os.getenv('PYTORCH_BINARY_BUILD') and platform.system() == 'Linux':
print('PYTORCH_BINARY_BUILD found. Static linking libstdc++ on Linux')
# get path of libstdc++ and link manually.
# for reasons unknown, -static-libstdc++ doesn't fully link some symbols
CXXNAME = os.getenv('CXX', 'g++')
STDCPP_LIB = subprocess.check_output([CXXNAME, '-print-file-name=libstdc++.a'])
STDCPP_LIB = STDCPP_LIB[:-1]
if type(STDCPP_LIB) != str: # python 3
STDCPP_LIB = STDCPP_LIB.decode(sys.stdout.encoding)
main_link_args += [STDCPP_LIB]
version_script = os.path.abspath("tools/pytorch.version")
extra_link_args += ['-Wl,--version-script=' + version_script]
def make_relative_rpath(path):
if IS_DARWIN:
return '-Wl,-rpath,@loader_path/' + path
elif IS_WINDOWS:
return ''
else:
return '-Wl,-rpath,$ORIGIN/' + path
################################################################################
# Declare extensions and package
################################################################################
extensions = []
packages = find_packages(exclude=('tools', 'tools.*',))
C = Extension("torch._C",
libraries=main_libraries,
sources=main_sources,
language='c++',
extra_compile_args=main_compile_args + extra_compile_args,
include_dirs=include_dirs,
library_dirs=library_dirs,
extra_link_args=extra_link_args + main_link_args + [make_relative_rpath('lib')],
)
extensions.append(C)
if not IS_WINDOWS:
DL = Extension("torch._dl",
sources=["torch/csrc/dl.c"],
language='c',
)
extensions.append(DL)
THNN = Extension("torch._thnn._THNN",
sources=['torch/csrc/nn/THNN.cpp'],
language='c++',
extra_compile_args=extra_compile_args,
include_dirs=include_dirs,
extra_link_args=extra_link_args + [
ATEN_LIB,
make_relative_rpath('../lib'),
]
)
extensions.append(THNN)
if WITH_CUDA:
thnvrtc_link_flags = extra_link_args + [make_relative_rpath('lib')]
if IS_LINUX:
thnvrtc_link_flags = thnvrtc_link_flags + ['-Wl,--no-as-needed']
# these have to be specified as -lcuda in link_flags because they
# have to come right after the `no-as-needed` option
if IS_WINDOWS:
thnvrtc_link_flags += ['cuda.lib', 'nvrtc.lib']
else:
thnvrtc_link_flags += ['-lcuda', '-lnvrtc']
THNVRTC = Extension("torch._nvrtc",
sources=['torch/csrc/nvrtc.cpp'],
language='c++',
include_dirs=include_dirs,
library_dirs=library_dirs + [cuda_lib_path + '/stubs'],
extra_link_args=thnvrtc_link_flags,
)
extensions.append(THNVRTC)
THCUNN = Extension("torch._thnn._THCUNN",
sources=['torch/csrc/nn/THCUNN.cpp'],
language='c++',
extra_compile_args=extra_compile_args,
include_dirs=include_dirs,
extra_link_args=extra_link_args + [
ATEN_LIB,
make_relative_rpath('../lib'),
]
)
extensions.append(THCUNN)
version = '0.4.0a0'
if os.getenv('PYTORCH_BUILD_VERSION'):
assert os.getenv('PYTORCH_BUILD_NUMBER') is not None
version = os.getenv('PYTORCH_BUILD_VERSION') \
+ '_' + os.getenv('PYTORCH_BUILD_NUMBER')
else:
try:
sha = subprocess.check_output(['git', 'rev-parse', 'HEAD'], cwd=cwd).decode('ascii').strip()
version += '+' + sha[:7]
except Exception:
pass
cmdclass = {
'build': build,
'build_py': build_py,
'build_ext': build_ext,
'build_deps': build_deps,
'build_module': build_module,
'develop': develop,
'install': install,
'clean': clean,
}
cmdclass.update(build_dep_cmds)
setup(name="torch", version=version,
description="Tensors and Dynamic neural networks in Python with strong GPU acceleration",
ext_modules=extensions,
cmdclass=cmdclass,
packages=packages,
package_data={'torch': [
'lib/*.so*', 'lib/*.dylib*', 'lib/*.dll',
'lib/torch_shm_manager',
'lib/*.h',
'lib/include/TH/*.h', 'lib/include/TH/generic/*.h',
'lib/include/THC/*.h', 'lib/include/THC/generic/*.h',
'lib/include/ATen/*.h',
]},
install_requires=['pyyaml', 'numpy'],
)