forked from johannesgerer/jburkardt-m
-
Notifications
You must be signed in to change notification settings - Fork 0
/
toms886.html
254 lines (219 loc) · 7.04 KB
/
toms886.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
<html>
<head>
<title>
TOMS886 - Interpolation over the Rectangle, Ellipse, or Triangle
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
TOMS886 <br> Interpolation over the Rectangle, Ellipse, or Triangle
</h1>
<hr>
<p>
<b>TOMS886</b>
is a MATLAB library which
implements an interpolation procedure based on "Padua points",
defined in the square [-1,+1]^2, whose interpolating power
is especially good. It is possible to map these points to the
general rectangle, ellipse or triangle to do interpolation on these
regions as well.
</p>
<p>
The original, true, correct version of ACM TOMS Algorithm 886
is available through ACM:
<a href = "http://www.acm.org/pubs/calgo/">
http://www.acm.org/pubs/calgo</a>
or NETLIB:
<a href = "http://www.netlib.org/toms/index.html">
http://www.netlib.org/toms/index.html</a>.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files made available on this
web page are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>TOMS886</b> is available in
<a href = "../../c_src/toms886/toms886.html">a C version</a> and
<a href = "../../cpp_src/toms886/toms886.html">a C++ version</a> and
<a href = "../../f77_src/toms886/toms886.html">a FORTRAN77 version</a> and
<a href = "../../f_src/toms886/toms886.html">a FORTRAN90 version</a> and
<a href = "../../m_src/toms886/toms886.html">a FORTRAN90 version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../m_src/lagrange_interp_2d/lagrange_interp_2d.html">
LAGRANGE_INTERP_2D</a>,
a MATLAB library which
defines and evaluates the Lagrange polynomial p(x,y)
which interpolates a set of data depending on a 2D argument
that was evaluated on a product grid,
so that p(x(i),y(j)) = z(i,j).
</p>
<p>
<a href = "../../m_src/pwl_interp_2d/pwl_interp_2d.html">
PWL_INTERP_2D</a>,
a MATLAB library which
evaluates a piecewise linear interpolant to data defined on
a regular 2D grid.
</p>
<p>
<a href = "../../m_src/pwl_interp_2d_scattered/pwl_interp_2d_scattered.html">
PWL_INTERP_2D_SCATTERED</a>,
a MATLAB library which
evaluates a piecewise linear interpolant to data which is available
at an irregularly arranged set of points.
</p>
<p>
<a href = "../../m_src/rbf_interp_2d/rbf_interp_2d.html">
RBF_INTERP_2D</a>,
a MATLAB library which
defines and evaluates radial basis function (RBF) interpolants to 2D data.
</p>
<p>
<a href = "../../m_src/shepard_interp_2d/shepard_interp_2d.html">
SHEPARD_INTERP_2D</a>,
a MATLAB library which
defines and evaluates Shepard interpolants to scattered 2D data,
based on inverse distance weighting.
</p>
<p>
<a href = "../../m_src/test_interp_2d/test_interp_2d.html">
TEST_INTERP_2D</a>,
a MATLAB library which
defines test problems for interpolation of regular
or scattered data z(x,y), depending on a 2D argument.
</p>
<p>
<a href = "../../m_src/vandermonde_interp_2d/vandermonde_interp_2d.html">
VANDERMONDE_INTERP_2D</a>,
a MATLAB library which
finds a polynomial interpolant to data z(x,y) of a 2D argument by
setting up and solving a linear system for the polynomial coefficients,
involving the Vandermonde matrix.
</p>
<h3 align = "center">
Author:
</h3>
<p>
Marco Caliari, Stefano de Marchi, Marco Vianello.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Marco Caliari, Stefano de Marchi, Marco Vianello,<br>
Bivariate interpolation on the square at new nodal sets,<br>
Applied Mathematics and Computation,<br>
Volume 165, Number 2, 2005, pages 261-274.
</li>
<li>
Marco Caliari, Stefano de Marchi, Marco Vianello,<br>
Algorithm 886:
Padua2D: Lagrange Interpolation at Padua Points on Bivariate Domains,<br>
ACM Transactions on Mathematical Software,<br>
Volume 35, Number 3, October 2008, Article 21, 11 pages.
</li>
<li>
Richard Franke,<br>
Scattered Data Interpolation: Tests of Some Methods,<br>
Mathematics of Computation,<br>
Volume 38, Number 157, January 1982, pages 181-200.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "cheb.m">cheb.m</a>, computes normalized Chebyshev polynomials.
</li>
<li>
<a href = "dgemm.m">dgemm.m</a>, computes C = alpha * A * B and related operations.
</li>
<li>
<a href = "franke.m">franke.m</a>, returns the value of the Franke function #1.
</li>
<li>
<a href = "padua2.m">padua2.m</a>, computes the Padua interpolation coefficient matrix.
</li>
<li>
<a href = "pd2val.m">pd2val.m</a>, evaluates the Padua2 interpolant.
</li>
<li>
<a href = "pdpts.m">pdpts.m</a>, returns the points and weights for Padua interpolation.
</li>
<li>
<a href = "r8_sign.m">r8_sign.m</a>, returns the sign of an R8.
</li>
<li>
<a href = "timestamp.m">timestamp.m</a>, prints out the current YMDHMS date as a timestamp.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
ELLIPSE applies the procedure to an ellipse.
<ul>
<li>
<a href = "ellipse.m">ellipse.m</a>,
a sample calling program.
</li>
<li>
<a href = "ellipse_output.txt">ellipse_output.txt</a>,
the output file.
</li>
</ul>
</p>
<p>
RECTANGLE applies the procedure to a rectangle.
<ul>
<li>
<a href = "rectangle.m">rectangle.m</a>,
a sample calling program.
</li>
<li>
<a href = "rectangle_output.txt">rectangle_output.txt</a>,
the output file.
</li>
</ul>
</p>
<p>
TRIANGLE applies the procedure to a triangle.
<ul>
<li>
<a href = "triangle.m">triangle.m</a>,
a sample calling program.
</li>
<li>
<a href = "triangle_output.txt">triangle_output.txt</a>,
the output file.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../m_src.html">
the MATLAB source codes</a>.
</p>
<hr>
<i>
Last revised on 13 February 2014.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>