forked from johannesgerer/jburkardt-m
-
Notifications
You must be signed in to change notification settings - Fork 0
/
spline.html
787 lines (748 loc) · 24.4 KB
/
spline.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
<html>
<head>
<title>
SPLINE - Interpolation and Approximation of Data
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
SPLINE <br> Interpolation and Approximation of Data
</h1>
<hr>
<p>
<b>SPLINE</b>
is a MATLAB library which
sets up and evaluates splines.
</p>
<p>
These spline functions are typically used to
<ul>
<li>
interpolate data exactly at a set of points;
</li>
<li>
approximate data at many points, or over an interval.
</li>
</ul>
</p>
<p>
The most common use of this software is for situations where
a set of (X,Y) data points is known, and it is desired to
determine a smooth function which passes exactly through
those points, and which can be evaluated everywhere.
Thus, it is possible to get a formula that allows you to
"connect the dots".
</p>
<p>
Of course, you could could just connect the dots with
straight lines, but that would look ugly, and if there really
is some function that explains your data, you'd expect it to
curve around rather than make sudden angular turns. The
functions in <b>SPLINE</b> offer a variety of choices for
slinky curves that will make pleasing interpolants of your data.
</p>
<p>
There are a variety of types of approximation curves
available, including:
<ul>
<li>
least squares polynomials,
</li>
<li>
divided difference polynomials,
</li>
<li>
piecewise polynomials,
</li>
<li>
B splines,
</li>
<li>
Bernstein splines,
</li>
<li>
beta splines,
</li>
<li>
Bezier splines,
</li>
<li>
Hermite splines,
</li>
<li>
Overhauser (or Catmull-Rom) splines.
</li>
</ul>
</p>
<p>
Also included are a set of routines that return the local "basis matrix",
which allows the evaluation of the spline in terms of local function
data.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>SPLINE</b> is available in
<a href = "../../c_src/spline/spline.html">a C version</a> and
<a href = "../../cpp_src/spline/spline.html">a C++ version</a> and
<a href = "../../f77_src/spline/spline.html">a FORTRAN77 version</a> and
<a href = "../../f_src/spline/spline.html">a FORTRAN90 version</a> and
<a href = "../../m_src/spline/spline.html">a MATLAB version.</a>
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../m_src/bernstein_polynomial/bernstein_polynomial.html">
BERNSTEIN_POLYNOMIAL</a>,
a MATLAB library which
evaluates the Bernstein polynomials,
useful for uniform approximation of functions;
</p>
<p>
<a href = "../../m_src/chebyshev/chebyshev.html">
CHEBYSHEV</a>,
a MATLAB library which
computes the Chebyshev interpolant/approximant to a given function
over an interval.
</p>
<p>
<a href = "../../m_src/divdif/divdif.html">
DIVDIF</a>,
a MATLAB library which
uses divided differences to interpolate data.
</p>
<p>
<a href = "../../m_src/hermite/hermite.html">
HERMITE</a>,
a MATLAB library which
computes the Hermite interpolant, a polynomial that matches function values
and derivatives.
</p>
<p>
<a href = "../../m_src/hermite_cubic/hermite_cubic.html">
HERMITE_CUBIC</a>,
a MATLAB library which
can compute the value, derivatives or integral of a Hermite cubic polynomial,
or manipulate an interpolating function made up of piecewise Hermite cubic
polynomials.
</p>
<p>
<a href = "../../m_src/interp/interp.html">
INTERP</a>,
a MATLAB library which
can be used for parameterizing and interpolating data;
</p>
<p>
<a href = "../../m_src/lagrange_interp_1d/lagrange_interp_1d.html">
LAGRANGE_INTERP_1D</a>,
a MATLAB library which
defines and evaluates the Lagrange polynomial p(x)
which interpolates a set of data, so that p(x(i)) = y(i).
</p>
<p>
<a href = "../../m_src/test_approx/test_approx.html">
TEST_APPROX</a>,
a MATLAB library which
defines a number of test problems for approximation and interpolation.
</p>
<p>
<a href = "../../m_src/test_interp/test_interp.html">
TEST_INTERP</a>,
a MATLAB library which
defines a number of test problems for interpolation.
</p>
<p>
<a href = "../../m_src/test_interp_1d/test_interp_1d.html">
TEST_INTERP_1D</a>,
a MATLAB library which
defines test problems for interpolation of data y(x),
depending on a 1D argument.
</p>
<p>
<a href = "../../m_src/vandermonde_approx_1d/vandermonde_approx_1d.html">
VANDERMONDE_APPROX_1D</a>,
a MATLAB library which
finds a polynomial approximant to a function of 1D data
by setting up and solving an overdetermined linear system for the polynomial coefficients,
involving the Vandermonde matrix.
</p>
<p>
<a href = "../../m_src/vandermonde_interp_1d/vandermonde_interp_1d.html">
VANDERMONDE_INTERP_1D</a>,
a MATLAB library which
finds a polynomial interpolant to a function of 1D data
by setting up and solving a linear system for the polynomial coefficients,
involving the Vandermonde matrix.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
JA Brewer, DC Anderson,<br>
Visual Interaction with Overhauser Curves and Surfaces,<br>
SIGGRAPH 77,<br>
in Proceedings of the 4th Annual Conference on Computer Graphics
and Interactive Techniques,<br>
ASME, July 1977, pages 132-137.
</li>
<li>
Edwin Catmull, Raphael Rom,<br>
A Class of Local Interpolating Splines,<br>
in Computer Aided Geometric Design,<br>
edited by Robert Barnhill, Richard Reisenfeld,<br>
Academic Press, 1974,<br>
ISBN: 0120790505.
</li>
<li>
Samuel Conte, Carl deBoor,<br>
Elementary Numerical Analysis,<br>
Second Edition,<br>
McGraw Hill, 1972,<br>
ISBN: 07-012446-4.
</li>
<li>
Alan Davies, Philip Samuels,<br>
An Introduction to Computational Geometry for Curves and Surfaces,<br>
Clarendon Press, 1996,<br>
ISBN: 0-19-851478-6,<br>
LC: QA448.D38.
</li>
<li>
Carl deBoor,<br>
A Practical Guide to Splines,<br>
Springer, 2001,<br>
ISBN: 0387953663.
</li>
<li>
Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart,<br>
LINPACK User's Guide,<br>
SIAM, 1979,<br>
ISBN13: 978-0-898711-72-1.
</li>
<li>
Gisela Engeln-Muellges, Frank Uhlig,<br>
Numerical Algorithms with C,<br>
Springer, 1996,<br>
ISBN: 3-540-60530-4.
</li>
<li>
James Foley, Andries vanDam, Steven Feiner, John Hughes,<br>
Computer Graphics, Principles and Practice,<br>
Second Edition,<br>
Addison Wesley, 1995,<br>
ISBN: 0201848406,<br>
LC: T385.C5735.
</li>
<li>
Fred Fritsch, Judy Butland,<br>
A Method for Constructing Local Monotone Piecewise
Cubic Interpolants,<br>
SIAM Journal on Scientific and Statistical Computing,<br>
Volume 5, Number 2, 1984, pages 300-304.
</li>
<li>
Fred Fritsch, Ralph Carlson,<br>
Monotone Piecewise Cubic Interpolation,<br>
SIAM Journal on Numerical Analysis,<br>
Volume 17, Number 2, April 1980, pages 238-246.
</li>
<li>
David Kahaner, Cleve Moler, Steven Nash,<br>
Numerical Methods and Software,<br>
Prentice Hall, 1989,<br>
ISBN: 0-13-627258-4,<br>
LC: TA345.K34.
</li>
<li>
David Rogers, Alan Adams,<br>
Mathematical Elements of Computer Graphics,<br>
Second Edition,<br>
McGraw Hill, 1989,<br>
ISBN: 0070535299.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "basis_function_b_val.m">basis_function_b_val.m</a>,
evaluates the B spline basis function at a point.
</li>
<li>
<a href = "basis_function_beta_val.m">basis_function_beta_val.m</a>,
evaluates the beta spline basis function at a point.
</li>
<li>
<a href = "basis_matrix_b_uni.m">basis_matrix_b_uni.m</a>,
sets up the uniform B spline basis matrix.
</li>
<li>
<a href = "basis_matrix_beta_uni.m">basis_matrix_beta_uni.m</a>,
sets up the uniform beta spline basis matrix.
</li>
<li>
<a href = "basis_matrix_bezier.m">basis_matrix_bezier.m</a>,
sets up a cubic Bezier spline basis matrix.
</li>
<li>
<a href = "basis_matrix_hermite.m">basis_matrix_hermite.m</a>,
sets up a Hermite spline basis matrix.
</li>
<li>
<a href = "basis_matrix_overhauser_nonuni.m">
basis_matrix_overhauser_nonuni.m</a>,
sets up a nonuniform Overhauser spline basis matrix.
</li>
<li>
<a href = "basis_matrix_overhauser_nul.m">
basis_matrix_overhauser_nul.m</a>,
sets up a nonuniform left Overhauser spline basis matrix.
</li>
<li>
<a href = "basis_matrix_overhauser_nur.m">
basis_matrix_overhauser_nur.m</a>,
sets up a nonuniform right Overhauser spline basis matrix.
</li>
<li>
<a href = "basis_matrix_overhauser_uni.m">
basis_matrix_overhauser_uni.m</a>,
sets up the uniform Overhauser spline basis matrix.
</li>
<li>
<a href = "basis_matrix_overhauser_uni_l.m">
basis_matrix_overhauser_uni_l.m</a>,
sets up the left uniform Overhauser spline basis matrix.
</li>
<li>
<a href = "basis_matrix_overhauser_uni_r.m">
basis_matrix_overhauser_uni_r.m</a>,
sets up the right uniform Overhauser spline basis matrix.
</li>
<li>
<a href = "basis_matrix_tmp.m">basis_matrix_tmp.m</a>,
computes Q = T * MBASIS * P.
</li>
<li>
<a href = "bc_val.m">bc_val.m</a>,
evaluates a parameterized Bezier curve.
</li>
<li>
<a href = "bez_val.m">bez_val.m</a>,
evaluates a Bezier function at a point.
</li>
<li>
<a href = "bpab_approx.m">bpab_approx.m</a>,
evaluate the Bernstein polynomial for F(X) on [A,B].
</li>
<li>
<a href = "bpab.m">bpab.m</a>,
evaluates the Bernstein basis polynomials for [A,B] at a point.
</li>
<li>
<a href = "chfev.m">chfev.m</a>,
evaluates a Hermite cubic function.
</li>
<li>
<a href = "d3_mxv.m">d3_mxv.m</a>,
multiplies an D3 matrix times a vector.
</li>
<li>
<a href = "d3_np_fs.m">d3_np_fs.m</a>,
factors and solves an D3 linear system with no pivoting.
</li>
<li>
<a href = "d3_uniform.m">d3_uniform.m</a>,
returns a random D3 matrix.
</li>
<li>
<a href = "data_to_dif.m">data_to_dif.m</a>,
sets up a divided difference table from raw data.
</li>
<li>
<a href = "dif_val.m">dif_val.m</a>,
evaluates a divided difference polynomial at a point.
</li>
<li>
<a href = "least_set_old.m">least_set_old.m</a>,
constructs the least squares polynomial approximation to data.
</li>
<li>
<a href = "least_val_old.m">least_val_old.m</a>,
evaluates a least squares polynomial defined by LEAST_SET_OLD.
</li>
<li>
<a href = "least_set.m">least_set.m</a>,
returns the least squares polynomial that approximates
given data;
</li>
<li>
<a href = "least_val.m">least_val.m</a>,
evaluates the least squares polynomial that approximates
given data;
</li>
<li>
<a href = "least_val2.m">least_val2.m</a>,
evaluates the least squares polynomial, and its derivative,
that approximates given data;
</li>
<li>
<a href = "parabola_val2.m">parabola_val2.m</a>,
evaluates a parabolic interpolant through tabulated data.
</li>
<li>
<a href = "pchst.m">pchst.m</a>,
PCHIP sign change checker.
</li>
<li>
<a href = "r8_uniform_01.m">r8_uniform_01.m</a>,
is a uniform random number generator.
</li>
<li>
<a href = "r8vec_bracket.m">r8vec_bracket.m</a>,
searches a sorted array for successive brackets of a value.
</li>
<li>
<a href = "r8vec_bracket3.m">r8vec_bracket3.m</a>,
finds the interval containing or nearest a given value.
</li>
<li>
<a href = "r8vec_distinct.m">r8vec_distinct.m</a>,
is true if the elements of a real vector are distinct.
</li>
<li>
<a href = "r8vec_even.m">r8vec_even.m</a>,
returns N real values evenly spaced between ALO and AHI.
</li>
<li>
<a href = "r8vec_indicator.m">r8vec_indicator.m</a>,
sets a real vector to the indicator vector.
</li>
<li>
<a href = "r8vec_order_type.m">r8vec_order_type.m</a>,
finds if a real vector is (non)strictly ascending/descending.
</li>
<li>
<a href = "r8vec_print.m">r8vec_print.m</a>,
prints a real vector.
</li>
<li>
<a href = "r8vec_sort_bubble_a.m">r8vec_sort_bubble_a.m</a>,
ascending sorts a real vector using bubble sort.
</li>
<li>
<a href = "r8vec_uniform.m">r8vec_uniform.m</a>,
returns a random real vector.
</li>
<li>
<a href = "r8vec_unique_count.m">r8vec_unique_count.m</a>,
counts the number of unique elements in an unsorted R8VEC;
</li>
<li>
<a href = "s_len_trim.m">s_len_trim.m</a>,
returns the length of a character string to the last nonblank.
</li>
<li>
<a href = "spline_b_val.m">spline_b_val.m</a>,
evaluates a cubic spline approximant at a point.
</li>
<li>
<a href = "spline_beta_val.m">spline_beta_val.m</a>,
evaluates a cubic beta spline approximant at a point.
</li>
<li>
<a href = "spline_constant_val.m">spline_constant_val.m</a>,
evaluates a piecewise constant spline at a point.
</li>
<li>
<a href = "spline_cubic_set.m">spline_cubic_set.m</a>,
computes the second derivatives of a cubic spline.
</li>
<li>
<a href = "spline_cubic_val.m">spline_cubic_val.m</a>,
evaluates a piecewise cubic spline at a point.
</li>
<li>
<a href = "spline_cubic_val2.m">spline_cubic_val2.m</a>,
evaluates a piecewise cubic spline at a point.
</li>
<li>
<a href = "spline_hermite_set.m">spline_hermite_set.m</a>,
sets up a piecewise cubic Hermite interpolant spline.
</li>
<li>
<a href = "spline_hermite_val.m">spline_hermite_val.m</a>,
evaluates a piecewise cubic Hermite spline at a point.
</li>
<li>
<a href = "spline_linear_int.m">spline_linear_int.m</a>,
evaluates the integral of a piecewise linear spline.
</li>
<li>
<a href = "spline_linear_intset.m">spline_linear_intset.m</a>,
sets a piecewise linear spline with given integral properties.
</li>
<li>
<a href = "spline_linear_val.m">spline_linear_val.m</a>,
evaluates a piecewise linear spline at a point.
</li>
<li>
<a href = "spline_overhauser_nonuni_val.m">
spline_overhauser_nonuni_val.m</a>,
evaluates a nonuniform Overhauser spline at a point.
</li>
<li>
<a href = "spline_overhauser_uni_val.m">
spline_overhauser_uni_val.m</a>,
evaluates a uniform Overhauser spline at a point.
</li>
<li>
<a href = "spline_overhauser_val.m">spline_overhauser_val.m</a>,
evaluates an Overhauser spline at a point.
</li>
<li>
<a href = "spline_pchip_set.m">spline_pchip_set.m</a>,
defines a PCHIP spline for given data.
</li>
<li>
<a href = "spline_pchip_val.m">spline_pchip_val.m</a>,
evaluates a PCHIP spline at a point.
</li>
<li>
<a href = "spline_quadratic_val.m">spline_quadratic_val.m</a>,
evaluates a piecewise quadratic spline at a point.
</li>
<li>
<a href = "timestamp.m">timestamp.m</a>,
prints the current YMDHMS date as a timestamp.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "spline_test.m">spline_test.m</a>,
runs all the tests;
</li>
<li>
<a href = "spline_test_output.txt">spline_test_output.txt</a>,
output from all the tests;
</li>
<li>
<a href = "fcube.m">fcube.m</a>,
evaluates a cubic function;
</li>
<li>
<a href = "fpcube.m">fpcube.m</a>,
evaluates the derivative of a cubic function;
</li>
<li>
<a href = "fppcube.m">fppcube.m</a>,
evaluates the second derivative of a cubic function;
</li>
<li>
<a href = "frunge.m">frunge.m</a>,
evaluates the Runge function;
</li>
<li>
<a href = "fprunge.m">fprunge.m</a>,
evaluates the derivative of the Runge function;
</li>
<li>
<a href = "fpprunge.m">fpprunge.m</a>,
evaluates the second derivative of the Runge function;
</li>
<li>
<a href = "spline_test001.m">spline_test001.m</a>,
tests PARABOLA_VAL2;
</li>
<li>
<a href = "spline_test002.m">spline_test002.m</a>,
tests R8VEC_BRACKET;
</li>
<li>
<a href = "spline_test003.m">spline_test003.m</a>,
tests R8VEC_BRACKET3;
</li>
<li>
<a href = "spline_test004.m">spline_test004.m</a>,
tests R8VEC_ORDER_TYPE;
</li>
<li>
<a href = "spline_test005.m">spline_test005.m</a>,
tests D3_NP_FS;
</li>
<li>
<a href = "spline_test006.m">spline_test006.m</a>,
tests DATA_TO_DIF and DIF_VAL;
</li>
<li>
<a href = "spline_test01.m">spline_test01.m</a>,
tests BASIS_FUNCTION_B_VAL;
</li>
<li>
<a href = "spline_test02.m">spline_test02.m</a>,
tests BASIS_FUNCTION_BETA_VAL;
</li>
<li>
<a href = "spline_test03.m">spline_test03.m</a>,
tests BASIS_MATRIX_B_UNI and BASIS_MATRIX_TMP;
</li>
<li>
<a href = "spline_test04.m">spline_test04.m</a>,
tests BASIS_FUNCTION_BETA_UNI and BASIS_MATRIX_TMP;
</li>
<li>
<a href = "spline_test05.m">spline_test05.m</a>,
tests BASIS_FUNCTION_BEZIER and BASIS_MATRIX_TMP;
</li>
<li>
<a href = "spline_test06.m">spline_test06.m</a>,
tests BASIS_MATRIX_HERMITE and BASIS_MATRIX_TMP;
</li>
<li>
<a href = "spline_test07.m">spline_test07.m</a>,
tests BASIS_OVERHAUSER_UNI and BASIS_MATRIX_TMP;
</li>
<li>
<a href = "spline_test08.m">spline_test08.m</a>,
tests BASIS_OVERHAUSER_NONUNI and BASIS_MATRIX_TMP;
</li>
<li>
<a href = "spline_test09.m">spline_test09.m</a>,
tests BASIS_OVERHAUSER_NONUNI and BASIS_MATRIX_TMP;
</li>
<li>
<a href = "spline_test10.m">spline_test10.m</a>,
tests BC_VAL;
</li>
<li>
<a href = "spline_test11.m">spline_test11.m</a>,
tests BEZ_VAL;
</li>
<li>
<a href = "spline_test115.m">spline_test115.m</a>,
tests BP01;
</li>
<li>
<a href = "spline_test116.m">spline_test116.m</a>,
tests BPAB;
</li>
<li>
<a href = "spline_test12.m">spline_test12.m</a>,
tests BP_APPROX;
</li>
<li>
<a href = "spline_test125.m">spline_test125.m</a>,
tests LEAST_SET_OLD and LEAST_VAL_OLD;
</li>
<li>
<a href = "subpak_test126.m">subpak_test126.m</a>,
tests LEAST_SET and LEAST_VAL;
</li>
<li>
<a href = "subpak_test127.m">subpak_test127.m</a>,
tests LEAST_SET and LEAST_VAL2;
</li>
<li>
<a href = "spline_test13.m">spline_test13.m</a>,
tests SPLINE_B_VAL;
</li>
<li>
<a href = "spline_test14.m">spline_test14.m</a>,
tests SPLINE_BETA_VAL;
</li>
<li>
<a href = "spline_test145.m">spline_test145.m</a>,
tests SPLINE_CONSTANT_VAL;
</li>
<li>
<a href = "spline_test15.m">spline_test15.m</a>,
tests SPLINE_CUBIC_SET and SPLINE_CUBIC_VAL;
</li>
<li>
<a href = "spline_test16.m">spline_test16.m</a>,
tests SPLINE_CUBIC_SET and SPLINE_CUBIC_VAL2;
</li>
<li>
<a href = "spline_test17.m">spline_test17.m</a>,
tests SPLINE_CUBIC_SET and SPLINE_CUBIC_VAL;
</li>
<li>
<a href = "spline_test18.m">spline_test18.m</a>,
tests SPLINE_CUBIC_SET and SPLINE_CUBIC_VAL;
</li>
<li>
<a href = "spline_test19.m">spline_test19.m</a>,
tests SPLINE_CUBIC_SET and SPLINE_CUBIC_VAL;
</li>
<li>
<a href = "spline_test195.m">spline_test195.m</a>,
compares SPLINE_CUBIC_SET and MATLAB's spline() function;
</li>
<li>
<a href = "spline_test20.m">spline_test20.m</a>,
tests SPLINE_HERMITE_SET and SPLINE_HERMITE_VAL;
</li>
<li>
<a href = "spline_test205.m">spline_test205.m</a>,
tests SPLINE_LINEAR_INT and SPLINE_LINEAR_INTSET;
</li>
<li>
<a href = "spline_test21.m">spline_test21.m</a>,
tests SPLINE_LINEAR_VAL;
</li>
<li>
<a href = "spline_test215.m">spline_test215.m</a>,
tests SPLINE_LINEAR_INT;
</li>
<li>
<a href = "spline_test22.m">spline_test22.m</a>,
tests SPLINE_OVERHAUSER_UNI_VAL;
</li>
<li>
<a href = "spline_test225.m">spline_test225.m</a>,
tests SPLINE_OVERHAUSER_NONUNI_VAL;
</li>
<li>
<a href = "spline_test23.m">spline_test23.m</a>,
tests SPLINE_OVERHAUSER_VAL;
</li>
<li>
<a href = "spline_test235.m">spline_test235.m</a>,
tests SPLINE_PCHIP_SET and SPLINE_PCHIP_VAL;
</li>
<li>
<a href = "spline_test24.m">spline_test24.m</a>,
tests SPLINE_QUADRATIC_VAL;
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../m_src.html">
the MATLAB source codes</a>.
</p>
<hr>
<i>
Last revised on 29 January 2007.
</i>
<!-- John Burkardt -->
</body>
</html>