forked from johannesgerer/jburkardt-m
-
Notifications
You must be signed in to change notification settings - Fork 0
/
quad_tasks.html
318 lines (273 loc) · 9.82 KB
/
quad_tasks.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
<html>
<head>
<title>
QUAD_TASKS - Quadrature using Tasks
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
QUAD_TASKS <br> Quadrature using Tasks
</h1>
<hr>
<p>
<b>QUAD_TASKS</b>
is a MATLAB program which
demonstrates how a numerical quadrature procedure can be carried
out as a set of independent tasks whose results are combined at the end.
</p>
<p>
The task computing feature of MATLAB's Parallel Computing Toolbox is used
to manage the creation, execution, and analysis of the multiple tasks.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>QUAD_TASKS</b> is available in
<a href = "../../m_src/quad_tasks/quad_tasks.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../m_src/birthday_remote/birthday_remote.html">
BIRTHDAY_REMOTE</a>,
a MATLAB program which
runs a Monte Carlo simulation of the birthday paradox, and includes
instructions on how to run the job, via MATLAB's BATCH facility,
on a remote system such as Virginia Tech's ITHACA cluster.
</p>
<p>
<a href = "../../m_src/cell_detection_tasks/cell_detection_tasks.html">
CELL_DETECTION_TASKS</a>,
a MATLAB program which
creates modified versions of a sequence of gray-scale TIF files containing
images of cells; the process of each file is carried out independently,
using the "task" feature of MATLAB's parallel computing toolbox.
</p>
<p>
<a href = "../../m_src/cg_distributed/cg_distributed.html">
CG_DISTRIBUTED</a>,
a MATLAB program which
implements a version of the NAS CG conjugate gradient benchmark,
using distributed memory.
</p>
<p>
<a href = "../../m_src/collatz_parfor/collatz_parfor.html">
COLLATZ_PARFOR</a>,
a MATLAB program which
seeks the maximum Collatz sequence between 1 and N,
running in parallel using MATLAB's "PARFOR" feature.
</p>
<p>
<a href = "../../m_src/contrast_spmd/contrast_spmd.html">
CONTRAST_SPMD</a>,
a MATLAB program which
demonstrates the SPMD parallel programming feature for image operations;
the client reads an image, the workers increase contrast over separate portions, and
the client assembles and displays the results.
</p>
<p>
<a href = "../../m_src/contrast2_spmd/contrast2_spmd.html">
CONTRAST2_SPMD</a>,
a MATLAB program which
demonstrates the SPMD parallel programming feature for image operations;
this improves the contrast_spmd program by allowing the workers to share some
data; this makes it possible to eliminate artificial "seams" in the processed
image.
</p>
<p>
<a href = "../../m_src/fd2d_heat_explicit_spmd/fd2d_heat_explicit_spmd.html">
FD2D_HEAT_EXPLICIT_SPMD</a>,
a MATLAB program which
uses the finite difference method and explicit time stepping
to solve the time dependent heat equation in 2D. A black and white image
is used as the "initial condition". MATLAB's SPMD facility is used to
carry out the computation in parallel.
</p>
<p>
<a href = "../../m_src/fmincon_parallel/fmincon_parallel.html">
FMINCON_PARALLEL</a>,
a MATLAB program which
demonstrates the use of MATLAB's FMINCON constrained minimization
function, taking advantage of MATLAB's Parallel Computing Toolbox
for faster execution.
</p>
<p>
<a href = "../../m_src/image_denoise_spmd/image_denoise_spmd.html">
IMAGE_DENOISE_SPMD</a>,
a MATLAB program which
demonstrates the SPMD parallel programming feature for image operations;
the client reads an image, the workers process portions of it, and
the client assembles and displays the results.
</p>
<p>
<a href = "../../m_src/linear_solve_distributed/linear_solve_distributed.html">
LINEAR_SOLVE_DISTRIBUTED</a>,
a MATLAB program which
solves a linear system <b>A*x=b</b> using MATLAB's <b>spmd</b> facility,
so that the matrix <b>A</b> is "distributed" across multiple MATLAB workers.
</p>
<p>
<a href = "../../m_src/matlab_parallel/matlab_parallel.html">
MATLAB_PARALLEL</a>,
programs which
illustrate "local" parallel programming on a single computer
with MATLAB's Parallel Computing Toolbox.
</p>
<p>
<a href = "../../m_src/md_parfor/md_parfor.html">
MD_PARFOR</a>,
a MATLAB program which
carries out a molecular dynamics simulation,
running in parallel using MATLAB's "PARFOR" feature.
</p>
<p>
<a href = "../../m_src/ode_sweep_parfor/ode_sweep_parfor.html">
ODE_SWEEP_PARFOR</a>,
a MATLAB program which
demonstrates how the PARFOR command can be used to parallelize the computation
of a grid of solutions to a parameterized system of ODE's.
</p>
<p>
<a href = "../../m_src/plot_spmd/plot_spmd.html">
PLOT_SPMD</a>,
a MATLAB library which
demonstrates the SPMD parallel programming feature, by having a number
of labs compute parts of a sine plot, which is then displayed by the
client process.
</p>
<p>
<a href = "../../m_src/prime_parfor/prime_parfor.html">
PRIME_PARFOR</a>,
a MATLAB program which
counts the number of primes between 1 and N;
running in parallel using MATLAB's "PARFOR" feature.
</p>
<p>
<a href = "../../m_src/prime_spmd/prime_spmd.html">
PRIME_SPMD</a>,
a MATLAB program which
counts the number of primes between 1 and N;
running in parallel using MATLAB's "SPMD" feature.
</p>
<p>
<a href = "../../m_src/quad_parfor/quad_parfor.html">
QUAD_PARFOR</a>,
a MATLAB program which
estimates an integral using quadrature;
running in parallel using MATLAB's "PARFOR" feature.
</p>
<p>
<a href = "../../m_src/quad_serial/quad_serial.html">
QUAD_SERIAL</a>,
a MATLAB program which
approximates an integral using a quadrature rule,
and is intended as a starting point for parallelization exercises.
</p>
<p>
<a href = "../../m_src/quad_spmd/quad_spmd.html">
QUAD_SPMD</a>,
a MATLAB program which
estimates an integral using quadrature;
running in parallel using MATLAB's "SPMD" feature.
</p>
<p>
<a href = "../../m_src/random_walk_2d_avoid_tasks/random_walk_2d_avoid_tasks.html">
RANDOM_WALK_2D_AVOID_TASKS</a>,
a MATLAB program which
computes many self avoiding random walks in 2D by creating a job which
defines each walk as a task, and then computes these independently
using MATLAB's Parallel Computing Toolbox task computing capability.
</p>
<p>
<a href = "../../m_src/satisfy_parfor/satisfy_parfor.html">
SATISFY_PARFOR</a>,
a MATLAB program which
demonstrates, for a particular circuit, an exhaustive search
for solutions of the circuit satisfiability problem,
running in parallel using MATLAB's "PARFOR" feature.
</p>
<p>
<a href = "../../m_src/subset_sum_tasks/subset_sum_tasks.html">
SUBSET_SUM_TASKS</a>,
a MATLAB program which
solves a subset sum problem by exhaustive search,
subdividing the search range among separate tasks.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
The User's Guide for the Parallel Computing Toolbox is available at
<a href = "http://www.mathworks.com/access/helpdesk/help/pdf_doc/distcomp/distcomp.pdf">
http://www.mathworks.com/access/helpdesk/help/pdf_doc/distcomp/distcomp.pdf</a>
</p>
<p>
<ol>
<li>
Gaurav Sharma, Jos Martin,<br>
MATLAB: A Language for Parallel Computing,<br>
International Journal of Parallel Programming,<br>
Volume 37, Number 1, pages 3-36, February 2009.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "quad_task.m">quad_task.m</a>,
a function which carries out a single instance of the task.
</li>
<li>
<a href = "quad_job_local.m">quad_job_local.m</a>,
sets up a job as a collection of tasks and runs it locally.
</li>
<li>
<a href = "quad_local_output.txt">quad_local_output.txt</a>,
the output from a local run of the tasks.
</li>
<li>
<a href = "quad_job_ithaca.m">quad_job_ithaca.m</a>,
sets up a job as a collection of tasks and runs it on the Ithaca cluster.
</li>
<li>
<a href = "quad_ithaca_output.txt">quad_ithaca_output.txt</a>,
the output from a run of the tasks on the Ithaca cluster.
</li>
<li>
<a href = "quad_fsu.m">quad_fsu.m</a>,
sets up a job as a collection of tasks and runs it on the FSU HPC cluster.
</li>
<li>
<a href = "quad_fsu_output.txt">quad_fsu_output.txt</a>,
the output from a run of quad_fsu on the FSU HPC cluster.
</li>
<li>
<a href = "timestamp.m">timestamp.m</a>
prints the YMDHMS date as a timestamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../m_src.html">
the MATLAB source codes</a>.
</p>
<hr>
<i>
Last revised on 30 June 2010.
</i>
<!-- John Burkardt -->
</body>
</html>