forked from johannesgerer/jburkardt-m
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lorenz_ode.html
216 lines (184 loc) · 5.65 KB
/
lorenz_ode.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
<html>
<head>
<title>
LORENZ_ODE - The Lorenz System
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
LORENZ_ODE <br> The Lorenz System
</h1>
<hr>
<p>
<b>LORENZ_ODE</b>
is a MATLAB program which
approximates solutions to the Lorenz system,
creating output files that can be displayed by Gnuplot.
</p>
<p>
The Lorenz system, originally intended as a simplified model of
atmospheric convection, has instead become a standard example of
sensitive dependence on initial conditions; that is, tiny differences
in the starting condition for the system rapidly become magnified.
The system also exhibits what is known as the "Lorenz attractor",
that is, the collection of trajectories for different starting points
tends to approach a peculiar butterfly-shaped region.
</p>
<p>
The Lorenz system includes three ordinary differential equations:
<pre>
dx/dt = sigma ( y - x )
dy/dt = x ( rho - z ) - y
dz/dt = xy - beta z
</pre>
where the parameters beta, rho and sigma are usually assumed to be
positive. The classic case uses the parameter values
<pre>
beta = 8 / 3
rho = 28
sigma - 10
</pre>
</p>
<p>
The initial conditions for this system are not often specified; rather,
investigators simply note that the trajectories associated with two very
close starting points will eventually separate. However, simply to
get started, we can suggest the following starting values at t=0:
<pre>
x = 8
y = 1
z = 1
</pre>
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this
web page are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>LORENZ_ODE</b> is available in
<a href = "../../c_src/lorenz_ode/lorenz_ode.html">a C version</a> and
<a href = "../../cpp_src/lorenz_ode/lorenz_ode.html">a C++ version</a> and
<a href = "../../f77_src/lorenz_ode/lorenz_ode.html">a FORTRAN77 version</a> and
<a href = "../../f_src/lorenz_ode/lorenz_ode.html">a FORTRAN90 version</a> and
<a href = "../../m_src/lorenz_ode/lorenz_ode.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../m_src/gnuplot/gnuplot.html">
GNUPLOT</a>,
MATLAB programs which
illustrate the use of the gnuplot graphics program.
</p>
<p>
<a href = "../../examples/graphics_examples_gnuplot/graphics_examples_gnuplot.html">
GRAPHICS_EXAMPLES_GNUPLOT</a>,
gnuplot scripts which
illustrate how various kinds of data can be displayed and analyzed graphically
using the interactive executable graphics program GNUPLOT.
</p>
<p>
<a href = "../../m_src/lorenz_cluster/lorenz_cluster.html">
LORENZ_CLUSTER</a>,
a MATLAB library which
takes a set of N points on a trajectory of solutions to the Lorenz
equations, and applies the K-means algorithm to organize the
data into K clusters.
</p>
<p>
<a href = "../../m_src/spring_ode2/spring_ode2.html">
SPRING_ODE2</a>,
a MATLAB program which
shows how gnuplot graphics can be used to illustrate
a solution of the ordinary differential equation (ODE) that describes
the motion of a weight attached to a spring.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Edward Lorenz,<br>
Deterministic Nonperiodic Flow,<br>
Journal of the Atmospheric Sciences,<br>
Volume 20, Number 2, 1963, pages 130-141.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "lorenz_ode.m">lorenz_ode.m</a>, the source code.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "lorenz_ode_output.txt">lorenz_ode_output.txt</a>,
the output file.
</li>
<li>
<a href = "lorenz_ode_data.txt">lorenz_ode_data.txt</a>,
the graphics data file.
</li>
<li>
<a href = "lorenz_ode_commands.txt">lorenz_ode_commands.txt</a>,
the graphics command file.
</li>
<li>
<a href = "xyz_3d.png">xyz_3d.png</a>,
a plot, created by gnuplot, of (X(t),Y(t),Z(t)).
</li>
<li>
<a href = "xyz_time.png">xyz_time.png</a>,
a plot, created by gnuplot, of (t,X(t)), (t,Y(t), and (t,Z(t)).
</li>
</ul>
</p>
<h3 align = "center">
List of Routines:
</h3>
<p>
<ul>
<li>
<b>MAIN</b> is the main program for LORENZ_ODE.
</li>
<li>
<b>LORENZ_RHS</b> evaluates the right hand side of the Lorenz ODE.
</li>
<li>
<b>RK4VEC</b> takes one Runge-Kutta step for a vector ODE.
</li>
<li>
<b>TIMESTAMP</b> prints the current YMDHMS date as a time stamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../m_src.html">
the MATLAB source codes</a>.
</p>
<hr>
<i>
Last revised on 11 October 2013.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>