We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
概要 下記の部分でfitness scoreを考慮してukfをすれば安定するのではないかという提案です
hdl_localization/src/hdl_localization/pose_estimator.cpp
Line 197 in d571373
hdl_localization/include/kkl/alg/unscented_kalman_filter.hpp
Line 141 in d571373
測定値のcovarianceがどの変数か調査中
目的 提案内容 タスク
The text was updated successfully, but these errors were encountered:
おそらく下記が測定値のcovarianceに相当する場所
Line 147 in d571373
下記のように書き換えたら多少挙動は変化したが良くなったとは言えない。もう少し調査が必要そうです。
/** * @brief correct * @param measurement measurement vector * @param fitness_score scam matching fitness score (The better the accuracy of the matching, the smaller the value.) */ void correct(const VectorXt& measurement, double fitness_score) { // create extended state space which includes error variances VectorXt ext_mean_pred = VectorXt::Zero(N + K, 1); MatrixXt ext_cov_pred = MatrixXt::Zero(N + K, N + K); ext_mean_pred.topLeftCorner(N, 1) = VectorXt(mean); ext_cov_pred.topLeftCorner(N, N) = MatrixXt(cov); MatrixXt measurement_covariance_matrix = fitness_score * MatrixXt::Identity(measurement_noise.cols(), measurement_noise.rows()); ext_cov_pred.bottomRightCorner(K, K) = measurement_covariance_matrix;
Sorry, something went wrong.
UKFの計算手順などは下記を参照しています https://arx.appi.keio.ac.jp/wp-content/uploads/2011/05/10102.pdf
No branches or pull requests
概要
下記の部分でfitness scoreを考慮してukfをすれば安定するのではないかという提案です
hdl_localization/src/hdl_localization/pose_estimator.cpp
Line 197 in d571373
hdl_localization/include/kkl/alg/unscented_kalman_filter.hpp
Line 141 in d571373
測定値のcovarianceがどの変数か調査中
目的
提案内容
タスク
The text was updated successfully, but these errors were encountered: