-
Notifications
You must be signed in to change notification settings - Fork 11
/
test.py
executable file
·102 lines (81 loc) · 3.39 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import os
import argparse
import torch
import numpy as np
from tqdm import tqdm
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
from train import get_instance
from train import import_module
import pickle
def main(config, resume):
# setup data_loader instances
data_loader = get_instance(module_data, 'data_loader', config)
#data_loader = getattr(module_data, config['data_loader']['type'])(
# config['data_loader']['args']
# batch_size=512,
# shuffle=False,
# validation_split=0.0,
# training=False,
# num_workers=2
#)
data_loader = data_loader.split_validation()
# build model architecture
model = import_module('model', config)(**config['model']['args'])
model.summary()
# get function handles of loss and metrics
loss_fn = getattr(module_loss, config['loss'])
metric_fns = [getattr(module_metric, met) for met in config['metrics']]
# load state dict
checkpoint = torch.load(resume)
state_dict = checkpoint['state_dict']
if config['n_gpu'] > 1:
model = torch.nn.DataParallel(model)
model.load_state_dict(state_dict)
# prepare model for testing
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
model.eval()
total_loss = 0.0
total_metrics = torch.zeros(len(metric_fns))
predictions = {"output": [], "target": []}
with torch.no_grad():
for i, (data, target) in enumerate(tqdm(data_loader)):
#data, target = data.to(device), target.to(device)
target = target.to(device)
output = model(data, device)
#
# save sample images, or do something with output here
#
output, logits = output
predictions['output'].append(output.cpu().numpy())
predictions['target'].append(target.cpu().numpy())
# computing loss, metrics on test set
loss = loss_fn(output, target)
batch_size = target.shape[0]
total_loss += loss.item() * batch_size
for i, metric in enumerate(metric_fns):
total_metrics[i] += metric(output, target) * batch_size
n_samples = len(data_loader.sampler)
log = {'loss': total_loss / n_samples}
log.update({met.__name__ : total_metrics[i].item() / n_samples for i, met in enumerate(metric_fns)})
print(log)
save_dir = os.path.join(os.path.abspath(os.path.join(resume, '..', '..')))
predictions['output'] = np.hstack(predictions['output'])
predictions['target'] = np.hstack(predictions['target'])
print(save_dir + '/predictions.pkl')
with open(os.path.join(save_dir, 'predictions.pkl'), 'wb') as handle:
pickle.dump(predictions, handle, protocol=pickle.HIGHEST_PROTOCOL)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch Template')
parser.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
parser.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
args = parser.parse_args()
if args.resume:
config = torch.load(args.resume)['config']
if args.device:
os.environ["CUDA_VISIBLE_DEVICES"]=args.device
main(config, args.resume)