-
Notifications
You must be signed in to change notification settings - Fork 0
/
toc
5098 lines (3736 loc) · 217 KB
/
toc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
SLATEC Common Mathematical Library
Version 4.1
Table of Contents
This table of contents of the SLATEC Common Mathematical Library (CML) has
three sections.
Section I contains the names and purposes of all user-callable CML routines,
arranged by GAMS category. Those unfamiliar with the GAMS scheme should
consult the document "Guide to the SLATEC Common Mathematical Library". The
current library has routines in the following GAMS major categories:
A. Arithmetic, error analysis
C. Elementary and special functions (search also class L5)
D. Linear Algebra
E. Interpolation
F. Solution of nonlinear equations
G. Optimization (search also classes K, L8)
H. Differentiation, integration
I. Differential and integral equations
J. Integral transforms
K. Approximation (search also class L8)
L. Statistics, probability
N. Data handling (search also class L2)
R. Service routines
Z. Other
The library contains routines which operate on different types of data but
which are otherwise equivalent. The names of equivalent routines are listed
vertically before the purpose. Immediately after each name is a hyphen (-)
and one of the alphabetic characters S, D, C, I, H, L, or A, where
S indicates a single precision routine, D double precision, C complex,
I integer, H character, L logical, and A is a pseudo-type given to routines
that could not reasonably be converted to some other type.
Section II contains the names and purposes of all subsidiary CML routines,
arranged in alphabetical order. Usually these routines are not referenced
directly by library users. They are listed here so that users will be able
to avoid duplicating names that are used by the CML and for the benefit of
programmers who may be able to use them in the construction of new routines
for the library.
Section III is an alphabetical list of every routine in the CML and the
categories to which the routine is assigned. Every user-callable routine
has at least one category. An asterisk (*) immediately preceding a routine
name indicates a subsidiary routine.
SECTION I. User-callable Routines
A. Arithmetic, error analysis
A3. Real
A3D. Extended range
XADD-S To provide single-precision floating-point arithmetic
DXADD-D with an extended exponent range.
XADJ-S To provide single-precision floating-point arithmetic
DXADJ-D with an extended exponent range.
XC210-S To provide single-precision floating-point arithmetic
DXC210-D with an extended exponent range.
XCON-S To provide single-precision floating-point arithmetic
DXCON-D with an extended exponent range.
XRED-S To provide single-precision floating-point arithmetic
DXRED-D with an extended exponent range.
XSET-S To provide single-precision floating-point arithmetic
DXSET-D with an extended exponent range.
A4. Complex
A4A. Single precision
CARG-C Compute the argument of a complex number.
A6. Change of representation
A6B. Base conversion
R9PAK-S Pack a base 2 exponent into a floating point number.
D9PAK-D
R9UPAK-S Unpack a floating point number X so that X = Y*2**N.
D9UPAK-D
C. Elementary and special functions (search also class L5)
FUNDOC-A Documentation for FNLIB, a collection of routines for
evaluating elementary and special functions.
C1. Integer-valued functions (e.g., floor, ceiling, factorial, binomial
coefficient)
BINOM-S Compute the binomial coefficients.
DBINOM-D
FAC-S Compute the factorial function.
DFAC-D
POCH-S Evaluate a generalization of Pochhammer's symbol.
DPOCH-D
POCH1-S Calculate a generalization of Pochhammer's symbol starting
DPOCH1-D from first order.
C2. Powers, roots, reciprocals
CBRT-S Compute the cube root.
DCBRT-D
CCBRT-C
C3. Polynomials
C3A. Orthogonal
C3A2. Chebyshev, Legendre
CSEVL-S Evaluate a Chebyshev series.
DCSEVL-D
INITS-S Determine the number of terms needed in an orthogonal
INITDS-D polynomial series so that it meets a specified accuracy.
QMOMO-S This routine computes modified Chebyshev moments. The K-th
DQMOMO-D modified Chebyshev moment is defined as the integral over
(-1,1) of W(X)*T(K,X), where T(K,X) is the Chebyshev
polynomial of degree K.
XLEGF-S Compute normalized Legendre polynomials and associated
DXLEGF-D Legendre functions.
XNRMP-S Compute normalized Legendre polynomials.
DXNRMP-D
C4. Elementary transcendental functions
C4A. Trigonometric, inverse trigonometric
CACOS-C Compute the complex arc cosine.
CASIN-C Compute the complex arc sine.
CATAN-C Compute the complex arc tangent.
CATAN2-C Compute the complex arc tangent in the proper quadrant.
COSDG-S Compute the cosine of an argument in degrees.
DCOSDG-D
COT-S Compute the cotangent.
DCOT-D
CCOT-C
CTAN-C Compute the complex tangent.
SINDG-S Compute the sine of an argument in degrees.
DSINDG-D
C4B. Exponential, logarithmic
ALNREL-S Evaluate ln(1+X) accurate in the sense of relative error.
DLNREL-D
CLNREL-C
CLOG10-C Compute the principal value of the complex base 10
logarithm.
EXPREL-S Calculate the relative error exponential (EXP(X)-1)/X.
DEXPRL-D
CEXPRL-C
C4C. Hyperbolic, inverse hyperbolic
ACOSH-S Compute the arc hyperbolic cosine.
DACOSH-D
CACOSH-C
ASINH-S Compute the arc hyperbolic sine.
DASINH-D
CASINH-C
ATANH-S Compute the arc hyperbolic tangent.
DATANH-D
CATANH-C
CCOSH-C Compute the complex hyperbolic cosine.
CSINH-C Compute the complex hyperbolic sine.
CTANH-C Compute the complex hyperbolic tangent.
C5. Exponential and logarithmic integrals
ALI-S Compute the logarithmic integral.
DLI-D
E1-S Compute the exponential integral E1(X).
DE1-D
EI-S Compute the exponential integral Ei(X).
DEI-D
EXINT-S Compute an M member sequence of exponential integrals
DEXINT-D E(N+K,X), K=0,1,...,M-1 for N .GE. 1 and X .GE. 0.
SPENC-S Compute a form of Spence's integral due to K. Mitchell.
DSPENC-D
C7. Gamma
C7A. Gamma, log gamma, reciprocal gamma
ALGAMS-S Compute the logarithm of the absolute value of the Gamma
DLGAMS-D function.
ALNGAM-S Compute the logarithm of the absolute value of the Gamma
DLNGAM-D function.
CLNGAM-C
C0LGMC-C Evaluate (Z+0.5)*LOG((Z+1.)/Z) - 1.0 with relative
accuracy.
GAMLIM-S Compute the minimum and maximum bounds for the argument in
DGAMLM-D the Gamma function.
GAMMA-S Compute the complete Gamma function.
DGAMMA-D
CGAMMA-C
GAMR-S Compute the reciprocal of the Gamma function.
DGAMR-D
CGAMR-C
POCH-S Evaluate a generalization of Pochhammer's symbol.
DPOCH-D
POCH1-S Calculate a generalization of Pochhammer's symbol starting
DPOCH1-D from first order.
C7B. Beta, log beta
ALBETA-S Compute the natural logarithm of the complete Beta
DLBETA-D function.
CLBETA-C
BETA-S Compute the complete Beta function.
DBETA-D
CBETA-C
C7C. Psi function
PSI-S Compute the Psi (or Digamma) function.
DPSI-D
CPSI-C
PSIFN-S Compute derivatives of the Psi function.
DPSIFN-D
C7E. Incomplete gamma
GAMI-S Evaluate the incomplete Gamma function.
DGAMI-D
GAMIC-S Calculate the complementary incomplete Gamma function.
DGAMIC-D
GAMIT-S Calculate Tricomi's form of the incomplete Gamma function.
DGAMIT-D
C7F. Incomplete beta
BETAI-S Calculate the incomplete Beta function.
DBETAI-D
C8. Error functions
C8A. Error functions, their inverses, integrals, including the normal
distribution function
ERF-S Compute the error function.
DERF-D
ERFC-S Compute the complementary error function.
DERFC-D
C8C. Dawson's integral
DAWS-S Compute Dawson's function.
DDAWS-D
C9. Legendre functions
XLEGF-S Compute normalized Legendre polynomials and associated
DXLEGF-D Legendre functions.
XNRMP-S Compute normalized Legendre polynomials.
DXNRMP-D
C10. Bessel functions
C10A. J, Y, H-(1), H-(2)
C10A1. Real argument, integer order
BESJ0-S Compute the Bessel function of the first kind of order
DBESJ0-D zero.
BESJ1-S Compute the Bessel function of the first kind of order one.
DBESJ1-D
BESY0-S Compute the Bessel function of the second kind of order
DBESY0-D zero.
BESY1-S Compute the Bessel function of the second kind of order
DBESY1-D one.
C10A3. Real argument, real order
BESJ-S Compute an N member sequence of J Bessel functions
DBESJ-D J/SUB(ALPHA+K-1)/(X), K=1,...,N for non-negative ALPHA
and X.
BESY-S Implement forward recursion on the three term recursion
DBESY-D relation for a sequence of non-negative order Bessel
functions Y/SUB(FNU+I-1)/(X), I=1,...,N for real, positive
X and non-negative orders FNU.
C10A4. Complex argument, real order
CBESH-C Compute a sequence of the Hankel functions H(m,a,z)
ZBESH-C for superscript m=1 or 2, real nonnegative orders a=b,
b+1,... where b>0, and nonzero complex argument z. A
scaling option is available to help avoid overflow.
CBESJ-C Compute a sequence of the Bessel functions J(a,z) for
ZBESJ-C complex argument z and real nonnegative orders a=b,b+1,
b+2,... where b>0. A scaling option is available to
help avoid overflow.
CBESY-C Compute a sequence of the Bessel functions Y(a,z) for
ZBESY-C complex argument z and real nonnegative orders a=b,b+1,
b+2,... where b>0. A scaling option is available to
help avoid overflow.
C10B. I, K
C10B1. Real argument, integer order
BESI0-S Compute the hyperbolic Bessel function of the first kind
DBESI0-D of order zero.
BESI0E-S Compute the exponentially scaled modified (hyperbolic)
DBSI0E-D Bessel function of the first kind of order zero.
BESI1-S Compute the modified (hyperbolic) Bessel function of the
DBESI1-D first kind of order one.
BESI1E-S Compute the exponentially scaled modified (hyperbolic)
DBSI1E-D Bessel function of the first kind of order one.
BESK0-S Compute the modified (hyperbolic) Bessel function of the
DBESK0-D third kind of order zero.
BESK0E-S Compute the exponentially scaled modified (hyperbolic)
DBSK0E-D Bessel function of the third kind of order zero.
BESK1-S Compute the modified (hyperbolic) Bessel function of the
DBESK1-D third kind of order one.
BESK1E-S Compute the exponentially scaled modified (hyperbolic)
DBSK1E-D Bessel function of the third kind of order one.
C10B3. Real argument, real order
BESI-S Compute an N member sequence of I Bessel functions
DBESI-D I/SUB(ALPHA+K-1)/(X), K=1,...,N or scaled Bessel functions
EXP(-X)*I/SUB(ALPHA+K-1)/(X), K=1,...,N for non-negative
ALPHA and X.
BESK-S Implement forward recursion on the three term recursion
DBESK-D relation for a sequence of non-negative order Bessel
functions K/SUB(FNU+I-1)/(X), or scaled Bessel functions
EXP(X)*K/SUB(FNU+I-1)/(X), I=1,...,N for real, positive
X and non-negative orders FNU.
BESKES-S Compute a sequence of exponentially scaled modified Bessel
DBSKES-D functions of the third kind of fractional order.
BESKS-S Compute a sequence of modified Bessel functions of the
DBESKS-D third kind of fractional order.
C10B4. Complex argument, real order
CBESI-C Compute a sequence of the Bessel functions I(a,z) for
ZBESI-C complex argument z and real nonnegative orders a=b,b+1,
b+2,... where b>0. A scaling option is available to
help avoid overflow.
CBESK-C Compute a sequence of the Bessel functions K(a,z) for
ZBESK-C complex argument z and real nonnegative orders a=b,b+1,
b+2,... where b>0. A scaling option is available to
help avoid overflow.
C10D. Airy and Scorer functions
AI-S Evaluate the Airy function.
DAI-D
AIE-S Calculate the Airy function for a negative argument and an
DAIE-D exponentially scaled Airy function for a non-negative
argument.
BI-S Evaluate the Bairy function (the Airy function of the
DBI-D second kind).
BIE-S Calculate the Bairy function for a negative argument and an
DBIE-D exponentially scaled Bairy function for a non-negative
argument.
CAIRY-C Compute the Airy function Ai(z) or its derivative dAi/dz
ZAIRY-C for complex argument z. A scaling option is available
to help avoid underflow and overflow.
CBIRY-C Compute the Airy function Bi(z) or its derivative dBi/dz
ZBIRY-C for complex argument z. A scaling option is available
to help avoid overflow.
C10F. Integrals of Bessel functions
BSKIN-S Compute repeated integrals of the K-zero Bessel function.
DBSKIN-D
C11. Confluent hypergeometric functions
CHU-S Compute the logarithmic confluent hypergeometric function.
DCHU-D
C14. Elliptic integrals
RC-S Calculate an approximation to
DRC-D RC(X,Y) = Integral from zero to infinity of
-1/2 -1
(1/2)(t+X) (t+Y) dt,
where X is nonnegative and Y is positive.
RD-S Compute the incomplete or complete elliptic integral of the
DRD-D 2nd kind. For X and Y nonnegative, X+Y and Z positive,
RD(X,Y,Z) = Integral from zero to infinity of
-1/2 -1/2 -3/2
(3/2)(t+X) (t+Y) (t+Z) dt.
If X or Y is zero, the integral is complete.
RF-S Compute the incomplete or complete elliptic integral of the
DRF-D 1st kind. For X, Y, and Z non-negative and at most one of
them zero, RF(X,Y,Z) = Integral from zero to infinity of
-1/2 -1/2 -1/2
(1/2)(t+X) (t+Y) (t+Z) dt.
If X, Y or Z is zero, the integral is complete.
RJ-S Compute the incomplete or complete (X or Y or Z is zero)
DRJ-D elliptic integral of the 3rd kind. For X, Y, and Z non-
negative, at most one of them zero, and P positive,
RJ(X,Y,Z,P) = Integral from zero to infinity of
-1/2 -1/2 -1/2 -1
(3/2)(t+X) (t+Y) (t+Z) (t+P) dt.
C19. Other special functions
RC3JJ-S Evaluate the 3j symbol f(L1) = ( L1 L2 L3)
DRC3JJ-D (-M2-M3 M2 M3)
for all allowed values of L1, the other parameters
being held fixed.
RC3JM-S Evaluate the 3j symbol g(M2) = (L1 L2 L3 )
DRC3JM-D (M1 M2 -M1-M2)
for all allowed values of M2, the other parameters
being held fixed.
RC6J-S Evaluate the 6j symbol h(L1) = {L1 L2 L3}
DRC6J-D {L4 L5 L6}
for all allowed values of L1, the other parameters
being held fixed.
D. Linear Algebra
D1. Elementary vector and matrix operations
D1A. Elementary vector operations
D1A2. Minimum and maximum components
ISAMAX-S Find the smallest index of that component of a vector
IDAMAX-D having the maximum magnitude.
ICAMAX-C
D1A3. Norm
D1A3A. L-1 (sum of magnitudes)
SASUM-S Compute the sum of the magnitudes of the elements of a
DASUM-D vector.
SCASUM-C
D1A3B. L-2 (Euclidean norm)
SNRM2-S Compute the Euclidean length (L2 norm) of a vector.
DNRM2-D
SCNRM2-C
D1A4. Dot product (inner product)
CDOTC-C Dot product of two complex vectors using the complex
conjugate of the first vector.
DQDOTA-D Compute the inner product of two vectors with extended
precision accumulation and result.
DQDOTI-D Compute the inner product of two vectors with extended
precision accumulation and result.
DSDOT-D Compute the inner product of two vectors with extended
DCDOT-C precision accumulation and result.
SDOT-S Compute the inner product of two vectors.
DDOT-D
CDOTU-C
SDSDOT-S Compute the inner product of two vectors with extended
CDCDOT-C precision accumulation.
D1A5. Copy or exchange (swap)
ICOPY-S Copy a vector.
DCOPY-D
CCOPY-C
ICOPY-I
SCOPY-S Copy a vector.
DCOPY-D
CCOPY-C
ICOPY-I
SCOPYM-S Copy the negative of a vector to a vector.
DCOPYM-D
SSWAP-S Interchange two vectors.
DSWAP-D
CSWAP-C
ISWAP-I
D1A6. Multiplication by scalar
CSSCAL-C Scale a complex vector.
SSCAL-S Multiply a vector by a constant.
DSCAL-D
CSCAL-C
D1A7. Triad (a*x+y for vectors x,y and scalar a)
SAXPY-S Compute a constant times a vector plus a vector.
DAXPY-D
CAXPY-C
D1A8. Elementary rotation (Givens transformation)
SROT-S Apply a plane Givens rotation.
DROT-D
CSROT-C
SROTM-S Apply a modified Givens transformation.
DROTM-D
D1B. Elementary matrix operations
D1B4. Multiplication by vector
CHPR-C Perform the hermitian rank 1 operation.
DGER-D Perform the rank 1 operation.
DSPR-D Perform the symmetric rank 1 operation.
DSYR-D Perform the symmetric rank 1 operation.
SGBMV-S Multiply a real vector by a real general band matrix.
DGBMV-D
CGBMV-C
SGEMV-S Multiply a real vector by a real general matrix.
DGEMV-D
CGEMV-C
SGER-S Perform rank 1 update of a real general matrix.
CGERC-C Perform conjugated rank 1 update of a complex general
SGERC-S matrix.
DGERC-D
CGERU-C Perform unconjugated rank 1 update of a complex general
SGERU-S matrix.
DGERU-D
CHBMV-C Multiply a complex vector by a complex Hermitian band
SHBMV-S matrix.
DHBMV-D
CHEMV-C Multiply a complex vector by a complex Hermitian matrix.
SHEMV-S
DHEMV-D
CHER-C Perform Hermitian rank 1 update of a complex Hermitian
SHER-S matrix.
DHER-D
CHER2-C Perform Hermitian rank 2 update of a complex Hermitian
SHER2-S matrix.
DHER2-D
CHPMV-C Perform the matrix-vector operation.
SHPMV-S
DHPMV-D
CHPR2-C Perform the hermitian rank 2 operation.
SHPR2-S
DHPR2-D
SSBMV-S Multiply a real vector by a real symmetric band matrix.
DSBMV-D
CSBMV-C
SSDI-S Diagonal Matrix Vector Multiply.
DSDI-D Routine to calculate the product X = DIAG*B, where DIAG
is a diagonal matrix.
SSMTV-S SLAP Column Format Sparse Matrix Transpose Vector Product.
DSMTV-D Routine to calculate the sparse matrix vector product:
Y = A'*X, where ' denotes transpose.
SSMV-S SLAP Column Format Sparse Matrix Vector Product.
DSMV-D Routine to calculate the sparse matrix vector product:
Y = A*X.
SSPMV-S Perform the matrix-vector operation.
DSPMV-D
CSPMV-C
SSPR-S Performs the symmetric rank 1 operation.
SSPR2-S Perform the symmetric rank 2 operation.
DSPR2-D
CSPR2-C
SSYMV-S Multiply a real vector by a real symmetric matrix.
DSYMV-D
CSYMV-C
SSYR-S Perform symmetric rank 1 update of a real symmetric matrix.
SSYR2-S Perform symmetric rank 2 update of a real symmetric matrix.
DSYR2-D
CSYR2-C
STBMV-S Multiply a real vector by a real triangular band matrix.
DTBMV-D
CTBMV-C
STBSV-S Solve a real triangular banded system of linear equations.
DTBSV-D
CTBSV-C
STPMV-S Perform one of the matrix-vector operations.
DTPMV-D
CTPMV-C
STPSV-S Solve one of the systems of equations.
DTPSV-D
CTPSV-C
STRMV-S Multiply a real vector by a real triangular matrix.
DTRMV-D
CTRMV-C
STRSV-S Solve a real triangular system of linear equations.
DTRSV-D
CTRSV-C
D1B6. Multiplication
SGEMM-S Multiply a real general matrix by a real general matrix.
DGEMM-D
CGEMM-C
CHEMM-C Multiply a complex general matrix by a complex Hermitian
SHEMM-S matrix.
DHEMM-D
CHER2K-C Perform Hermitian rank 2k update of a complex.
SHER2-S
DHER2-D
CHER2-C
CHERK-C Perform Hermitian rank k update of a complex Hermitian
SHERK-S matrix.
DHERK-D
SSYMM-S Multiply a real general matrix by a real symmetric matrix.
DSYMM-D
CSYMM-C
DSYR2K-D Perform one of the symmetric rank 2k operations.
SSYR2-S
DSYR2-D
CSYR2-C
SSYRK-S Perform symmetric rank k update of a real symmetric matrix.
DSYRK-D
CSYRK-C
STRMM-S Multiply a real general matrix by a real triangular matrix.
DTRMM-D
CTRMM-C
STRSM-S Solve a real triangular system of equations with multiple
DTRSM-D right-hand sides.
CTRSM-C
D1B9. Storage mode conversion
SS2Y-S SLAP Triad to SLAP Column Format Converter.
DS2Y-D Routine to convert from the SLAP Triad to SLAP Column
format.
D1B10. Elementary rotation (Givens transformation)
CSROT-C Apply a plane Givens rotation.
SROT-S
DROT-D
SROTG-S Construct a plane Givens rotation.
DROTG-D
CROTG-C
SROTMG-S Construct a modified Givens transformation.
DROTMG-D
D2. Solution of systems of linear equations (including inversion, LU and
related decompositions)
D2A. Real nonsymmetric matrices
D2A1. General
SGECO-S Factor a matrix using Gaussian elimination and estimate
DGECO-D the condition number of the matrix.
CGECO-C
SGEDI-S Compute the determinant and inverse of a matrix using the
DGEDI-D factors computed by SGECO or SGEFA.
CGEDI-C
SGEFA-S Factor a matrix using Gaussian elimination.
DGEFA-D
CGEFA-C
SGEFS-S Solve a general system of linear equations.
DGEFS-D
CGEFS-C
SGEIR-S Solve a general system of linear equations. Iterative
CGEIR-C refinement is used to obtain an error estimate.
SGESL-S Solve the real system A*X=B or TRANS(A)*X=B using the
DGESL-D factors of SGECO or SGEFA.
CGESL-C
SQRSL-S Apply the output of SQRDC to compute coordinate transfor-
DQRSL-D mations, projections, and least squares solutions.
CQRSL-C
D2A2. Banded
SGBCO-S Factor a band matrix by Gaussian elimination and
DGBCO-D estimate the condition number of the matrix.
CGBCO-C
SGBFA-S Factor a band matrix using Gaussian elimination.
DGBFA-D
CGBFA-C
SGBSL-S Solve the real band system A*X=B or TRANS(A)*X=B using
DGBSL-D the factors computed by SGBCO or SGBFA.
CGBSL-C
SNBCO-S Factor a band matrix using Gaussian elimination and
DNBCO-D estimate the condition number.
CNBCO-C
SNBFA-S Factor a real band matrix by elimination.
DNBFA-D
CNBFA-C
SNBFS-S Solve a general nonsymmetric banded system of linear
DNBFS-D equations.
CNBFS-C
SNBIR-S Solve a general nonsymmetric banded system of linear
CNBIR-C equations. Iterative refinement is used to obtain an error
estimate.
SNBSL-S Solve a real band system using the factors computed by
DNBSL-D SNBCO or SNBFA.
CNBSL-C
D2A2A. Tridiagonal
SGTSL-S Solve a tridiagonal linear system.
DGTSL-D
CGTSL-C
D2A3. Triangular
SSLI-S SLAP MSOLVE for Lower Triangle Matrix.
DSLI-D This routine acts as an interface between the SLAP generic
MSOLVE calling convention and the routine that actually
-1
computes L B = X.
SSLI2-S SLAP Lower Triangle Matrix Backsolve.
DSLI2-D Routine to solve a system of the form Lx = b , where L
is a lower triangular matrix.
STRCO-S Estimate the condition number of a triangular matrix.
DTRCO-D
CTRCO-C
STRDI-S Compute the determinant and inverse of a triangular matrix.
DTRDI-D
CTRDI-C
STRSL-S Solve a system of the form T*X=B or TRANS(T)*X=B, where
DTRSL-D T is a triangular matrix.
CTRSL-C
D2A4. Sparse
SBCG-S Preconditioned BiConjugate Gradient Sparse Ax = b Solver.
DBCG-D Routine to solve a Non-Symmetric linear system Ax = b
using the Preconditioned BiConjugate Gradient method.
SCGN-S Preconditioned CG Sparse Ax=b Solver for Normal Equations.
DCGN-D Routine to solve a general linear system Ax = b using the
Preconditioned Conjugate Gradient method applied to the
normal equations AA'y = b, x=A'y.
SCGS-S Preconditioned BiConjugate Gradient Squared Ax=b Solver.
DCGS-D Routine to solve a Non-Symmetric linear system Ax = b
using the Preconditioned BiConjugate Gradient Squared
method.
SGMRES-S Preconditioned GMRES Iterative Sparse Ax=b Solver.
DGMRES-D This routine uses the generalized minimum residual
(GMRES) method with preconditioning to solve
non-symmetric linear systems of the form: Ax = b.
SIR-S Preconditioned Iterative Refinement Sparse Ax = b Solver.
DIR-D Routine to solve a general linear system Ax = b using
iterative refinement with a matrix splitting.
SLPDOC-S Sparse Linear Algebra Package Version 2.0.2 Documentation.
DLPDOC-D Routines to solve large sparse symmetric and nonsymmetric
positive definite linear systems, Ax = b, using precondi-
tioned iterative methods.
SOMN-S Preconditioned Orthomin Sparse Iterative Ax=b Solver.
DOMN-D Routine to solve a general linear system Ax = b using
the Preconditioned Orthomin method.
SSDBCG-S Diagonally Scaled BiConjugate Gradient Sparse Ax=b Solver.
DSDBCG-D Routine to solve a linear system Ax = b using the
BiConjugate Gradient method with diagonal scaling.
SSDCGN-S Diagonally Scaled CG Sparse Ax=b Solver for Normal Eqn's.
DSDCGN-D Routine to solve a general linear system Ax = b using
diagonal scaling with the Conjugate Gradient method
applied to the the normal equations, viz., AA'y = b,
where x = A'y.
SSDCGS-S Diagonally Scaled CGS Sparse Ax=b Solver.
DSDCGS-D Routine to solve a linear system Ax = b using the
BiConjugate Gradient Squared method with diagonal scaling.
SSDGMR-S Diagonally Scaled GMRES Iterative Sparse Ax=b Solver.
DSDGMR-D This routine uses the generalized minimum residual
(GMRES) method with diagonal scaling to solve possibly
non-symmetric linear systems of the form: Ax = b.
SSDOMN-S Diagonally Scaled Orthomin Sparse Iterative Ax=b Solver.
DSDOMN-D Routine to solve a general linear system Ax = b using
the Orthomin method with diagonal scaling.
SSGS-S Gauss-Seidel Method Iterative Sparse Ax = b Solver.
DSGS-D Routine to solve a general linear system Ax = b using
Gauss-Seidel iteration.
SSILUR-S Incomplete LU Iterative Refinement Sparse Ax = b Solver.
DSILUR-D Routine to solve a general linear system Ax = b using
the incomplete LU decomposition with iterative refinement.
SSJAC-S Jacobi's Method Iterative Sparse Ax = b Solver.
DSJAC-D Routine to solve a general linear system Ax = b using
Jacobi iteration.
SSLUBC-S Incomplete LU BiConjugate Gradient Sparse Ax=b Solver.
DSLUBC-D Routine to solve a linear system Ax = b using the
BiConjugate Gradient method with Incomplete LU
decomposition preconditioning.
SSLUCN-S Incomplete LU CG Sparse Ax=b Solver for Normal Equations.
DSLUCN-D Routine to solve a general linear system Ax = b using the
incomplete LU decomposition with the Conjugate Gradient
method applied to the normal equations, viz., AA'y = b,
x = A'y.
SSLUCS-S Incomplete LU BiConjugate Gradient Squared Ax=b Solver.
DSLUCS-D Routine to solve a linear system Ax = b using the
BiConjugate Gradient Squared method with Incomplete LU
decomposition preconditioning.
SSLUGM-S Incomplete LU GMRES Iterative Sparse Ax=b Solver.
DSLUGM-D This routine uses the generalized minimum residual
(GMRES) method with incomplete LU factorization for
preconditioning to solve possibly non-symmetric linear
systems of the form: Ax = b.
SSLUOM-S Incomplete LU Orthomin Sparse Iterative Ax=b Solver.
DSLUOM-D Routine to solve a general linear system Ax = b using
the Orthomin method with Incomplete LU decomposition.
D2B. Real symmetric matrices
D2B1. General
D2B1A. Indefinite
SSICO-S Factor a symmetric matrix by elimination with symmetric
DSICO-D pivoting and estimate the condition number of the matrix.
CHICO-C
CSICO-C
SSIDI-S Compute the determinant, inertia and inverse of a real
DSIDI-D symmetric matrix using the factors from SSIFA.
CHIDI-C
CSIDI-C
SSIFA-S Factor a real symmetric matrix by elimination with
DSIFA-D symmetric pivoting.
CHIFA-C
CSIFA-C
SSISL-S Solve a real symmetric system using the factors obtained
DSISL-D from SSIFA.
CHISL-C
CSISL-C
SSPCO-S Factor a real symmetric matrix stored in packed form
DSPCO-D by elimination with symmetric pivoting and estimate the
CHPCO-C condition number of the matrix.
CSPCO-C
SSPDI-S Compute the determinant, inertia, inverse of a real
DSPDI-D symmetric matrix stored in packed form using the factors
CHPDI-C from SSPFA.
CSPDI-C
SSPFA-S Factor a real symmetric matrix stored in packed form by
DSPFA-D elimination with symmetric pivoting.
CHPFA-C
CSPFA-C
SSPSL-S Solve a real symmetric system using the factors obtained
DSPSL-D from SSPFA.
CHPSL-C
CSPSL-C
D2B1B. Positive definite
SCHDC-S Compute the Cholesky decomposition of a positive definite
DCHDC-D matrix. A pivoting option allows the user to estimate the
CCHDC-C condition number of a positive definite matrix or determine
the rank of a positive semidefinite matrix.
SPOCO-S Factor a real symmetric positive definite matrix
DPOCO-D and estimate the condition number of the matrix.
CPOCO-C
SPODI-S Compute the determinant and inverse of a certain real
DPODI-D symmetric positive definite matrix using the factors
CPODI-C computed by SPOCO, SPOFA or SQRDC.
SPOFA-S Factor a real symmetric positive definite matrix.
DPOFA-D
CPOFA-C
SPOFS-S Solve a positive definite symmetric system of linear
DPOFS-D equations.
CPOFS-C
SPOIR-S Solve a positive definite symmetric system of linear
CPOIR-C equations. Iterative refinement is used to obtain an error