Skip to content

Latest commit

 

History

History
12 lines (5 loc) · 1.24 KB

reranking.md

File metadata and controls

12 lines (5 loc) · 1.24 KB

Reranking in Recommendation

  • [U-Rank][Huawei] U-rank: Utility-oriented Learning to Rank with Implicit Feedback, by Xinyi Dai, Jiawei Hou, Qing Liu, Yunjia Xi, Ruiming Tang, Weinan Zhang, Xiuqiang He, Jun Wang, Yong Yu. CIKM 2020.

    本文提出utility-aware的重排模型,即先通过一个CTR模型f(x, position)训练得到position-aware的CTR预测值,然后利用pctr(p)*bid预估出item在不同位置的utility。然后采用另一个模型f(x, bid)来学习排序分数,采用pairwise learning (BPR)的方法学习,并参考LambaLoss构建将delta_utility(即pair排错时带来的utility损失)作为每个pair的weight,训练完后直接用f(x, bid)进行最终排序。缺点是pairwise的训练速度很慢。

  • [PRM][Alibaba] Personalized Re-ranking for Recommendation, by Changhua Pei, Yi Zhang, Yongfeng Zhang, Fei Sun, Xiao Lin, Hanxiao Sun, Jian Wu, Peng Jiang, Wenwu Ou. RecSys 2019.

    本文采用transformer构建K条样本之间的交互,最后通过softmax + BCE损失函数进行优化,相当于K-input-K-output的group打分函数。在构建训练样本时,通过曝光log取前K条样本与label进行训练。