-
Notifications
You must be signed in to change notification settings - Fork 9
/
spatial-temporal-map.R
46 lines (40 loc) · 1.56 KB
/
spatial-temporal-map.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
library(tidyverse)
library(lubridate)
library(sf)
library(gganimate)
library(splines)
# -- For maps
map <- st_read("dashboard/data/pri_adm_2019_shp/pri_admbnda_adm1_2019.shp") %>%
st_transform(crs = 4326) %>%
st_crop(xmin = -67.3, xmax = -65.3, ymin = 17.9, ymax = 18.5)
map <- cbind(map, st_coordinates(st_centroid(map)))
load("dashboard/rdas/data.rda")
MAX <- 0.15 ## maximum positivity rate
municipio_tests <-
tests_by_strata %>%
filter(date >= make_date(2020,3,15)) %>%
filter(patientCity != "No reportado") %>%
mutate(patientCity = droplevels(patientCity)) %>%
group_by(date, patientCity, .drop=FALSE) %>%
summarize(positives = sum(positives), tests=sum(tests)) %>%
ungroup() %>%
group_by(patientCity) %>%
mutate(rate = zoo::rollsum(positives, k = 14, fill = NA) / pmax(1,zoo::rollsum(tests, k = 14,fill = NA))) %>%
ungroup() %>%
mutate(rate = pmin(MAX, rate)) %>%
na.omit() %>%
mutate(rate = 100 * rate) %>%
filter(!is.na(rate))
p <- right_join(map, municipio_tests, by = c("ADM1_ES"="patientCity")) %>%
ggplot() +
geom_sf(data = map, size=0.15) +
geom_sf(aes(fill = rate), color="black", size=0.15) +
scale_fill_gradientn(colors = RColorBrewer::brewer.pal(9, "Reds"),
name = "Tasa de Positividad:",
limits= c(0, MAX*100)) +
theme_void() +
theme(legend.position = "bottom") +
transition_time(date) +
labs(title = 'Tasa de positividad en Puerto Rico {frame_time}\ncalculada en periodos de 14 días')
animate(p, end_pause = 5, fps = 3)
anim_save("~/Desktop/map.gif")