-
Notifications
You must be signed in to change notification settings - Fork 10
/
metrics.py
357 lines (278 loc) · 13 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
from tensorflow.keras import backend as K
import tensorflow as tf
import numpy as np
def focal_loss(gamma=2., alpha=4.):
gamma = float(gamma)
alpha = float(alpha)
def focal_loss_fixed(y_true, y_pred):
"""Focal loss for multi-classification
FL(p_t)=-alpha(1-p_t)^{gamma}ln(p_t)
Notice: y_pred is probability after softmax
gradient is d(Fl)/d(p_t) not d(Fl)/d(x) as described in paper
d(Fl)/d(p_t) * [p_t(1-p_t)] = d(Fl)/d(x)
Focal Loss for Dense Object Detection
https://arxiv.org/abs/1708.02002
Arguments:
y_true {tensor} -- ground truth labels, shape of [batch_size, num_cls]
y_pred {tensor} -- model's output, shape of [batch_size, num_cls]
Keyword Arguments:
gamma {float} -- (default: {2.0})
alpha {float} -- (default: {4.0})
Returns:
[tensor] -- loss.
"""
epsilon = 1.e-9
y_true = tf.convert_to_tensor(y_true, tf.float32)
y_pred = tf.convert_to_tensor(y_pred, tf.float32)
model_out = tf.add(y_pred, epsilon)
ce = tf.multiply(y_true, -tf.log(model_out))
weight = tf.multiply(y_true, tf.pow(tf.subtract(1., model_out), gamma))
fl = tf.multiply(alpha, tf.multiply(weight, ce))
reduced_fl = tf.reduce_max(fl, axis=1)
return tf.reduce_mean(reduced_fl)
return focal_loss_fixed
def weighted_categorical_crossentropy(weights=None):
""" weighted_categorical_crossentropy
Args:
* weights<ktensor|nparray|list>: crossentropy weights
Returns:
* weighted categorical crossentropy function
"""
def loss(y_true, y_pred):
labels_floats = tf.cast(y_true, tf.float32)
per_pixel_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels_floats, logits=y_pred)
if weights is not None:
weight_mask = tf.maximum(tf.reduce_max(tf.constant(
np.array(weights, dtype=np.float32)[None, None, None])
* labels_floats, axis=-1), 1.0)
per_pixel_loss = per_pixel_loss * weight_mask[:, :, :, None]
return tf.reduce_mean(per_pixel_loss)
return loss
def image_categorical_cross_entropy(y_true, y_pred, weights=None):
"""
:param y_true: tensor of shape (batch_size, height, width) representing the ground truth.
:param y_pred: tensor of shape (batch_size, height, width) representing the prediction.
:return: The mean cross-entropy on softmaxed tensors.
"""
labels_floats = tf.cast(y_true, tf.float32)
per_pixel_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels_floats, logits=y_pred)
if weights is not None:
weight_mask = tf.maximum(
tf.reduce_max(tf.constant(
np.array(weights, dtype=np.float32)[None, None, None])
* labels_floats, axis=-1), 1.0)
per_pixel_loss = per_pixel_loss * weight_mask[:, :, :, None]
return tf.reduce_mean(per_pixel_loss)
def class_tversky(y_true, y_pred):
smooth = 1.0 # 1.00
y_true = K.permute_dimensions(y_true, (3, 1, 2, 0))
y_pred = K.permute_dimensions(y_pred, (3, 1, 2, 0))
y_true_pos = K.batch_flatten(y_true)
y_pred_pos = K.batch_flatten(y_pred)
true_pos = K.sum(y_true_pos * y_pred_pos, 1)
false_neg = K.sum(y_true_pos * (1 - y_pred_pos), 1)
false_pos = K.sum((1 - y_true_pos) * y_pred_pos, 1)
alpha = 0.2 # 0.5
beta = 0.8
return (true_pos + smooth) / (true_pos + alpha * false_neg + beta * false_pos + smooth)
def focal_tversky_loss(y_true, y_pred):
pt_1 = class_tversky(y_true, y_pred)
gamma = 1.3 # 4./3.0#1.3#4.0/3.00# 0.75
return K.sum(K.pow((1 - pt_1), gamma))
def generalized_dice_coeff2(y_true, y_pred):
n_el = 1
for dim in y_true.shape:
n_el *= int(dim)
n_cl = y_true.shape[-1]
w = K.zeros(shape=(n_cl,))
w = (K.sum(y_true, axis=(0, 1, 2))) / n_el
w = 1 / (w ** 2 + 0.000001)
numerator = y_true * y_pred
numerator = w * K.sum(numerator, (0, 1, 2))
numerator = K.sum(numerator)
denominator = y_true + y_pred
denominator = w * K.sum(denominator, (0, 1, 2))
denominator = K.sum(denominator)
return 2 * numerator / denominator
def generalized_dice_coeff(y_true, y_pred):
axes = tuple(range(1, len(y_pred.shape) - 1))
Ncl = y_pred.shape[-1]
w = K.zeros(shape=(Ncl,))
w = K.sum(y_true, axis=axes)
w = 1 / (w ** 2 + 0.000001)
# Compute gen dice coef:
numerator = y_true * y_pred
numerator = w * K.sum(numerator, axes)
numerator = K.sum(numerator)
denominator = y_true + y_pred
denominator = w * K.sum(denominator, axes)
denominator = K.sum(denominator)
gen_dice_coef = 2 * numerator / denominator
return gen_dice_coef
def generalized_dice_loss(y_true, y_pred):
return 1 - generalized_dice_coeff2(y_true, y_pred)
def soft_dice_loss(y_true, y_pred, epsilon=1e-6):
"""
Soft dice loss calculation for arbitrary batch size, number of classes, and number of spatial dimensions.
Assumes the `channels_last` format.
# Arguments
y_true: b x X x Y( x Z...) x c One hot encoding of ground truth
y_pred: b x X x Y( x Z...) x c Network output, must sum to 1 over c channel (such as after softmax)
epsilon: Used for numerical stability to avoid divide by zero errors
# References
V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
https://arxiv.org/abs/1606.04797
More details on Dice loss formulation
https://mediatum.ub.tum.de/doc/1395260/1395260.pdf (page 72)
Adapted from https://github.com/Lasagne/Recipes/issues/99#issuecomment-347775022
"""
# skip the batch and class axis for calculating Dice score
axes = tuple(range(1, len(y_pred.shape) - 1))
numerator = 2. * K.sum(y_pred * y_true, axes)
denominator = K.sum(K.square(y_pred) + K.square(y_true), axes)
return 1.00 - K.mean(numerator / (denominator + epsilon)) # average over classes and batch
def seg_metrics(y_true, y_pred, metric_name, metric_type='standard', drop_last=True, mean_per_class=False,
verbose=False):
"""
Compute mean metrics of two segmentation masks, via Keras.
IoU(A,B) = |A & B| / (| A U B|)
Dice(A,B) = 2*|A & B| / (|A| + |B|)
Args:
y_true: true masks, one-hot encoded.
y_pred: predicted masks, either softmax outputs, or one-hot encoded.
metric_name: metric to be computed, either 'iou' or 'dice'.
metric_type: one of 'standard' (default), 'soft', 'naive'.
In the standard version, y_pred is one-hot encoded and the mean
is taken only over classes that are present (in y_true or y_pred).
The 'soft' version of the metrics are computed without one-hot
encoding y_pred.
The 'naive' version return mean metrics where absent classes contribute
to the class mean as 1.0 (instead of being dropped from the mean).
drop_last = True: boolean flag to drop last class (usually reserved
for background class in semantic segmentation)
mean_per_class = False: return mean along batch axis for each class.
verbose = False: print intermediate results such as intersection, union
(as number of pixels).
Returns:
IoU/Dice of y_true and y_pred, as a float, unless mean_per_class == True
in which case it returns the per-class metric, averaged over the batch.
Inputs are B*W*H*N tensors, with
B = batch size,
W = width,
H = height,
N = number of classes
"""
flag_soft = (metric_type == 'soft')
flag_naive_mean = (metric_type == 'naive')
# always assume one or more classes
num_classes = K.shape(y_true)[-1]
if not flag_soft:
# get one-hot encoded masks from y_pred (true masks should already be one-hot)
y_pred = K.one_hot(K.argmax(y_pred), num_classes)
y_true = K.one_hot(K.argmax(y_true), num_classes)
# if already one-hot, could have skipped above command
# keras uses float32 instead of float64, would give error down (but numpy arrays or keras.to_categorical gives float64)
y_true = K.cast(y_true, 'float32')
y_pred = K.cast(y_pred, 'float32')
# intersection and union shapes are batch_size * n_classes (values = area in pixels)
axes = (1, 2) # W,H axes of each image
intersection = K.sum(K.abs(y_true * y_pred), axis=axes)
mask_sum = K.sum(K.abs(y_true), axis=axes) + K.sum(K.abs(y_pred), axis=axes)
union = mask_sum - intersection # or, np.logical_or(y_pred, y_true) for one-hot
smooth = .001
iou = (intersection + smooth) / (union + smooth)
dice = 2 * (intersection + smooth) / (mask_sum + smooth)
metric = {'iou': iou, 'dice': dice}[metric_name]
# define mask to be 0 when no pixels are present in either y_true or y_pred, 1 otherwise
mask = K.cast(K.not_equal(union, 0), 'float32')
if drop_last:
metric = metric[:, :-1]
mask = mask[:, :-1]
if verbose:
print('intersection, union')
print(K.eval(intersection), K.eval(union))
print(K.eval(intersection / union))
# return mean metrics: remaining axes are (batch, classes)
if flag_naive_mean:
return K.mean(metric)
# take mean only over non-absent classes
class_count = K.sum(mask, axis=0)
non_zero = tf.greater(class_count, 0)
non_zero_sum = tf.boolean_mask(K.sum(metric * mask, axis=0), non_zero)
non_zero_count = tf.boolean_mask(class_count, non_zero)
if verbose:
print('Counts of inputs with class present, metrics for non-absent classes')
print(K.eval(class_count), K.eval(non_zero_sum / non_zero_count))
return K.mean(non_zero_sum / non_zero_count)
def mean_iou(y_true, y_pred, **kwargs):
"""
Compute mean Intersection over Union of two segmentation masks, via Keras.
Calls metrics_k(y_true, y_pred, metric_name='iou'), see there for allowed kwargs.
"""
return seg_metrics(y_true, y_pred, metric_name='iou', **kwargs)
def Mean_IOU(y_true, y_pred):
nb_classes = K.int_shape(y_pred)[-1]
iou = []
true_pixels = K.argmax(y_true, axis=-1)
pred_pixels = K.argmax(y_pred, axis=-1)
void_labels = K.equal(K.sum(y_true, axis=-1), 0)
for i in range(0, nb_classes): # exclude first label (background) and last label (void)
true_labels = K.equal(true_pixels, i) # & ~void_labels
pred_labels = K.equal(pred_pixels, i) # & ~void_labels
inter = tf.to_int32(true_labels & pred_labels)
union = tf.to_int32(true_labels | pred_labels)
legal_batches = K.sum(tf.to_int32(true_labels), axis=1) > 0
ious = K.sum(inter, axis=1) / K.sum(union, axis=1)
iou.append(K.mean(tf.gather(ious, indices=tf.where(legal_batches)))) # returns average IoU of the same objects
iou = tf.stack(iou)
legal_labels = ~tf.debugging.is_nan(iou)
iou = tf.gather(iou, indices=tf.where(legal_labels))
return K.mean(iou)
def iou_vahid(y_true, y_pred):
nb_classes = tf.shape(y_true)[-1] + tf.to_int32(1)
true_pixels = K.argmax(y_true, axis=-1)
pred_pixels = K.argmax(y_pred, axis=-1)
iou = []
for i in tf.range(nb_classes):
tp = K.sum(tf.to_int32(K.equal(true_pixels, i) & K.equal(pred_pixels, i)))
fp = K.sum(tf.to_int32(K.not_equal(true_pixels, i) & K.equal(pred_pixels, i)))
fn = K.sum(tf.to_int32(K.equal(true_pixels, i) & K.not_equal(pred_pixels, i)))
iouh = tp / (tp + fp + fn)
iou.append(iouh)
return K.mean(iou)
def IoU_metric(Yi, y_predi):
# mean Intersection over Union
# Mean IoU = TP/(FN + TP + FP)
y_predi = np.argmax(y_predi, axis=3)
y_testi = np.argmax(Yi, axis=3)
IoUs = []
Nclass = int(np.max(Yi)) + 1
for c in range(Nclass):
TP = np.sum((Yi == c) & (y_predi == c))
FP = np.sum((Yi != c) & (y_predi == c))
FN = np.sum((Yi == c) & (y_predi != c))
IoU = TP / float(TP + FP + FN)
IoUs.append(IoU)
return K.cast(np.mean(IoUs), dtype='float32')
def IoU_metric_keras(y_true, y_pred):
# mean Intersection over Union
# Mean IoU = TP/(FN + TP + FP)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
return IoU_metric(y_true.eval(session=sess), y_pred.eval(session=sess))
def jaccard_distance_loss(y_true, y_pred, smooth=100):
"""
Jaccard = (|X & Y|)/ (|X|+ |Y| - |X & Y|)
= sum(|A*B|)/(sum(|A|)+sum(|B|)-sum(|A*B|))
The jaccard distance loss is usefull for unbalanced datasets. This has been
shifted so it converges on 0 and is smoothed to avoid exploding or disapearing
gradient.
Ref: https://en.wikipedia.org/wiki/Jaccard_index
@url: https://gist.github.com/wassname/f1452b748efcbeb4cb9b1d059dce6f96
@author: wassname
"""
intersection = K.sum(K.abs(y_true * y_pred), axis=-1)
sum_ = K.sum(K.abs(y_true) + K.abs(y_pred), axis=-1)
jac = (intersection + smooth) / (sum_ - intersection + smooth)
return (1 - jac) * smooth