Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Torch 2.0 import hangs forever #97580

Open
TortoiseHam opened this issue Mar 25, 2023 · 5 comments
Open

Torch 2.0 import hangs forever #97580

TortoiseHam opened this issue Mar 25, 2023 · 5 comments
Labels
module: build Build system issues module: cuda Related to torch.cuda, and CUDA support in general triaged This issue has been looked at a team member, and triaged and prioritized into an appropriate module

Comments

@TortoiseHam
Copy link

TortoiseHam commented Mar 25, 2023

🐛 Describe the bug

Importing torch 2.0 after importing tensorflow hangs forever. This does not happen with torch 1.13. It happens both with cuda 118 and cuda 117.

docker pull tensorflow/tensorflow:2.12.0-gpu
docker run -it tensorflow/tensorflow:2.12.0-gpu

pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 torchaudio==2.0.1+cu118 -f https://download.pytorch.org/whl/cu118/torch_stable.html

python
import tensorflow as tf
import torch

Versions

python collect_env.py 
Collecting environment information...
PyTorch version: 2.0.0+cu118
Is debug build: False
CUDA used to build PyTorch: 11.8
ROCM used to build PyTorch: N/A

OS: Ubuntu 20.04.5 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
Clang version: Could not collect
CMake version: version 3.26.1
Libc version: glibc-2.31

Python version: 3.8.10 (default, Mar 13 2023, 10:26:41)  [GCC 9.4.0] (64-bit runtime)
Python platform: Linux-5.4.0-144-generic-x86_64-with-glibc2.29
Is CUDA available: True
CUDA runtime version: 11.8.89
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA A100-SXM4-40GB
Nvidia driver version: 470.161.03
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.6.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Byte Order:                      Little Endian
Address sizes:                   43 bits physical, 48 bits virtual
CPU(s):                          256
On-line CPU(s) list:             0-255
Thread(s) per core:              2
Core(s) per socket:              64
Socket(s):                       2
NUMA node(s):                    8
Vendor ID:                       AuthenticAMD
CPU family:                      23
Model:                           49
Model name:                      AMD EPYC 7742 64-Core Processor
Stepping:                        0
Frequency boost:                 enabled
CPU MHz:                         3254.011
CPU max MHz:                     2250.0000
CPU min MHz:                     1500.0000
BogoMIPS:                        4491.68
Virtualization:                  AMD-V
L1d cache:                       4 MiB
L1i cache:                       4 MiB
L2 cache:                        64 MiB
L3 cache:                        512 MiB
NUMA node0 CPU(s):               0-15,128-143
NUMA node1 CPU(s):               16-31,144-159
NUMA node2 CPU(s):               32-47,160-175
NUMA node3 CPU(s):               48-63,176-191
NUMA node4 CPU(s):               64-79,192-207
NUMA node5 CPU(s):               80-95,208-223
NUMA node6 CPU(s):               96-111,224-239
NUMA node7 CPU(s):               112-127,240-255
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Not affected
Vulnerability Mds:               Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Mmio stale data:   Not affected
Vulnerability Retbleed:          Vulnerable
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:        Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP conditional, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Not affected
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate sme ssbd mba sev ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip rdpid overflow_recov succor smca

Versions of relevant libraries:
[pip3] numpy==1.23.5
[pip3] torch==2.0.0+cu118
[pip3] torchaudio==2.0.1+cu118
[pip3] torchvision==0.15.1+cu118
[pip3] triton==2.0.0
[conda] Could not collect

cc @malfet @seemethere @ngimel

@pat749

This comment was marked as off-topic.

@TortoiseHam
Copy link
Author

In this case the CUDA versions are the same (both 11.8). The reason this seems potentially of interest to the torch community is that it may indicate some issue with the way in which torch 2.0 is trying to grab access to available GPUs which did not exist in prior versions.

@dagitses dagitses added module: cuda Related to torch.cuda, and CUDA support in general triaged This issue has been looked at a team member, and triaged and prioritized into an appropriate module labels Mar 27, 2023
@mauicv
Copy link

mauicv commented Apr 18, 2023

Wondering if there's any idea as to the timelines for this issue being resolved? We're trying to merge the pytorch 2.0 dependabot PR but it breaks our CI. I saw this comment on the tensorflow repo as well if it helps at all.

@RickSanchezStoic
Copy link

This is an issue with cpu version too. The tf team thinks it's torch's burden to fix it, and rightly so since torch gets blocked from importing : tensorflow/tensorflow#60109

@jklaise
Copy link

jklaise commented Dec 1, 2023

This seems to be fixed now with torch=2.1.0 and torch=2.1.1, I've tested locally importing tensorflow=2.14 first and then torch with success.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
module: build Build system issues module: cuda Related to torch.cuda, and CUDA support in general triaged This issue has been looked at a team member, and triaged and prioritized into an appropriate module
Projects
None yet
Development

No branches or pull requests

7 participants