-
Notifications
You must be signed in to change notification settings - Fork 1
/
d2.ml
525 lines (410 loc) · 17.5 KB
/
d2.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
let sign_bit = 0x8000_0000_0000_0000L
let payload_mask = 0x800F_FFFF_FFFF_FFFFL
let header_mask = 0x0FF0_0000_0000_0000L
let to_payload n = Int64.logand n payload_mask
let is_pos f = Int64.(logand (bits_of_float f) sign_bit) = 0L
let is_neg f = Int64.(logand (bits_of_float f) sign_bit) <> 0L
let is_NaN f = classify_float f = FP_nan
let is_zero f = classify_float f = FP_zero
let is_inf f = classify_float f = FP_infinite
let is_pos_zero f = Int64.bits_of_float f = 0L
let is_neg_zero f = Int64.bits_of_float f = sign_bit
let largest_neg = -4.94e-324
let smallest_pos = +4.94e-324
let smallest_neg = -.max_float
let largest_pos = max_float
let neg_zero = Int64.float_of_bits 0x8000_0000_0000_0000L
let pos_zero = Int64.float_of_bits 0x0000_0000_0000_0000L
let fsucc f = Int64.(float_of_bits @@ succ @@ bits_of_float f)
let fpred f = Int64.(float_of_bits @@ pred @@ bits_of_float f)
let m1 = 0x4000_0000_0000_0000L
let m2 = 0xBFFF_FFFF_FFFF_FFFFL
let on_bit f pos =
let mask = Int64.(shift_right m1 pos) in
Int64.(float_of_bits @@ logor (bits_of_float f) mask)
let off_bit f pos =
let mask = Int64.(shift_right m2 pos) in
Int64.(float_of_bits @@ logand (bits_of_float f) mask)
let dichotomy restore init a b =
let rec approach f i =
if i >= 63 then f else
let tf = on_bit f i in
if restore tf a b then approach f (i + 1) else approach tf (i + 1)
in approach init 0
let upper_neg x y =
fsucc @@ dichotomy (fun f a b -> f +. a <= b) neg_zero x y
let lower_neg = dichotomy (fun f a b -> f +. a < b) neg_zero
let upper_pos = dichotomy (fun f a b -> f +. a > b) pos_zero
let lower_pos x y =
fsucc @@ dichotomy (fun f a b -> f +. a >= b) pos_zero x y
(* smallest pos normalish such that there exists a number x such that
[pos_cp +. x = infinity] *)
let pos_cp = 9.9792015476736e+291
let neg_cp = -9.9792015476736e+291
let dump a b =
Printf.printf "upper_neg : %.16e\n" (upper_neg a b);
Printf.printf "lower_neg : %.16e\n" (lower_neg a b);
Printf.printf "upper_pos : %.16e\n" (upper_pos a b);
Printf.printf "lower_pos : %.16e\n" (lower_pos a b)
let lower_bound a b =
if a < b then lower_pos a b else lower_neg a b
let upper_bound a b =
if a > b then upper_neg a b else upper_pos a b
let range_add al au bl bu =
assert(al <> infinity && al <> neg_infinity);
assert(au <> infinity && au <> neg_infinity);
if bl = infinity || bu = infinity ||
bl = neg_infinity || bu = neg_infinity then assert(bl = bu);
if 0. < au && au <= max_float then assert(0. < al && al <= au);
if 0. < bu && bu <= max_float then assert(0. < bl && bl <= bu);
if (-.max_float) <= al && al < 0. then assert(al <= au && au < 0.);
if (-.max_float) <= bl && bl < 0. then assert(bl <= bu && bu < 0.);
if bl = infinity then
if au < pos_cp then None else
let l = lower_pos au infinity in
let l = if l +. au < infinity then fsucc l else l in
Some (l, max_float) else
if bl = neg_infinity then
if al > neg_cp then None else
let u = upper_neg al neg_infinity in
let u = if u +. al > neg_infinity then fsucc u else u in
Some (-.max_float, u)
else
let l = lower_bound au bl
and u = upper_bound al bu in
if l > u then None else Some (l, u)
let normalize = function
| None -> None, None, None
| Some (l, u) ->
assert(l <= u);
if l = 0.0 && u = 0.0 then Some (-0.0, 0.0), None, None else
if l = 0.0 then Some (-0.0, 0.0), None, Some (smallest_pos, u) else
if u = 0.0 then Some (-0.0, 0.0), Some (l, largest_neg), None else
if u < 0.0 then None, Some (l, u), None else
Some (-0.0, 0.0), Some (l, largest_neg), Some (smallest_pos, u)
let upper_neg_mult x y = fsucc @@ dichotomy (fun f a b -> f *. a <= b) neg_zero x y
let lower_pos_mult_2 x y = fsucc @@ dichotomy (fun f a b -> f *. a <= b) pos_zero x y
let lower_neg_mult = dichotomy (fun f a b -> f *. a < b) neg_zero
let upper_pos_mult_2 = dichotomy (fun f a b -> f *. a < b) pos_zero
let upper_pos_mult = dichotomy (fun f a b -> f *. a > b) pos_zero
let lower_neg_mult_2 = dichotomy (fun f a b -> f *. a > b) neg_zero
let lower_pos_mult x y = fsucc @@ dichotomy (fun f a b -> f *. a >= b) pos_zero x y
let upper_neg_mult_2 x y = fsucc @@ dichotomy (fun f a b -> f *. a >= b) neg_zero x y
let dump_mult a b =
Printf.printf "upper_neg : %.16e\n" (upper_neg_mult a b);
Printf.printf "lower_neg : %.16e\n" (lower_neg_mult a b);
Printf.printf "upper_pos : %.16e\n" (upper_pos_mult a b);
Printf.printf "lower_pos : %.16e\n" (lower_pos_mult a b);
Printf.printf "upper_neg_pos : %.16e\n" (lower_pos_mult_2 a b);
Printf.printf "lower_neg_pos : %.16e\n" (upper_pos_mult_2 a b);
Printf.printf "upper_pos_neg : %.16e\n" (lower_neg_mult_2 a b);
Printf.printf "lower_pos_neg : %.16e\n" (upper_neg_mult_2 a b)
let range_mult al au bl bu =
if bl = infinity then
if au > 0. then
if au <= 1. then None else
let l = lower_pos_mult au infinity in
Some (l, max_float)
else
if al >= (-1.) then None else
let u = upper_neg_mult_2 al infinity in
Some ((-.max_float), u) else
if bl = neg_infinity then
if au > 0. then
if au <= 1. then None else
let u = upper_neg_mult au infinity in
Some ((-.max_float), u)
else
if al >= (-1.) then None else
let l = lower_pos_mult_2 al neg_infinity in
Some (l, max_float)
else
if au < 0.0 && is_pos bl then
let u = upper_neg_mult_2 al bl in
let l = lower_neg_mult_2 au bu in
if l > u then None else Some (l, u) else
if au < 0.0 && is_neg bu then
let u = upper_pos_mult_2 au bl in
let l = lower_pos_mult_2 al bu in
if l > u then None else Some (l, u) else
if al > 0.0 && is_neg bu then
let u = upper_neg_mult au bu in
let l = lower_neg_mult al bl in
if l > u then None else Some (l, u)
else
let u = upper_pos_mult al bu in
let l = lower_pos_mult au bl in
if l > u then None else Some (l, u)
let upper_neg_div x y = fsucc @@ dichotomy (fun f a b -> f /. a <= b) neg_zero x y
let lower_pos_div_2 x y = fsucc @@ dichotomy (fun f a b -> f /. a <= b) pos_zero x y
let lower_neg_div = dichotomy (fun f a b -> f /. a < b) neg_zero
let upper_pos_div_2 = dichotomy (fun f a b -> f /. a < b) pos_zero
let upper_pos_div = dichotomy (fun f a b -> f /. a > b) pos_zero
let lower_neg_div_2 = dichotomy (fun f a b -> f /. a > b) neg_zero
let lower_pos_div x y = fsucc @@ dichotomy (fun f a b -> f /. a >= b) pos_zero x y
let upper_neg_div_2 x y = fsucc @@ dichotomy (fun f a b -> f /. a >= b) neg_zero x y
(*
let dump_div a b =
Printf.printf "lower_neg_div : %h\n" (lower_neg_div a b);
Printf.printf "upper_neg_div : %h\n" (upper_neg_div a b);
(* fixed *)
Printf.printf "lower_pos_div : %h\n" (lower_pos_div a b);
Printf.printf "upper_pos_div : %h\n" (upper_pos_div a b);
(* fixed *)
Printf.printf "lower_pos_div_2 : %h\n" (lower_pos_div_2 a b);
Printf.printf "upper_pos_div_2 : %h\n" (upper_pos_div_2 a b);
Printf.printf "lower_neg_div_2 : %h\n" (lower_neg_div_2 a b);
Printf.printf "upper_neg_div_2 : %h\n" (upper_neg_div_2 a b)
*)
let dump_div_m1 a b =
Printf.printf "lower_neg_div : %.16e\n" (lower_neg_div a b);
Printf.printf "upper_neg_div : %.16e\n" (upper_neg_div a b);
(* fixed *)
Printf.printf "lower_pos_div : %.16e\n" (lower_pos_div a b);
Printf.printf "upper_pos_div : %.16e\n" (upper_pos_div a b);
(* fixed *)
Printf.printf "lower_pos_div_2 : %.16e\n" (lower_pos_div_2 a b);
Printf.printf "upper_pos_div_2 : %.16e\n" (upper_pos_div_2 a b);
Printf.printf "lower_neg_div_2 : %.16e\n" (lower_neg_div_2 a b);
Printf.printf "upper_neg_div_2 : %.16e\n" (upper_neg_div_2 a b)
(* [0.6, 1.8], [0.3, 1.6]
al * bl ---> xl (* lower_pos *)
au * bu ---> xu (* upper_pos *)
[0.6, 0.6] [1.8, 1.8]
[0.3, 0.6] [1.8, 1.8] -------> important example
(5.4000000000000004e-01, 1.0799999999999998e+00)
[0.6, 0.6] [1.8, 2.]
[max_float, max_float] [0.0, 0.0]
xl = 4.9406564584124654e-324
xu = 4.4408920985006257e-16
[1e+308, max_float], [0., 0.]
xl (* lower_pos *)
xu (* upper_pos *)
[1e+10, 1e+20], [0., 0.]
xl = 4.9406564584124654e-324
xu = 2.4703282292062327e-304
[1., 1e+308] [0., 0.]
[1e+10, 1e+308] [0., 0.]
dump_div 0.2e+1 0.
when b is 0.
if al < 2., cannot underflow
if al >= 2, xl is (fsucc 0.), xu is upper of upper_pos xu 0.
[min_float, max_float] [min_float, max_float]
just normal lower_pos and upper_pos
[min_float, min_float] [max_float, max_float]
[min_float, 20.] [min_float, 30.]
[min_float, 1e-200] [1e-200, 1.]
[min_float, max_float] [min_float, max_float]
[max_float, max_float] [infinity, infinity]
[1e-50, 1e-20] [infinity, infinity]
dump_div 1e-20 infinity --> lower_pos 1.7976931348623158e+288
dump_div 1e-50 infinity --> lower_pos 1.7976931348623159e+258
dump_div 1e-323 infinity --> lower_pos 1.7763568394002505e-15
*)
let fsucc' f = if is_pos f then fsucc f else fpred f
let fpred' f = if is_pos f then fpred f else fsucc f
let rec drift_right xl al au bl bu i =
if al > au then raise Not_found;
let b = xl /. al in
let err = if is_pos bl then b -. bl else bl -. b in
if err = 0. then i, xl, al, bl else begin
if is_pos err && is_pos al || is_neg err && is_neg al then
drift_right xl (fsucc' al) au bl bu (i + 1)
else
drift_right (fsucc' xl) al au bl bu (i + 1)
end
let rec drift_left xu al au bl bu i =
if al > au then raise Not_found;
let b = xu /. au in
let err = if is_pos bl then b -. bu else bu -. b in
if err = 0. then i, xu, au, bu else begin
if is_pos err && is_neg al || is_neg err && is_pos al then
drift_left xu al (fpred' au) bl bu (i + 1)
else
drift_left (fpred' xu) al au bl bu (i + 1)
end
let range_div al au bl bu =
if bl = infinity || bl = neg_infinity then
if al > 0. then
if al >= 1. then None else
let l, u = lower_pos_div al infinity, max_float in
let l, u = if is_neg bl then (-.u, -.l) else l, u in
Some (l, u)
else
if au <= (-1.) then None else
let l, u = (-.max_float), upper_neg_div_2 au infinity in
let l, u = if is_neg bl then (-.u, -.l) else l, u in
Some (l, u)
else
if bl = 0.0 || bl = -0.0 then
if al > 0. then
if au < 2. then None else
let l, u = smallest_pos, upper_pos_div au 0. in
let l, u = if is_neg bl then (-.u, -.l) else l, u in
Some (l, u)
else
if al > -2. then None else
let l, u = lower_neg_div_2 al 0., largest_neg in
let l, u = if is_neg bl then (-.u, -.l) else l, u in
Some (l, u)
else
let xl, xu =
if is_pos au && is_pos bu then
lower_pos_div al bl, upper_pos_div au bu else
if is_pos au && is_neg bu then
lower_neg_div al bl, upper_neg_div au bu else
if is_neg au && is_pos bu then
lower_neg_div_2 al bl, upper_neg_div_2 au bu
else
lower_pos_div_2 al bl, upper_pos_div_2 au bu in
if xl > xu then None else Some (xl, xu)
let range_div_2 al au bl bu =
let xl, xu =
if is_pos au && is_pos bu then
lower_pos_div al bl, upper_pos_div au bu else
if is_pos au && is_neg bu then
lower_neg_div al bl, upper_neg_div au bu else
if is_neg au && is_pos bu then
lower_neg_div_2 al bl, upper_neg_div_2 au bu
else
lower_pos_div_2 al bl, upper_pos_div_2 au bu in
try
let n1, nxl, nal, nbl = drift_right xl al au bl bu 0 in
let n2, nxu, nau, nbu = drift_left xu al au bl bu 0 in
if nxl > nxu then n1, n2, None else
n1, n2, Some (xl, xu, nxl, nxu, nal, nbl, nau, nbu)
with _ -> 0, 0, None
let () = Random.self_init ()
let div2_cp = 4.4408920985006257e-16
(* least value that can be divided and overflow to infinity *)
let div2_cp2 = 8.8817841970012523e-16
let upper_neg_div_m2 a b = fsucc @@ dichotomy (fun x a b -> a /. x <= b) neg_zero a b
let lower_pos_div_m2_2 a b = fsucc @@ dichotomy (fun x a b -> a /. x <= b) pos_zero a b
let lower_neg_div_m2 = dichotomy (fun x a b -> a /. x < b) neg_zero
let upper_pos_div_m2_2 = dichotomy (fun x a b -> a /. x < b) pos_zero
let upper_pos_div_m2 = dichotomy (fun x a b -> a /. x > b) pos_zero
let lower_neg_div_m2_2 = dichotomy (fun x a b -> a /. x > b) neg_zero
let lower_pos_div_m2 a b = fsucc @@ dichotomy (fun x a b -> a /. x >= b) pos_zero a b
let upper_neg_div_m2_2 a b = fsucc @@ dichotomy (fun x a b -> a /. x >= b) neg_zero a b
let dump_div_m2 a b =
Printf.printf "lower_neg_div_m2 : %.16e\n" (lower_neg_div_m2 a b);
Printf.printf "upper_neg_div_m2 : %.16e\n" (upper_neg_div_m2 a b);
(* fixed *)
Printf.printf "lower_pos_div_m2 : %.16e\n" (lower_pos_div_m2 a b);
Printf.printf "upper_pos_div_m2 : %.16e\n" (upper_pos_div_m2 a b);
(* fixed *)
Printf.printf "lower_pos_div_m2_2 : %.16e\n" (lower_pos_div_m2_2 a b);
Printf.printf "upper_pos_div_m2_2 : %.16e\n" (upper_pos_div_m2_2 a b);
Printf.printf "lower_neg_div_m2_2 : %.16e\n" (lower_neg_div_m2_2 a b);
Printf.printf "upper_neg_div_m2_2 : %.16e\n" (upper_neg_div_m2_2 a b)
(* al / xl = inf
au / xu = inf *)
let range_div_m2 al au bl bu =
if bl = 0. || bl = -0. then
if al > 0. then
if al > div2_cp then None else
let l, u = lower_pos_div_m2_2 al 0., max_float in
let l, u = if is_neg bl then (-.u, -.l) else l, u in
Some (l, u)
else
if au < (-.div2_cp) then None else
let l, u = (-.max_float), upper_neg_div_m2 au 0. in
let l, u = if is_neg bl then (-.u, -.l) else l, u in
Some (l, u)
else
if bl = infinity || bl = neg_infinity then
if au > 0. then
if au < div2_cp2 then None else
let l, u = smallest_pos, upper_pos_div_m2_2 au infinity in
let l, u = if is_neg bl then (-.u), (-.l) else l, u in
Some (l, u)
else
if al > -.div2_cp2 then None else
let l, u = lower_neg_div_m2 al infinity, largest_neg in
let l, u = if is_neg bl then (-.u), (-.l) else l, u in
Some (l, u)
else
let xl, xu =
if is_pos au && is_pos bu then
lower_pos_div_m2_2 al bl, upper_pos_div_m2_2 au bu else
if is_pos au && is_neg bu then
lower_neg_div_m2_2 al bl, upper_neg_div_m2_2 au bu else
if is_neg au && is_pos bu then
lower_neg_div_m2 al bl, upper_neg_div_m2 au bu
else
lower_pos_div_m2 al bl, upper_pos_div_m2 au bu in
if xl > xu then None else Some (xl, xu)
(* The drifting problem.
Consider the following cases:
X = {5.4000000000000015e-01}
A = {2.9999999999999999e-01 ... 5.9999999999999998e-01} (rounded from {0.3, 0.6})
B = {1.8}
What the value of X could be if the following if-expr takes true branch?
if (X / A = B) {...} else {...}
Actually, this if-expr can **never** take true branch, since there
is no value ``a`` in A that can make ``5.4000000000000015e-01 / a == 1.8``.
From A and B, X should be narrowed by positive range
{5.4000000000000037e-01, 1.0799999999999998e+00}
however, due to the current imperfect algorithm, X is
narrowed by positive range:
{5.4000000000000004e-01, 1.0799999999999998e+00}
This range is not accurate, we need to drift (shift bits) to find the
best solution. The question is: what's the worse case scenario?
What's the maximum of the possible number of shifts we need to do?
A guess is 2^53. This makes implementation of perfect solution impossible.
Can we do better?
-- Not sure. This is still an open problem!
The following piece of program is a test that generate all the examples
where tremendous amount of drifting is needed to find the perfect
narrowing range.
*)
module DriftTest = struct
open Format
let thershold = 100_000
let ppf fmt f = fprintf fmt "%.16e" f
let test upper_x fmt =
let random_pos_normalish () = Random.float upper_x in
let au = random_pos_normalish () in
let al = Random.float au in
let b = random_pos_normalish () in
let m, n, sol = range_div_2 al au b b in
if m > thershold || n > thershold then begin
fprintf fmt "===================================\n";
fprintf fmt " A = {%a, %a}@." ppf al ppf au;
fprintf fmt " B = {%a}@." ppf b;
fprintf fmt " m = %d, n = %d@." m n;
begin
match sol with
| None -> fprintf fmt " No solution for narrowing range for X@."
| Some (xl, xu, nxl, nxu, nal, nbl, nau, nbu) ->
let p1, p2 = String.make 10 ' ', String.make 20 ' ' in
fprintf fmt " Narrowing range:@.";
fprintf fmt " Lower bound shifts to right %d times@." m;
fprintf fmt " Upper bound shifts to left %d times@." n;
fprintf fmt " Total shifting operations : %d times@." (m + n);
fprintf fmt " {%.16e, %.16e}@." xl xu;
fprintf fmt " %s\\%s /@." p1 p2;
fprintf fmt " %s \\%s/@." p1 p2;
fprintf fmt " {%.16e, %.16e}@." nxl nxu;
fprintf fmt " Narrowed xl / %.16e = %.16e@." nal nbl;
fprintf fmt " Narrowed xu / %.16e = %.16e@." nau nbu
end
end
let log_basename = "drift_x_upper_"
let fn_from_x x =
let sx = string_of_float x in
let i = String.index_from sx 0 '.' in
let sx = (String.sub sx 0 i) ^ "dot" ^
(String.sub sx (i + 1) (String.length sx - i - 1)) in
Printf.sprintf "%s%s.log" log_basename sx
let run_test x =
let f = open_out (fn_from_x x) in
for i = 0 to 100_000_00 do
test x (formatter_of_out_channel f)
done;
close_out f
(* test upper bound of abstract float 0.01, 0.1, 1. *)
let drift_test () =
List.iter run_test [0.01; 0.1; 1.]
end
let () = DriftTest.drift_test ()