-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
vit-base-p16_32xb128-mae_in1k.py
58 lines (53 loc) · 1.54 KB
/
vit-base-p16_32xb128-mae_in1k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
_base_ = [
'../_base_/datasets/imagenet_bs64_swin_224.py',
'../_base_/schedules/imagenet_bs1024_adamw_swin.py',
'../_base_/default_runtime.py'
]
# model settings
model = dict(
type='ImageClassifier',
backbone=dict(
type='VisionTransformer',
arch='base',
img_size=224,
patch_size=16,
drop_path_rate=0.1),
neck=None,
head=dict(
type='VisionTransformerClsHead',
num_classes=1000,
in_channels=768,
loss=dict(
type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'),
),
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=.02),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.),
],
train_cfg=dict(augments=[
dict(type='Mixup', alpha=0.8),
dict(type='CutMix', alpha=1.0)
]))
# dataset settings
train_dataloader = dict(batch_size=128)
# schedule settings
optim_wrapper = dict(
optimizer=dict(
type='AdamW',
lr=1e-4 * 4096 / 256,
weight_decay=0.3,
eps=1e-8,
betas=(0.9, 0.95)),
paramwise_cfg=dict(
norm_decay_mult=0.0,
bias_decay_mult=0.0,
custom_keys={
'.cls_token': dict(decay_mult=0.0),
'.pos_embed': dict(decay_mult=0.0)
}))
# runtime settings
custom_hooks = [dict(type='EMAHook', momentum=1e-4)]
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
# base_batch_size = (32 GPUs) x (128 samples per GPU)
auto_scale_lr = dict(base_batch_size=4096)