-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
metafile.yml
71 lines (70 loc) · 2.52 KB
/
metafile.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
Collections:
- Name: DaViT
Metadata:
Architecture:
- GELU
- Layer Normalization
- Multi-Head Attention
- Scaled Dot-Product Attention
Paper:
URL: https://arxiv.org/abs/2204.03645v1
Title: 'DaViT: Dual Attention Vision Transformers'
README: configs/davit/README.md
Code:
URL: https://github.com/open-mmlab/mmpretrain/blob/v1.0.0rc3/mmcls/models/backbones/davit.py
Version: v1.0.0rc3
Models:
- Name: davit-tiny_3rdparty_in1k
In Collection: DaViT
Metadata:
FLOPs: 4539698688
Parameters: 28360168
Training Data:
- ImageNet-1k
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 82.24
Top 5 Accuracy: 96.13
Weights: https://download.openmmlab.com/mmclassification/v0/davit/davit-tiny_3rdparty_in1k_20221116-700fdf7d.pth
Converted From:
Weights: https://drive.google.com/file/d/1RSpi3lxKaloOL5-or20HuG975tbPwxRZ/view?usp=sharing
Code: https://github.com/dingmyu/davit/blob/main/mmdet/mmdet/models/backbones/davit.py#L355
Config: configs/davit/davit-tiny_4xb256_in1k.py
- Name: davit-small_3rdparty_in1k
In Collection: DaViT
Metadata:
FLOPs: 8799942144
Parameters: 49745896
Training Data:
- ImageNet-1k
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 83.61
Top 5 Accuracy: 96.75
Weights: https://download.openmmlab.com/mmclassification/v0/davit/davit-small_3rdparty_in1k_20221116-51a849a6.pth
Converted From:
Weights: https://drive.google.com/file/d/1q976ruj45mt0RhO9oxhOo6EP_cmj4ahQ/view?usp=sharing
Code: https://github.com/dingmyu/davit/blob/main/mmdet/mmdet/models/backbones/davit.py#L355
Config: configs/davit/davit-small_4xb256_in1k.py
- Name: davit-base_3rdparty_in1k
In Collection: DaViT
Metadata:
FLOPs: 15509702656
Parameters: 87954408
Training Data:
- ImageNet-1k
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 84.09
Top 5 Accuracy: 96.82
Weights: https://download.openmmlab.com/mmclassification/v0/davit/davit-base_3rdparty_in1k_20221116-19e0d956.pth
Converted From:
Weights: https://drive.google.com/file/d/1u9sDBEueB-YFuLigvcwf4b2YyA4MIVsZ/view?usp=sharing
Code: https://github.com/dingmyu/davit/blob/main/mmdet/mmdet/models/backbones/davit.py#L355
Config: configs/davit/davit-base_4xb256_in1k.py