-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
metafile.yml
69 lines (68 loc) · 2.54 KB
/
metafile.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
Collections:
- Name: BEiTv2
Metadata:
Architecture:
- Attention Dropout
- Convolution
- Dense Connections
- Dropout
- GELU
- Layer Normalization
- Multi-Head Attention
- Scaled Dot-Product Attention
- Tanh Activation
Paper:
Title: 'BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers'
URL: https://arxiv.org/abs/2208.06366
README: configs/beitv2/README.md
Code:
URL: https://github.com/open-mmlab/mmpretrain/blob/main/mmpretrain/models/backbones/beit.py
Version: v1.0.0rc4
Models:
- Name: beitv2_beit-base-p16_8xb256-amp-coslr-300e_in1k
Metadata:
Epochs: 300
Batch Size: 2048
FLOPs: 17581223424
Parameters: 192811376
Training Data: ImageNet-1k
In Collection: BEiTv2
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k_20221212-a157be30.pth
Config: configs/beitv2/beitv2_beit-base-p16_8xb256-amp-coslr-300e_in1k.py
Downstream:
- beit-base-p16_beitv2-pre_8xb128-coslr-100e_in1k
- Name: beit-base-p16_beitv2-pre_8xb128-coslr-100e_in1k
Metadata:
Epochs: 100
Batch Size: 1024
FLOPs: 17581219584
Parameters: 86530984
Training Data: ImageNet-1k
In Collection: BEiTv2
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 85.0
Weights: https://download.openmmlab.com/mmselfsup/1.x/beitv2/beitv2_vit-base-p16_8xb256-amp-coslr-300e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k_20221212-d1c0789e.pth
Config: configs/beitv2/benchmarks/beit-base-p16_8xb128-coslr-100e_in1k.py
- Name: beit-base-p16_beitv2-in21k-pre_3rdparty_in1k
Metadata:
FLOPs: 17581219584
Parameters: 86530984
Training Data:
- ImageNet-21k
- ImageNet-1k
In Collection: BEiTv2
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 86.47
Top 5 Accuracy: 97.99
Weights: https://download.openmmlab.com/mmclassification/v0/beit/beitv2-base_3rdparty_in1k_20221114-73e11905.pth
Config: configs/beitv2/benchmarks/beit-base-p16_8xb64_in1k.py
Converted From:
Weights: https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21kto1k.pth
Code: https://github.com/microsoft/unilm/tree/master/beit2