-
Notifications
You must be signed in to change notification settings - Fork 3
/
CIFAR10HistogramOfGradients.py
86 lines (68 loc) · 3.09 KB
/
CIFAR10HistogramOfGradients.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import argparse
from tmu.models.classification.vanilla_classifier import TMClassifier
import numpy as np
from keras.datasets import cifar10
import cv2
from tmu.preprocessing.standard_binarizer.binarizer import StandardBinarizer
from time import time
patch_size = 0
imageSize = 32 #The size of the original image - in pixels - assuming this is a square image
channels = 3 #The number of channels of the image. A RBG color image, has 3 channels
classes = 10 #The number of classes available for this dataset
winSize = imageSize
blockSize = 12
blockStride = 4
cellSize = 4
nbins = 18
derivAperture = 1
winSigma = -1.
histogramNormType = 0
L2HysThreshold = 0.2
gammaCorrection = True
nlevels = 64
signedGradient = True
hog = cv2.HOGDescriptor((winSize,winSize),(blockSize, blockSize),(blockStride,blockStride),(cellSize,cellSize),nbins,derivAperture, winSigma,histogramNormType,L2HysThreshold,gammaCorrection,nlevels,signedGradient)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--num_clauses", default=2000, type=int)
parser.add_argument("--T", default=50, type=int)
parser.add_argument("--s", default=10.0, type=float)
parser.add_argument("--max_included_literals", default=32, type=int)
parser.add_argument("--device", default="GPU", type=str)
parser.add_argument("--weighted_clauses", default=False, type=bool)
parser.add_argument("--epochs", default=100, type=int)
args = parser.parse_args()
(X_train_org, Y_train), (X_test_org, Y_test) = cifar10.load_data()
Y_train = Y_train
Y_test = Y_test
Y_train=Y_train.reshape(Y_train.shape[0])
Y_test=Y_test.reshape(Y_test.shape[0])
fd = hog.compute(X_train_org[0])
X_train = np.empty((X_train_org.shape[0], fd.shape[0]), dtype=np.uint32)
for i in range(X_train_org.shape[0]):
fd = hog.compute(X_train_org[i])
X_train[i] = fd >= 0.1
fd = hog.compute(X_test_org[0])
X_test = np.empty((X_test_org.shape[0], fd.shape[0]), dtype=np.uint32)
for i in range(X_test_org.shape[0]):
fd = hog.compute(X_test_org[i])
X_test[i] = fd >= 0.1
tm = TMClassifier(
number_of_clauses=args.num_clauses,
T=args.T,
s=args.s,
max_included_literals=args.max_included_literals,
platform=args.device,
weighted_clauses=args.weighted_clauses,
type_i_ii_ratio=args.type_i_ii_ratio
)
for epoch in range(args.epochs):
start_training = time()
tm.fit(X_train, Y_train)
stop_training = time()
start_testing = time()
Y_test_predicted, Y_test_scores = tm.predict(X_test, return_class_sums=True)
stop_testing = time()
result_test = 100*(Y_test_scores.argmax(axis=1) == Y_test).mean()
print("#%d Accuracy: %.2f%% Training: %.2fs Testing: %.2fs" % (epoch+1, result_test, stop_training-start_training, stop_testing-start_testing))
np.savetxt("CIFAR10HistogramOfGradients_%d_%d_%d_%.2f_%d_%d_%d.txt" % (epoch+1, args.num_clauses, args.T, args.s, patch_size, args.max_included_literals, args.weighted_clauses), Y_test_scores, delimiter=',')