forked from cpboost/double-co-detr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.py
168 lines (138 loc) · 6.82 KB
/
index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import os
import cv2
import json
run_py = os.path.abspath(__file__)
dirname = os.path.dirname(run_py) #! model_dir
import shutil
import glob
from tqdm import tqdm
import numpy as np
from collections import defaultdict
from wbf import *
print(dirname)
def make_test_json(input_dir):
data_dir = input_dir
image_file_dir = os.path.join(data_dir, 'rgb')
annotations_info = {'images': [], 'annotations': [], 'categories': []}
categories_map = {"car": 1, "truck": 2, "bus":3, "van":4, "freight_car": 5}
for key in categories_map:
categoriy_info = {"id":categories_map[key], "name":key}
annotations_info['categories'].append(categoriy_info)
file_names = sorted([image_file_name.split('.')[0]
for image_file_name in os.listdir(image_file_dir)])
for i, file_name in enumerate(file_names):
# print(i)
image_file_name = file_name + '.jpg'
image_file_path = os.path.join(image_file_dir, image_file_name)
image_info = dict()
image = cv2.cvtColor(cv2.imread(image_file_path), cv2.COLOR_BGR2RGB)
height, width, _ = image.shape
image_info = {'file_name': image_file_name, 'id': i+1,
'height': height, 'width': width}
annotations_info['images'].append(image_info)
end_path = dirname +'/code/test.json'
print('============',end_path)
with open(end_path, 'w') as f:
json.dump(annotations_info, f, indent=4)
def run_wbf(bboxes, confs, labels, iou_thr=0.50, skip_box_thr=0.0001, weights=None):
scores = [conf for conf in confs]
bboxes, scores, labels = weighted_boxes_fusion(
bboxes, scores, labels, weights=weights, iou_thr=iou_thr, skip_box_thr=skip_box_thr, conf_type='avg')
# bboxes, scores, labels, weights=weights, iou_thr=iou_thr, skip_box_thr=skip_box_thr, conf_type='max')
return bboxes, scores, labels
def make_wbf_json(len_jpg):
result_paths = [
f'{dirname}/1.json.bbox.json',
f'{dirname}/2.json.bbox.json',
f'{dirname}/3.json.bbox.json',
]
img_w = 640
iou_thr = 0.8 # 0.492单光和0.502双光融合:0.519,目前最佳; 0.467单光融合后0.518 (iou=0.8, 然后是avg的方式,max只有0.513)
# iou_thr = 0.9 # 0.492单光和0.502双光融合:0.516
# iou_thr = 0.7 # 0.492单光和0.502双光融合:0.494
# score_thr = 0.02 # clw note TODO
score_thr = 0.000001
norm_h, norm_w = 512, 640 # 防止wbf有些框x超出1
# flip_flags = [False, True]
flip_flags = [False, False, False]
save_path = f'{dirname}/4.json.bbox.json'
model_nums = len(result_paths)
results_all_model = []
for result_path in result_paths:
result = json.load(open(result_path))
imgid_to_results_dict = defaultdict(list)
for i in range(1, len_jpg+1): # 测试集共1000张图,id从1到1000
imgid_to_results_dict[i] = []
for item in tqdm(result):
image_id = item['image_id']
imgid_to_results_dict[image_id].append(item)
results_all_model.append(imgid_to_results_dict)
results_wbf_all = []
test_sample_nums = len_jpg
for sample_id in tqdm(range(1, test_sample_nums+1)):
bboxes_all_model = []
confs_all_model = []
labels_all_model = []
for model_idx, results_single_model in enumerate(results_all_model):
results = results_single_model[sample_id]
bboxes_single_model = []
confs_single_model = []
labels_single_model = []
for dt in results:
conf = dt['score']
category_id = dt['category_id']
if conf < score_thr:
continue
if flip_flags[model_idx] == True:
dt['bbox'][0] = img_w - (dt['bbox'][0] + dt['bbox'][2])
bboxes_single_model.append([dt['bbox'][0]/norm_w, dt['bbox'][1]/norm_h, (dt['bbox'][0]+dt['bbox'][2])/norm_w, (dt['bbox'][1]+dt['bbox'][3])/norm_h]) # x1,y1,x2,y2
confs_single_model.append(conf)
labels_single_model.append(category_id)
bboxes_all_model.append(bboxes_single_model)
confs_all_model.append(confs_single_model)
labels_all_model.append(labels_single_model)
bboxes_new, scores_new, labels_new = run_wbf(bboxes_all_model, confs_all_model, labels_all_model, iou_thr=iou_thr, skip_box_thr=score_thr, weights=None)
bboxes_new[:, 0::2] *= norm_w
bboxes_new[:, 1::2] *= norm_h
for bbox_wbf, score_wbf, label_wbf in zip(bboxes_new, scores_new, labels_new):
x1, y1, x2, y2 = bbox_wbf
w = x2 - x1
h = y2 - y1
res_dict = {
'image_id': sample_id,
'bbox': [x1, y1, w, h],
'score': score_wbf,
'category_id': int(label_wbf)
}
results_wbf_all.append(res_dict)
id_set = set()
for res in results_wbf_all:
id_set.add(res['image_id'])
with open(save_path, 'w') as f:
json.dump(results_wbf_all, f)
def invoke(input_dir, output_path):
make_test_json(input_dir)
path1=dirname+'/make_merge_test'
path2 = dirname+'/code'
print("=====================222======================")
os.system(f'cd {path1} && python test.py --data_path {input_dir}')
input_dir2 = os.path.join(input_dir, "rgb-2")
print("=====================333======================")
output_path2=dirname+'/1.json'
output_path3=dirname+'/2.json'
output_path4=dirname+'/3.json'
os.system(f'cd {path2} && python test.py ./configs/co_dino_5scale_vit_large_gaiic2024_two_stream_custom_v3.py ../data/best_model_epoch_9_only_keep_statedict.pth --data_path {input_dir2} --format-only --options "jsonfile_prefix={output_path2}" ')
print("=====================444======================")
os.system(f'cd {path2} && python test.py ./configs/co_dino_5scale_vit_large_gaiic2024_two_stream_custom_v3.py ../data/best_model_best_bbox_mAP_epoch_11_autov2_640_only_keep_statedict.pth --data_path {input_dir2} --format-only --options "jsonfile_prefix={output_path3}" ')
os.system(f'cd {path2} && python test.py ./configs/1.py ../data/best_model_best_bbox_mAP_epoch_10_only_keep_statedict.pth --data_path {input_dir2} --format-only --options "jsonfile_prefix={output_path4}" ')
source_file =dirname +'/4.json.bbox.json'
print("================wbf=======================")
jpg_files = glob.glob(os.path.join(input_dir2, '*.jpg'))
len_jpg = len(jpg_files)
print(f'======================={len_jpg}===================')
make_wbf_json(len_jpg)
os.makedirs(os.path.dirname(output_path), exist_ok=True)
shutil.copyfile(source_file, output_path)
if __name__ == '__main__':
invoke(f'{dirname}/data/contest_data/test', f'{dirname}/data/result/result.json')