Skip to content

Latest commit

 

History

History
52 lines (37 loc) · 1.48 KB

README.md

File metadata and controls

52 lines (37 loc) · 1.48 KB

PythonVersion License https://github.com/solegalli/hyperparameter-optimization/blob/master/LICENSE Sponsorship https://www.trainindata.com/

Hyperparameter tuning for Machine Learning - Code Repository

Published May, 2021

Links

Table of Contents

  1. Cross-Validation

    1. K-fold, LOOCV, LPOCV, Stratified CV
    2. Group CV and variants
    3. CV for time series
    4. Nested CV
  2. Basic Search Algorithms

    1. Manual Search, Grid Search and Random Search
  3. Bayesian Optimization

    1. with Gaussian Processes
    2. with Random Forests (SMAC) and GBMs
    3. with Parzen windows (Tree-structured Parzen Estimators or TPE)
  4. Multi-fidelity Optimization

    1. Successive Halving
    2. Hyperband
    3. BOHB
  5. Other Search Algorthms

    1. Simulated Annealing
    2. Population Based Optimization
  6. Gentetic Algorithms

    1. CMA-ES
  7. Python tools

    1. Scikit-learn
    2. Scikit-optimize
    3. Hyperopt
    4. Optuna
    5. Keras Tuner
    6. SMAC
    7. Others