This repository contain an implementation of a Convolutional Neural Networks for classifying garments together with a data scraper script, used to download images from Zalando's online catalogue.
See in depth tutorial on Medium Automatic Classification of an online Fashion Catalogue: The Simple Way
--base_folder Base folder for downloaded images
--n_images Number of images to download
--threads Number of threads to use
$ python main.py --base_folder='Data/' --n_images=100 --threads=10
Once the data has been downloaded, the training phase can start. The training file is train.py and receives the following parameters:
-- learning_rate Initial learning rate
--epochs Number of training epochs
--batch_size Minibatch training size
--validation_after_n Number of epochs before apply validation testing
--logdir Log folder
--save_after_n Number of epochs before saving network
--model_description Model name
$ python train.py --batch_size=512 ---epochs=100 --save_after_n=20 --validation_after_n=5
After training your model with the MNIST fashion data you can check how is it performing with the data you have downloaded.
--model_dir Saved model directory
--model_description Model name
--data_path Images folder path
--batch_size Minibatch size
$ python eval.py --batch_size=5 --model_dir='Models/' --model_description='garment_classifier' --data_path='Data/Images'
--batch_size=5