-
Notifications
You must be signed in to change notification settings - Fork 20
/
inverseMixColumns.v
95 lines (78 loc) · 2.77 KB
/
inverseMixColumns.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
module inverseMixColumns(state_in,state_out);
input [127:0] state_in;
output [127:0] state_out;
/*
Multiplication by 2 can be implemented at the byte level as a left shift and a subsequent
conditional bitwise XOR with {1b},where bitwise xor with {1b} is done if x[7]= 1.
Multiplication by higher powers of x can be implemented by repeated application of multiplication by 2.
*/
//This function multiply by {02} n-times
function[7:0] multiply(input [7:0]x,input integer n);
integer i;
begin
for(i=0;i<n;i=i+1)begin
if(x[7] == 1) x = ((x << 1) ^ 8'h1b);
else x = x << 1;
end
multiply=x;
end
endfunction
/*
Multiply by {0e} is done by :
(multiplying by {02} 3 times which is equivalent to multiplication by {08}) xor
(multiplying by {02} 2 times which is equivalent to multiplication by {04}) xor
(multiplying by {02})
so that 8+4+2= e. where xor is the addition of elements in finite fields
*/
function [7:0] mb0e; //multiply by {0e}
input [7:0] x;
begin
mb0e=multiply(x,3) ^ multiply(x,2)^ multiply(x,1);
end
endfunction
/*
Multiply by {0d} is done by :
(multiplying by {02} 3 times which is equivalent to multiplication by {08}) xor
(multiplying by {02} 2 times which is equivalent to multiplication by {04}) xor
(the original x)
so that 8+4+1= d. where xor is the addition of elements in finite fields
*/
function [7:0] mb0d; //multiply by {0d}
input [7:0] x;
begin
mb0d=multiply(x,3) ^ multiply(x,2)^ x;
end
endfunction
/*
Multiply by {0b} is done by :
(multiplying by {02} 3 times which is equivalent to multiplication by {08}) xor
(multiplying by {02}) xor (the original x)
so that 8+2+1= b. where xor is the addition of elements in finite fields
*/
function [7:0] mb0b; //multiply by {0b}
input [7:0] x;
begin
mb0b=multiply(x,3) ^ multiply(x,1)^ x;
end
endfunction
/*
Multiply by {09} is done by :
(multiplying by {02} 3 times which is equivalent to multiplication by {08}) xor (the original x)
so that 8+1= 9. where xor is the addition of elements in finite fields
*/
function [7:0] mb09; //multiply by {09}
input [7:0] x;
begin
mb09=multiply(x,3) ^ x;
end
endfunction
genvar i;
generate
for(i=0;i< 4;i=i+1) begin : m_col
assign state_out[(i*32 + 24)+:8]= mb0e(state_in[(i*32 + 24)+:8]) ^ mb0b(state_in[(i*32 + 16)+:8]) ^ mb0d(state_in[(i*32 + 8)+:8]) ^ mb09(state_in[i*32+:8]);
assign state_out[(i*32 + 16)+:8]= mb09(state_in[(i*32 + 24)+:8]) ^ mb0e(state_in[(i*32 + 16)+:8]) ^ mb0b(state_in[(i*32 + 8)+:8]) ^ mb0d(state_in[i*32+:8]);
assign state_out[(i*32 + 8)+:8]= mb0d(state_in[(i*32 + 24)+:8]) ^ mb09(state_in[(i*32 + 16)+:8]) ^ mb0e(state_in[(i*32 + 8)+:8]) ^ mb0b(state_in[i*32+:8]);
assign state_out[i*32+:8]= mb0b(state_in[(i*32 + 24)+:8]) ^ mb0d(state_in[(i*32 + 16)+:8]) ^ mb09(state_in[(i*32 + 8)+:8]) ^ mb0e(state_in[i*32+:8]);
end
endgenerate
endmodule