diff --git a/.nojekyll b/.nojekyll new file mode 100644 index 00000000..e69de29b diff --git a/404.html b/404.html new file mode 100644 index 00000000..fc514e15 --- /dev/null +++ b/404.html @@ -0,0 +1,858 @@ + + + + + + + + + + + + + + + + + + + VoteKit + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+
+ +
+ + + + +
+ + +
+ +
+ + + + + + + + + +
+
+ + + +
+
+
+ + + + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ +

404 - Not found

+ +
+
+ + + + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/SCR_ballot_generators/index.html b/SCR_ballot_generators/index.html new file mode 100644 index 00000000..d0f0af22 --- /dev/null +++ b/SCR_ballot_generators/index.html @@ -0,0 +1,1280 @@ + + + + + + + + + + + + + + + + + + + + + + + Ballot Generators - VoteKit + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + +
+ + +
+ +
+ + + + + + + + + +
+
+ + + +
+
+
+ + + + + + + +
+
+
+ + + + + + + +
+
+ + + + + + + +

Ballot Generators

+

In addition to being able to read real world voting data, VoteKit also has the ability to generate ballots using different models. This is useful when you want to run experiments or just play around with some data. We make no claims that these models accurately predict real voting behavior.

+

Ballot Simplex Models

+

Models listed below generate ballots by using the ballot simplex. This means we take a draw from the Dirichlet distribution, which gives us a probability distribution on full, linear rankings. We then generate ballots according to this distribution.

+

Impartial Culture

+

The Impartial Culture model has \(\alpha = \infty\). As discussed in ballot simplex, this is not actually a valid parameter for the Dirichlet distribution, so instead VoteKit sets \(\alpha = 10^{20}\). This means that the point drawn from the ballot simplex has a very high probability of being in the center, which means it gives uniform probability to each linear ranking.

+

Impartial Anonymous Culture

+

The Impartial Anonymous Culture model has \(\alpha = 1\). This means that the point is uniformly drawn from the ballot simplex. This does not mean we have a uniform distribution on rankings; rather, we have a uniform chance of choosing any distribution on rankings.

+

Candidate Simplex Models

+

Name-Plackett-Luce

+

The name-Plackett-Luce model (n-PL) samples ranked ballots as follows. Assume there are \(n\) blocs of voters. Within a bloc, say bloc \(A\), voters have \(n\) preference intervals, one for each slate of candidates. A bloc also has a fixed \(n\)-tuple of cohesion parameters \(\pi_A = (\pi_{AA}, \pi_{AB},\dots)\); we require that \(\sum_B \pi_{AB}=1\). To generate a ballot for a voter in bloc \(A\), each preference interval \(I_B\) is rescaled by the corresponding cohesion parameter \(\pi_{AB}\), and then concatenated to create one preference interval. +Voters then sample without replacement from the combined preference interval.

+

Name-Bradley-Terry

+

The name-Bradley-Terry model (n-BT) samples ranked ballots as follows. Assume there are \(n\) blocs of voters. Within a bloc, say bloc \(A\), voters have \(n\) preference intervals, one for each slate of candidates. A bloc also has a fixed \(n\)-tuple of cohesion parameters \(\pi_A = (\pi_{AA}, \pi_{AB},\dots)\); we require that \(\sum_B \pi_{AB}=1\). To generate a ballot for a voter in bloc \(A\), each preference interval \(I_B\) is rescaled by the corresponding cohesion parameter \(\pi_{AB}\), and then concatenated to create one preference interval. +Voters then sample ballots proportional to pairwise probabilities of candidates. That is, the probability that the ballot \(C_1>C_2>C_3\) is sampled is proprotional to \(P(C_1>C_2)P(C_2>C_3)P(C_1>C_3)\), where these pairwise probabilities are given by \(P(C_1>C_2) = C_1/(C_1+C_2)\). +Here \(C_i\) denotes the length of \(C_i\)'s share of the combined preference interval.

+

Name-Cumulative

+

The name-Cumulative model (n-C) samples ranked ballots as follows. Assume there are \(n\) blocs of voters. Within a bloc, say bloc \(A\), voters have \(n\) preference intervals, one for each slate of candidates. A bloc also has a fixed \(n\)-tuple of cohesion parameters \(\pi_A = (\pi_{AA}, \pi_{AB},\dots)\); we require that \(\sum_B \pi_{AB}=1\). To generate a ballot for a voter in bloc \(A\), each preference interval \(I_B\) is rescaled by the corresponding cohesion parameter \(\pi_{AB}\), and then concatenated to create one preference interval. To generate a ballot, voters sample with replacement from the combined interval as many times as determined by the length of the desired ballot.

+

Slate-Plackett-Luce

+

The slate-Plackett-Luce model (s-PL) samples ranked ballots as follows. Assume there are \(n\) blocs of voters. Within a bloc, say bloc \(A\), voters have \(n\) preference intervals, one for each slate of candidates. A bloc also has a fixed \(n\)-tuple of cohesion parameters \(\pi_A = (\pi_{AA}, \pi_{AB},\dots)\); we require that \(\sum_B \pi_{AB}=1\). Now the cohesion parameters play a different role than in the name models above. For s-PL, \(\pi_{AB}\) gives the probability that we put a \(B\) candidate in each position on the ballot. If we have already exhausted the number of \(B\) candidates, we remove \(\pi_{AB}\) and renormalize. Once we have a ranking of the slates on the ballot, we fill in candidate ordering by sampling without replacement from each individual preference interval (we do not concatenate them!).

+

Slate-Bradley-Terry

+

The slate-Bradley-Terry model (s-BT) samples ranked ballots as follows. We assume there are 2 blocs of voters. Within a bloc, say bloc \(A\), voters have 2 preference intervals, one for each slate of candidates. A bloc also has a fixed tuple of cohesion parameters \(\pi_A = (\pi_A, 1-\pi_A)\). Now the cohesion parameters play a different role than in the name models above. For s-BT, we again start by filling out a ballot with bloc labels only. Now, the probability that we sample the ballot \(A>A>B\) is proportional to \(\pi_A^2\); just like name-Bradley-Terry, we are computing pairwise comparisons. In \(A>A>B\), slate \(A\) must beat slate \(B\) twice. As another example, the probability of \(A>B>A\) is proportional to \(\pi_A(1-\pi_A)\). Once we have a ranking of the slates on the ballot, we fill in candidate ordering by sampling without replacement from each individual preference interval (we do not concatenate them!).

+

Alternating-Crossover

+

The Alternating-Crossover model (AC) samples ranked ballots as follows. It assumes there are only two blocs. Within a bloc, voters either vote with the bloc, or they alternate. The proportion of such voters is determined by the cohesion parameter. If a voter votes with the bloc, they list all of their bloc's candidates above the other bloc's. If a voter alternates, they list an opposing candidate first, and then alternate between their bloc and the opposing until they run out of one set of candidates. In either case, the order of candidates is determined by a PL model.

+
    +
  • +

    The AC model can generate incomplete ballots if there are a different number of candidates in each bloc.

    +
  • +
  • +

    The AC model can be initialized from a set of preference intervals, along with which candidates belong to which bloc and a set of cohesion parameters.

    +
  • +
  • +

    The AC model only works with two blocs.

    +
  • +
  • +

    The AC model also requires information about what proportion of voters belong to each bloc.

    +
  • +
+

Cambridge-Sampler

+

The Cambridge-Sampler (CS) samples ranked ballots as follows. Assume there is a majority and a minority bloc. If a voter votes with their bloc, they rank a bloc candidate first. If they vote against their bloc, they rank an opposing bloc candidate first. The proportion of such voters is determined by the cohesion parameter. Once a first entry is recorded, the CS samples a ballot type from historical Cambridge, MA election data. That is, if a voter puts a majorrity candidate first, the rest of their ballot type is sampled in proportion to the number of historical ballots that started with a majority candidate. Once a ballot type is determined, the order of candidates is determined by a PL model.

+

Let's do an example. I am a voter in the majority bloc. I flip a coin weighted by the cohesion parameter, and it comes up tails. My ballot type will start with a minority candidate \(m\). The CS samples historical ballots that also started with \(m\), and tells me my ballot type is \(mmM\); two minority candidates, then a majority. Finally, CS uses a PL model to determine which minority/majority candidates go in the slots.

+
    +
  • +

    CS can generate incomplete ballots since it uses historical data.

    +
  • +
  • +

    The CS model can be initialized from a set of preference intervals, along with which candidates belong to which bloc and a set of cohesion parameters.

    +
  • +
  • +

    The CS model only works with two blocs if you use the Cambridge data.

    +
  • +
  • +

    The CS model also requires information about what proportion of voters belong to each bloc.

    +
  • +
  • +

    You can give the CS model other historical election data to use.

    +
  • +
+

Distance Models

+

1-D Spatial

+

The 1-D Spatial model samples ranked ballots as follows. First, it assigns each candidate a position on the real number line according to a normal distribution. Then, it does the same with each voter. Finally, a voter's ranking is determined by their distance from each candidate.

+
    +
  • +

    The 1-D Spatial model only generates full ballots.

    +
  • +
  • +

    The 1-D Spatial model can be initialized from a list of candidates.

    +
  • +
+ + + + + + + + + + + + + +
+
+ + + + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/SCR_distances/index.html b/SCR_distances/index.html new file mode 100644 index 00000000..25d380f3 --- /dev/null +++ b/SCR_distances/index.html @@ -0,0 +1,908 @@ + + + + + + + + + + + + + + + + + + + + + Distances between PreferenceProfiles - VoteKit + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + +
+ + +
+ +
+ + + + + + + + + +
+
+ + + +
+
+
+ + + + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

Distances between PreferenceProfiles

+

Earthmover Distance

+

The Earthmover distance is a measure of how far apart two distributions are over a given metric space. In our case, the metric space is the BallotGraph endowed with the shortes path metric. We then consider a PreferenceProfile to be a distribution that assigns the number of times a ballot was cast to a node of the BallotGraph. Informally, the Earthmover distance is the minimum cost of moving the "dirt" piled on the nodes by the first profile to the second profile given the distance it must travel.

+

\(L_p\) Distance

+

The \(L_p\) distance is a metric parameterized by \(p\in (0,\infty]\). It is computed as \(d(P_1,P_2) = \left(\sum |P_1(b)-P_2(b)|^p\right)^{1/p}\), where the sum is indexed over all possible ballots, and \(P_i(b)\) denotes the number of times that ballot was cast.

+

+
+ + + + + + + + + + + + + +
+
+ + + + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/SCR_elections/index.html b/SCR_elections/index.html new file mode 100644 index 00000000..e20807c8 --- /dev/null +++ b/SCR_elections/index.html @@ -0,0 +1,1252 @@ + + + + + + + + + + + + + + + + + + + + + + + Elections - VoteKit + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + +
+ + +
+ +
+ + + + + + + + + +
+
+ + + +
+
+
+ + + + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

Elections

+

STV

+

An STV election stands for single transferable vote. Voters cast ranked choice ballots. A threshold is set; if a candidate crosses the threshold, they are elected. The threshold defaults to the Droop quota. We also enable functionality for the Hare quota.

+

In the first round, the first place votes for each candidate are tallied. If a candidate crosses the threshold, they are elected. Any surplus votes are distributed amongst the other candidates according to a transfer rule. If another candidate crosses the threshold, they are elected. If no candidate does, the candidate with the least first place votes is eliminated, and their ballots are redistributed according to the transfer rule. This repeats until all seats are filled.

+
    +
  • +

    An STV election can use either the Droop or Hare quota.

    +
  • +
  • +

    The current transfer methods are stored in the elections module.

    +
  • +
  • +

    If there is a tiebreak needed, STV defaults to a random tiebreak. Other methods of tiebreak are given in the tie_broken_ranking function of the utils module.

    +
  • +
+

Limited

+

Bloc

+

SNTV

+

SNTV_STV_Hybrid

+

TopTwo

+

DominatingSets

+

Condo Borda

+

SequentialRCV

+

Borda

+

Plurality

+

Quotas and Transfers

+

Droop

+

Hare

+

Fractional Trasnfer

+ + + + + + + + + + + + + +
+
+ + + + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/SCR_general_vocabulary/index.html b/SCR_general_vocabulary/index.html new file mode 100644 index 00000000..f5911f4d --- /dev/null +++ b/SCR_general_vocabulary/index.html @@ -0,0 +1,917 @@ + + + + + + + + + + + + + + + + + + + + + + + General Vocabulary - VoteKit + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + +
+ + +
+ +
+ + + + + + + + + +
+
+ + + +
+
+
+ + + + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

General Vocabulary

+
    +
  • Social choice theory: the study of making decisions from collective input.
  • +
  • Bullet vote: casting a vote for a single candidate.
  • +
  • Ranked choice voting: the act of electing candidates using rankings instead of bullet votes.
  • +
  • Linear ranking: an ordering of the candidates \(A>C>B\) by your preference for each. \(A>C\) means you prefer \(A\) to \(C\).
  • +
  • Ballot: the information gathered from a voter, usually a ranking, but could be points as well.
  • +
  • Preference profile: a collection of ballots from voters. Note, this is not the same as an election.
  • +
  • Election: a choice of rules for converting a preference profile into an outcome.
  • +
  • Ballot generator: a method for creating ballots.
  • +
  • Bloc: a group of voters who share some similar voting patterns.
  • +
  • CVR: cast vote record, i.e., the collection of ballots.
  • +
  • BLT: a file type used to record CVRs in Scottish elections.
  • +
+ + + + + + + + + + + + + +
+
+ + + + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/SCR_preference_intervals/index.html b/SCR_preference_intervals/index.html new file mode 100644 index 00000000..12526432 --- /dev/null +++ b/SCR_preference_intervals/index.html @@ -0,0 +1,909 @@ + + + + + + + + + + + + + + + + + + + + + + + Preference Intervals - VoteKit + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + +
+ + +
+ +
+ + + + + + + + + +
+
+ + + +
+
+
+ + + + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

Preference Intervals

+

A preference interval stores information about a voter's preferences for candidates. We visualize this, unsurprisingly, as an interval. We take the interval \([0,1]\) and divide it into pieces, where each piece is proportional to the voter's preference for a particular candidate. If we have two candidates \(A,B\), we fix an order of our interval and say that the first piece will denote our preference for \(A,\) and the second for \(B\). As an abuse of notaton, one could write \((A,B)\), where we let \(A\) represent the candidate and the length of the interval. For example, if a voter likes candidate \(A\) a lot more than \(B\), they might have the preference interval \((0.9, 0.1)\). This can be extended to any number of candidates, as long as each entry is non-negative and the total of the entries is 1.

+

We have not said how this preference interval actually gets translated into a ranked ballot for a particular voter. That we leave up to the ballot generator models, like the Plackett-Luce model.

+

It should be remarked that there is a difference, at least to VoteKit, between the intervals \((0.9,0.1,0.0)\) and \((0.9,0.1)\). While both say there is no preference for a third candidate, if the latter interval is fed into VoteKit, that third candidate will never appear on a generated ballot. If we feed it the former interval, the third candidate will always appear at the bottom of the ballot.

+

+

VoteKit provides an option, from_params, which allows you to randomly generate preference intervals. For more on how this is done, see the page on Simplices.

+ + + + + + + + + + + + + +
+
+ + + + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/SCR_simplex/index.html b/SCR_simplex/index.html new file mode 100644 index 00000000..3cbe077d --- /dev/null +++ b/SCR_simplex/index.html @@ -0,0 +1,1090 @@ + + + + + + + + + + + + + + + + + + + + + + + Simplices in Social Choice - VoteKit + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + +
+ + +
+ +
+ + + + + + + + + +
+
+ + + +
+
+
+ + + + + + + +
+
+
+ + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

Simplices in Social Choice

+

Candidate Simplex

+

There is a unique correspondence between preference intervals and points in the candidate simplex. +This will be easiest to visualize with three candidates; let's call them \(A,B,C\). Our candidate simplex is a triangle, with each vertex representing one of the candidates. +If a point on the simplex is close to vertex \(A\), that means the point represents a preference interval with strong preference for \(A\) (likewise for \(B\) or \(C\)).

+

png

+

More formally, we have vectors \(e_A = (1,0,0), e_B = (0,1,0), e_C = (0,0,1)\). Each point on the triangle is a vector \((a,b,c)\) where \(a+b+c=1\) and \(a,b,c\ge 0\). That is, each point is a convex combination of the vectors \(e_A, e_B,e_C\). The value of \(a\) denotes someone's "preference" for \(A\). Thus, a point in the candidate simplex is precisely a preference interval for the candidates!

+

The candidate simplex extends to an arbitrary number of candidates.

+

Ballot Simplex

+

The ballot simplex is the same thing as the candidate simplex, except now the vertices of the simplex represent full linear rankings. +So in the case of 3 candidates, we have \(3!=6\) vertices, one for each permutation of the ranking \(A>B>C\). +A point in the ballot simplex represents a probability distribution over these full linear rankings. +This is much harder to visualize since we're stuck in 3 dimensions! +png

+

Read about the BallotSimplex object.

+

Dirichlet Distribution

+

Throughout VoteKit, it will be useful to be able to sample from the candidate simplex (if we want to generate preference intervals) or the ballot simplex (if we want a distribution on rankings). How will we sample from the simplex? The Dirichlet distribution!

+

In what follows, we will presume we are discussing the candidate simplex, but it all applies to the ballot simplex as well. The Dirichlet distribution is a probability distribution on the simplex. We parameterize it with a value \(\alpha \in (0,\infty)\). +As \(\alpha\to \infty\), the mass of the distribution moves to the center of the simplex. This means we are more likely to sample preference intervals that have equal support for all candidates. As \(\alpha\to 0\), the mass moves to the vertices. This means we are more likely to sample preference intervals that have strong support for one candidate. +When \(\alpha=1\), all bets are off. In this regime, we have no knowledge of which candidates are likely to receive support.

+

The value \(\alpha\) is never allowed to be 0 or \(\infty\), so VoteKit uses an arbitrary large number (\(10^{20}\)) and an arbitrary small number \((10^{-10})\). When members of MGGG have done experiments for studies, they have taken \(\alpha = 1/2\) to be small and \(\alpha = 2\) to be big.

+

png

+

Multiple Blocs

+

Cohesion Parameters

+

When there are multiple blocs, or types, of voters, we utilize cohesion parameters to measure how much voters prefer candidates from their own bloc versus the opposing blocs. In our name models, like name_PlackettLuce or name_BradleyTerry, the cohesion parameters operate as follows. Suppose there are two blocs of voters, \(X,Y\). We assume that voters from the \(X\) bloc have some underlying preference interval \(I_{XX}\) for candidates within their bloc, and a different underlying preference interval \(I_{XY}\) for the candidates in the opposing bloc. In order to construct one preference interval for \(X\) voters, we take \(I_{XX}\) and scale it by \(\pi_X\), then we take \(I_{XY}\) and scale it by \(1-\pi_X\), and finally we concatenate the two. As a concrete example, if \(\pi_X = .75\), this means that 3/4 of the preference interval for \(X\) voters is taken up by candidates from the \(X\) bloc, and the other 1/4 by \(Y\) candidates.

+

+

In our slate models, like slate_PlackettLuce, the cohesion parameter is used to determine the probability of sampling a particular slate at each position in the ballot. How exactly this is done depends on the model. Then candidate names are filled in afterwards by sampling without replacement from each preference interval.

+

Combining Dirichlet and Cohesion

+

When there are multiple blocs of voters, we need more than one \(\alpha\) value for the Dirichlet distribution. Suppose there are two blocs of voters, \(X,Y\). Then we need four values, \(\alpha_{XX}, \alpha_{XY}, \alpha_{YX}, \alpha_{YY}\). The value \(\alpha_{XX}\) determines what kind of preferences \(X\) voters will have for \(X\) candidates. The value \(\alpha_{XY}\) determines what kind of preferences \(X\) voters have for \(Y\) candidates. We sample preference intervals from the candidate simplex using these \(\alpha\) values, and then use cohesion parameters to combine them into a single interval, one for each bloc. This is how from_params initializes different ballot generator models.

+ + + + + + + + + + + + + +
+
+ + + + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/api/index.html b/api/index.html new file mode 100644 index 00000000..d40a80a2 --- /dev/null +++ b/api/index.html @@ -0,0 +1,26451 @@ + + + + + + + + + + + + + + + + + + + + + + + API Reference - VoteKit + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + Skip to content + + +
+
+ +
+ + + + +
+ + +
+ +
+ + + + + + + + + +
+
+ + + + + + + + + + + +
+
+
+ + + +
+
+
+ + + +
+
+ + + + + + + +

API Reference

+

Objects

+ + +
+ + + + +
+ + + +
+ + + + + + + + +
+ + + +

+ Ballot + + +

+ + +
+ + +

Ballot class, contains ranking and assigned weight.

+

Attributes +ranking +: tuple of candidate ranking. Entry \(i\) of the tuple is a frozenset of candidates ranked + in position \(i\).

+

weight +: (Fraction) weight assigned to a given a ballot. Defaults to 1.

+

voter_set +: optional set of voters who cast a given a ballot.

+

id +: optional ballot id.

+ +
+ Source code in src/votekit/ballot.py +
 8
+ 9
+10
+11
+12
+13
+14
+15
+16
+17
+18
+19
+20
+21
+22
+23
+24
+25
+26
+27
+28
+29
+30
+31
+32
+33
+34
+35
+36
+37
+38
+39
+40
+41
+42
+43
+44
+45
+46
+47
+48
+49
+50
+51
+52
+53
+54
+55
+56
+57
+58
+59
+60
+61
+62
+63
+64
+65
+66
+67
+68
+69
+70
+71
+72
+73
+74
+75
+76
+77
+78
+79
+80
+81
+82
+83
+84
+85
+86
+87
+88
@dataclass(frozen=True, config=ConfigDict(arbitrary_types_allowed=True))
+class Ballot:
+    """
+    Ballot class, contains ranking and assigned weight.
+
+    **Attributes**
+    `ranking`
+    :   tuple of candidate ranking. Entry $i$ of the tuple is a frozenset of candidates ranked
+        in position $i$.
+
+    `weight`
+    :   (Fraction) weight assigned to a given a ballot. Defaults to 1.
+
+    `voter_set`
+    :   optional set of voters who cast a given a ballot.
+
+    `id`
+    :   optional ballot id.
+    """
+
+    ranking: tuple[frozenset, ...] = field(default_factory=tuple)
+    weight: Fraction = Fraction(1, 1)
+    voter_set: Optional[set[str]] = None
+    id: Optional[str] = None
+
+    def __post_init__(self):
+        # converts weight to a Fraction if an integer or float
+        if not isinstance(self.weight, Fraction):
+            object.__setattr__(
+                self, "weight", Fraction(self.weight).limit_denominator()
+            )
+
+    def __eq__(self, other):
+        # Check type
+        if not isinstance(other, Ballot):
+            return False
+
+        # Check id
+        if self.id is not None:
+            if self.id != other.id:
+                return False
+
+        # Check ranking
+        if self.ranking != other.ranking:
+            return False
+
+        # Check weight
+        if self.weight != other.weight:
+            return False
+
+        # Check voters
+        if self.voter_set is not None:
+            if self.voter_set != other.voter_set:
+                return False
+
+        return True
+
+    def __hash__(self):
+        return hash(self.ranking)
+
+    def __str__(self):
+        weight_str = f"Weight: {self.weight}\n"
+        ranking_str = "Ballot\n"
+
+        if self.ranking:
+            for i, s in enumerate(self.ranking):
+                # display number and candidates
+                ranking_str += f"{i+1}.) "
+                for c in s:
+                    ranking_str += f"{c}, "
+
+                # if tie
+                if len(s) > 1:
+                    ranking_str += "(tie)"
+                ranking_str += "\n"
+        else:
+            ranking_str += "Empty\n"
+
+        return ranking_str + weight_str
+
+    __repr__ = __str__
+
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+ + + + +
+ +
+ +
+ +
+ + + + +
+ + + +
+ + + + + + + + +
+ + + +

+ PreferenceInterval + + +

+ + +
+ + +

PreferenceInterval class, contains preference for individual candidates stored as relative +share of the interval [0,1].

+

Attributes

+

interval +: dictionary (candidate, support). A dictionary representing the given PreferenceInterval. + The keys are candidate names, and the values are floats representing that candidates + share of the interval. Does not have to sum to one, the init method will renormalize.

+

candidates +: frozenset. A frozenset of candidates (with zero and non-zero support)

+

non_zero_cands +: frozenset. A frozenset of candidates with non-zero support.

+

zero_cands +: frozenset. A frozenset of candidates with zero support.

+

Methods

+

from_dirichlet +: sample a PreferenceInterval from the Dirichlet distribution on the candidate simplex.

+

normalize +: normalize the support values of the PreferenceInterval to sum to 1.

+

remove_zero_support_cands +: remove candidates with zero support from the interval and store them in the attribute + zero_cands.

+ +
+ Source code in src/votekit/pref_interval.py +
 46
+ 47
+ 48
+ 49
+ 50
+ 51
+ 52
+ 53
+ 54
+ 55
+ 56
+ 57
+ 58
+ 59
+ 60
+ 61
+ 62
+ 63
+ 64
+ 65
+ 66
+ 67
+ 68
+ 69
+ 70
+ 71
+ 72
+ 73
+ 74
+ 75
+ 76
+ 77
+ 78
+ 79
+ 80
+ 81
+ 82
+ 83
+ 84
+ 85
+ 86
+ 87
+ 88
+ 89
+ 90
+ 91
+ 92
+ 93
+ 94
+ 95
+ 96
+ 97
+ 98
+ 99
+100
+101
+102
+103
+104
+105
+106
+107
+108
+109
+110
+111
+112
+113
+114
+115
+116
+117
+118
+119
+120
+121
+122
+123
+124
+125
+126
+127
+128
+129
+130
+131
+132
+133
+134
+135
+136
+137
+138
+139
+140
+141
+142
+143
+144
+145
+146
+147
+148
+149
+150
+151
+152
class PreferenceInterval:
+    """
+    PreferenceInterval class, contains preference for individual candidates stored as relative
+    share of the interval [0,1].
+
+    **Attributes**
+
+    `interval`
+    :   dictionary (candidate, support). A dictionary representing the given PreferenceInterval.
+        The keys are candidate names, and the values are floats representing that candidates
+        share of the interval. Does not have to sum to one, the init method will renormalize.
+
+    `candidates`
+    : frozenset. A frozenset of candidates (with zero and non-zero support)
+
+    `non_zero_cands`
+    : frozenset. A frozenset of candidates with non-zero support.
+
+    `zero_cands`
+    : frozenset. A frozenset of candidates with zero support.
+
+
+    **Methods**
+
+    `from_dirichlet`
+    : sample a PreferenceInterval from the Dirichlet distribution on the candidate simplex.
+
+    `normalize`
+    : normalize the support values of the PreferenceInterval to sum to 1.
+
+    `remove_zero_support_cands`
+    : remove candidates with zero support from the interval and store them in the attribute
+        `zero_cands`.
+    """
+
+    # TODO frozendict, frozenclass
+
+    def __init__(self, interval: dict):
+        self.interval = types.MappingProxyType(interval)
+        self.candidates = frozenset(self.interval.keys())
+
+        self.zero_cands: frozenset = frozenset()
+        self.non_zero_cands: frozenset = frozenset()
+        self._remove_zero_support_cands()
+        self._normalize()
+
+    @classmethod
+    def from_dirichlet(cls, candidates: list[str], alpha: float):
+        """
+        Samples a PreferenceInterval from the Dirichlet distribution on the candidate simplex.
+        Alpha tends to 0 is strong support, alpha tends to infinity is uniform support, alpha = 1
+        is all bets are off.
+        """
+        probs = list(np.random.default_rng().dirichlet(alpha=[alpha] * len(candidates)))
+
+        return cls({c: s for c, s in zip(candidates, probs)})
+
+    def _normalize(self):
+        """
+        Normalize a PreferenceInterval so the support values sum to 1.
+        """
+        summ = sum(self.interval.values())
+
+        if summ == 0:
+            raise ZeroDivisionError("There are no candidates with non-zero support.")
+
+        self.interval = types.MappingProxyType(
+            {c: s / summ for c, s in self.interval.items()}
+        )
+
+    def _remove_zero_support_cands(self):
+        """
+        Remove candidates with zero support from the interval. Store candidates
+        with zero support as a set in the attribute `zero_cands`.
+
+        Should only be run once.
+        """
+
+        if not self.zero_cands and not self.non_zero_cands:
+            self.zero_cands = frozenset([c for c, s in self.interval.items() if s == 0])
+            self.interval = types.MappingProxyType(
+                {c: s for c, s in self.interval.items() if s > 0}
+            )
+            self.non_zero_cands = frozenset(self.interval.keys())
+
+    def __eq__(self, other):
+        if not isinstance(other, PreferenceInterval):
+            raise TypeError("Both types must be PreferenceInterval.")
+
+        if not self.zero_cands == other.zero_cands:
+            return False
+
+        if not self.non_zero_cands == other.non_zero_cands:
+            return False
+
+        if not len(self.interval) == len(other.interval):
+            return False
+
+        else:
+            return all(
+                round(other.interval[key], 8) == round(value, 8)
+                for key, value in self.interval.items()
+            )
+
+    def __repr__(self):
+        printed_interval = {c: round(v, 4) for c, v in self.interval.items()}
+        return str(printed_interval)
+
+
+ + + +
+ + + + + + + + + + +
+ + + +

+ from_dirichlet(candidates, alpha) + + + classmethod + + +

+ + +
+ +

Samples a PreferenceInterval from the Dirichlet distribution on the candidate simplex. +Alpha tends to 0 is strong support, alpha tends to infinity is uniform support, alpha = 1 +is all bets are off.

+ +
+ Source code in src/votekit/pref_interval.py +
 92
+ 93
+ 94
+ 95
+ 96
+ 97
+ 98
+ 99
+100
+101
@classmethod
+def from_dirichlet(cls, candidates: list[str], alpha: float):
+    """
+    Samples a PreferenceInterval from the Dirichlet distribution on the candidate simplex.
+    Alpha tends to 0 is strong support, alpha tends to infinity is uniform support, alpha = 1
+    is all bets are off.
+    """
+    probs = list(np.random.default_rng().dirichlet(alpha=[alpha] * len(candidates)))
+
+    return cls({c: s for c, s in zip(candidates, probs)})
+
+
+
+ +
+ + + +
+ +
+ + +
+ + + +
+ + + +

+ combine_preference_intervals(intervals, proportions) + +

+ + +
+ +
Combine a list of preference intervals given a list of proportions used to reweight each
+interval.
+
+

Arguments +intervals +: list. A list of PreferenceInterval objects to combine.

+

proportions +: list. A list of floats used to reweight the PreferenceInterval objects. Proportion \(i\) will +reweight interval \(i\).

+ +
+ Source code in src/votekit/pref_interval.py +
 6
+ 7
+ 8
+ 9
+10
+11
+12
+13
+14
+15
+16
+17
+18
+19
+20
+21
+22
+23
+24
+25
+26
+27
+28
+29
+30
+31
+32
+33
+34
+35
+36
+37
+38
+39
+40
+41
+42
+43
def combine_preference_intervals(
+    intervals: list[PreferenceInterval], proportions: list[float]
+):
+    """
+        Combine a list of preference intervals given a list of proportions used to reweight each
+        interval.
+
+    **Arguments**
+    `intervals`
+    : list.  A list of PreferenceInterval objects to combine.
+
+    `proportions`
+    : list. A list of floats used to reweight the PreferenceInterval objects. Proportion $i$ will
+    reweight interval $i$.
+    """
+    if not (
+        len(frozenset.union(*[pi.candidates for pi in intervals]))
+        == sum(len(pi.candidates) for pi in intervals)
+    ):
+        raise ValueError("Intervals must have disjoint candidate sets")
+
+    if round(sum(proportions), 8) != 1:
+        raise ValueError("Proportions must sum to 1.")
+
+    sum_pi = PreferenceInterval(
+        interval={
+            key: value * prop
+            for pi, prop in zip(intervals, proportions)
+            for key, value in pi.interval.items()
+        }
+    )
+
+    # carry along the candidates with zero support
+    zero_cands = frozenset.union(*[pi.zero_cands for pi in intervals])
+
+    # need to union to ensure that if one of the proportions is 0 those candidates are saved
+    sum_pi.zero_cands = sum_pi.zero_cands.union(zero_cands)
+    return sum_pi
+
+
+
+ +
+ + + +
+ +
+ +
+ +
+ + + + +
+ + + +
+ + + + + + + + +
+ + + +

+ PreferenceProfile + + +

+ + +
+

+ Bases: BaseModel

+ + +

PreferenceProfile class, contains ballots and candidates for a given election.

+

Attributes

+

ballots +: list of Ballot objects.

+

candidates +: list of candidates.

+

Methods

+ +
+ Source code in src/votekit/pref_profile.py +
 11
+ 12
+ 13
+ 14
+ 15
+ 16
+ 17
+ 18
+ 19
+ 20
+ 21
+ 22
+ 23
+ 24
+ 25
+ 26
+ 27
+ 28
+ 29
+ 30
+ 31
+ 32
+ 33
+ 34
+ 35
+ 36
+ 37
+ 38
+ 39
+ 40
+ 41
+ 42
+ 43
+ 44
+ 45
+ 46
+ 47
+ 48
+ 49
+ 50
+ 51
+ 52
+ 53
+ 54
+ 55
+ 56
+ 57
+ 58
+ 59
+ 60
+ 61
+ 62
+ 63
+ 64
+ 65
+ 66
+ 67
+ 68
+ 69
+ 70
+ 71
+ 72
+ 73
+ 74
+ 75
+ 76
+ 77
+ 78
+ 79
+ 80
+ 81
+ 82
+ 83
+ 84
+ 85
+ 86
+ 87
+ 88
+ 89
+ 90
+ 91
+ 92
+ 93
+ 94
+ 95
+ 96
+ 97
+ 98
+ 99
+100
+101
+102
+103
+104
+105
+106
+107
+108
+109
+110
+111
+112
+113
+114
+115
+116
+117
+118
+119
+120
+121
+122
+123
+124
+125
+126
+127
+128
+129
+130
+131
+132
+133
+134
+135
+136
+137
+138
+139
+140
+141
+142
+143
+144
+145
+146
+147
+148
+149
+150
+151
+152
+153
+154
+155
+156
+157
+158
+159
+160
+161
+162
+163
+164
+165
+166
+167
+168
+169
+170
+171
+172
+173
+174
+175
+176
+177
+178
+179
+180
+181
+182
+183
+184
+185
+186
+187
+188
+189
+190
+191
+192
+193
+194
+195
+196
+197
+198
+199
+200
+201
+202
+203
+204
+205
+206
+207
+208
+209
+210
+211
+212
+213
+214
+215
+216
+217
+218
+219
+220
+221
+222
+223
+224
+225
+226
+227
+228
+229
+230
+231
+232
+233
+234
+235
+236
+237
+238
+239
+240
+241
+242
+243
+244
+245
+246
+247
+248
+249
+250
+251
+252
+253
+254
+255
+256
+257
+258
+259
+260
+261
+262
+263
+264
+265
+266
+267
+268
+269
+270
+271
+272
+273
+274
+275
+276
+277
+278
+279
+280
+281
+282
+283
+284
+285
+286
+287
+288
+289
+290
+291
+292
+293
+294
+295
+296
+297
+298
+299
+300
+301
+302
+303
+304
+305
+306
+307
+308
+309
+310
+311
+312
+313
+314
+315
+316
+317
+318
+319
class PreferenceProfile(BaseModel):
+    """
+    PreferenceProfile class, contains ballots and candidates for a given election.
+
+    **Attributes**
+
+    `ballots`
+    :   list of `Ballot` objects.
+
+    `candidates`
+    :   list of candidates.
+
+    **Methods**
+    """
+
+    ballots: list[Ballot] = []
+    candidates: Optional[list] = None
+    df: pd.DataFrame = pd.DataFrame()
+
+    @validator("candidates")
+    def cands_must_be_unique(cls, candidates: list) -> list:
+        if not len(set(candidates)) == len(candidates):
+            raise ValueError("all candidates must be unique")
+        return candidates
+
+    def get_ballots(self) -> list[Ballot]:
+        """
+        Returns:
+         List of ballots.
+        """
+        return self.ballots[:]
+
+    def get_candidates(self, received_votes: Optional[bool] = True) -> list:
+        """
+        Args:
+            received_votes: If True, only return candidates that received votes. Defaults
+                    to True.
+        Returns:
+          List of candidates.
+        """
+
+        if received_votes or not self.candidates:
+            unique_cands: set = set()
+            for ballot in self.ballots:
+                unique_cands.update(*ballot.ranking)
+
+            return list(unique_cands)
+        else:
+            return self.candidates
+
+    # can also cache
+    def num_ballots(self) -> Fraction:
+        """
+        Counts number of ballots based on assigned weight.
+
+        Returns:
+            Number of ballots cast.
+        """
+        num_ballots = Fraction(0)
+        for ballot in self.ballots:
+            num_ballots += ballot.weight
+
+        return num_ballots
+
+    def to_dict(self, standardize: bool = False) -> dict:
+        """
+        Converts to dictionary with keys = rankings and values = corresponding total weights.
+
+        Args:
+            standardize (Boolean): If True, divides the weight of each ballot
+                            by the total weight. Defaults to False.
+
+        Returns:
+            A dictionary with ranking (keys) and corresponding total weights (values).
+        """
+        num_ballots = self.num_ballots()
+        di: dict = {}
+        for ballot in self.ballots:
+            rank_tuple = tuple(next(iter(item)) for item in ballot.ranking)
+            if standardize:
+                weight = ballot.weight / num_ballots
+            else:
+                weight = ballot.weight
+            if rank_tuple not in di.keys():
+                di[rank_tuple] = weight
+            else:
+                di[rank_tuple] += weight
+        return di
+
+    class Config:
+        arbitrary_types_allowed = True
+
+    def to_csv(self, fpath: str):
+        """
+        Saves PreferenceProfile to CSV.
+
+        Args:
+            fpath: Path to the saved csv.
+        """
+        with open(fpath, "w", newline="") as csvfile:
+            fieldnames = ["weight", "ranking"]
+            writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
+            writer.writeheader()
+            for ballot in self.ballots:
+                writer.writerow({"weight": ballot.weight, "ranking": ballot.ranking})
+
+    def _create_df(self) -> pd.DataFrame:
+        """
+        Creates pandas DataFrame for display and building plots.
+        """
+        weights = []
+        ballots = []
+        for ballot in self.ballots:
+            part = []
+            for ranking in ballot.ranking:
+                if len(ranking) == 1:
+                    part.append(list(ranking)[0])
+
+                else:
+                    part.append(f"{ranking} (Tie)")
+
+            ballots.append(tuple(part))
+            weights.append(ballot.weight)
+
+        df = pd.DataFrame({"Ballots": ballots, "Weight": weights})
+
+        try:
+            df["Percent"] = df["Weight"] / df["Weight"].sum()
+        except ZeroDivisionError:
+            df["Percent"] = np.nan
+
+        # fill nans with zero for edge cases
+        df["Percent"] = df["Percent"].fillna(0.0)
+
+        def format_as_percent(frac):
+            return f"{float(frac):.2%}"
+
+        df["Percent"] = df["Percent"].apply(format_as_percent)
+        return df.reset_index(drop=True)
+
+    def head(
+        self,
+        n: int,
+        sort_by_weight: Optional[bool] = True,
+        percents: Optional[bool] = False,
+        totals: Optional[bool] = False,
+    ) -> pd.DataFrame:
+        """
+        Displays top-n ballots in profile.
+
+        Args:
+            n: Number of ballots to view.
+            sort_by_weight: If True, rank ballot from most to least votes. Defaults to True.
+            percents: If True, show voter share for a given ballot.
+            totals: If True, show total values for Percent and Weight.
+
+        Returns:
+            A dataframe with top-n ballots.
+        """
+        if self.df.empty:
+            self.df = self._create_df()
+
+        if sort_by_weight:
+            df = (
+                self.df.sort_values(by="Weight", ascending=False)
+                .head(n)
+                .reset_index(drop=True)
+            )
+        else:
+            df = self.df.head(n).reset_index(drop=True)
+
+        if totals:
+            df = self._sum_row(df)
+
+        if not percents:
+            return df.drop(columns="Percent")
+
+        return df
+
+    def tail(
+        self,
+        n: int,
+        sort_by_weight: Optional[bool] = True,
+        percents: Optional[bool] = False,
+        totals: Optional[bool] = False,
+    ) -> pd.DataFrame:
+        """
+        Displays bottom-n ballots in profile.
+
+        Args:
+            n: Number of ballots to view.
+            sort_by_weight: If True, rank ballot from least to most votes. Defaults to True.
+            percents: If True, show voter share for a given ballot.
+            totals: If True, show total values for Percent and Weight.
+
+        Returns:
+            A data frame with bottom-n ballots.
+        """
+
+        if self.df.empty:
+            self.df = self._create_df()
+
+        if sort_by_weight:
+            df = self.df.sort_values(by="Weight", ascending=True)
+            df["New Index"] = [x for x in range(len(self.df) - 1, -1, -1)]
+            df = df.set_index("New Index").head(n)
+            df.index.name = None
+
+        else:
+            df = self.df.iloc[::-1].head(n)
+
+        if totals:
+            df = self._sum_row(df)
+
+        if not percents:
+            return df.drop(columns="Percent")
+
+        return df
+
+    def __str__(self) -> str:
+        # Displays top 15 cast ballots or entire profile
+
+        if self.df.empty:
+            self.df = self._create_df()
+
+        if len(self.df) < 15:
+            return self.head(n=len(self.df), sort_by_weight=True).to_string(
+                index=False, justify="justify"
+            )
+
+        print(
+            f"PreferenceProfile too long, only showing 15 out of {len(self.df) } rows."
+        )
+        return self.head(n=15, sort_by_weight=True).to_string(
+            index=False, justify="justify"
+        )
+
+    # set repr to print outputs
+    __repr__ = __str__
+
+    def condense_ballots(self) -> PreferenceProfile:
+        """
+        Groups ballots by rankings and updates weights.
+
+        Returns:
+            A PreferenceProfile object with condensed ballot list.
+        """
+        ranking_to_index: dict = {}
+        weight_accumulator = {}
+
+        for ballot in self.ballots:
+            if ballot.ranking not in ranking_to_index:
+                ranking_to_index[ballot.ranking] = len(ranking_to_index)
+                weight_accumulator[ballot.ranking] = Fraction(0)
+
+            weight_accumulator[ballot.ranking] += ballot.weight
+
+        new_ballot_list = [
+            Ballot(ranking=tuple(map(frozenset, ranking)), weight=weight)
+            for ranking, weight in weight_accumulator.items()
+        ]
+
+        condensed_profile = PreferenceProfile(ballots=new_ballot_list)
+        return condensed_profile
+
+    def __eq__(self, other):
+        if not isinstance(other, PreferenceProfile):
+            return False
+        pp_1 = self.condense_ballots()
+        pp_2 = other.condense_ballots()
+        for b in pp_1.ballots:
+            if b not in pp_2.ballots:
+                return False
+        for b in pp_2.ballots:
+            if b not in pp_1.ballots:
+                return False
+        return True
+
+    def _sum_row(self, df: pd.DataFrame) -> pd.DataFrame:
+        """
+        Computes sum total for weight and percent column
+        """
+
+        def format_as_float(percent_str):
+            return float(percent_str.split("%")[0])
+
+        sum_row = {
+            "Ballot": "",
+            "Weight": f'{df["Weight"].sum()} out of {self.num_ballots()}',
+            "Percent": f'{df["Percent"].apply(format_as_float).sum():.2f} out of 100%',
+        }
+
+        df.loc["Totals"] = sum_row  # type: ignore
+
+        return df.fillna("")
+
+    def __add__(self, other):
+        """
+        Add two PreferenceProfiles by combining their ballot lists.
+        """
+        if isinstance(other, PreferenceProfile):
+            ballots = self.ballots + other.ballots
+            pp = PreferenceProfile(ballots=ballots)
+            pp.condense_ballots()
+            return pp
+        else:
+            raise TypeError(
+                "Unsupported operand type. Must be an instance of PreferenceProfile."
+            )
+
+
+ + + +
+ + + + + + + + + + +
+ + + +

+ __add__(other) + +

+ + +
+ +

Add two PreferenceProfiles by combining their ballot lists.

+ +
+ Source code in src/votekit/pref_profile.py +
307
+308
+309
+310
+311
+312
+313
+314
+315
+316
+317
+318
+319
def __add__(self, other):
+    """
+    Add two PreferenceProfiles by combining their ballot lists.
+    """
+    if isinstance(other, PreferenceProfile):
+        ballots = self.ballots + other.ballots
+        pp = PreferenceProfile(ballots=ballots)
+        pp.condense_ballots()
+        return pp
+    else:
+        raise TypeError(
+            "Unsupported operand type. Must be an instance of PreferenceProfile."
+        )
+
+
+
+ +
+ + +
+ + + +

+ condense_ballots() + +

+ + +
+ +

Groups ballots by rankings and updates weights.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ PreferenceProfile + +
+

A PreferenceProfile object with condensed ballot list.

+
+
+ +
+ Source code in src/votekit/pref_profile.py +
251
+252
+253
+254
+255
+256
+257
+258
+259
+260
+261
+262
+263
+264
+265
+266
+267
+268
+269
+270
+271
+272
+273
+274
def condense_ballots(self) -> PreferenceProfile:
+    """
+    Groups ballots by rankings and updates weights.
+
+    Returns:
+        A PreferenceProfile object with condensed ballot list.
+    """
+    ranking_to_index: dict = {}
+    weight_accumulator = {}
+
+    for ballot in self.ballots:
+        if ballot.ranking not in ranking_to_index:
+            ranking_to_index[ballot.ranking] = len(ranking_to_index)
+            weight_accumulator[ballot.ranking] = Fraction(0)
+
+        weight_accumulator[ballot.ranking] += ballot.weight
+
+    new_ballot_list = [
+        Ballot(ranking=tuple(map(frozenset, ranking)), weight=weight)
+        for ranking, weight in weight_accumulator.items()
+    ]
+
+    condensed_profile = PreferenceProfile(ballots=new_ballot_list)
+    return condensed_profile
+
+
+
+ +
+ + +
+ + + +

+ get_ballots() + +

+ + +
+ + + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ list[Ballot] + +
+

List of ballots.

+
+
+ +
+ Source code in src/votekit/pref_profile.py +
36
+37
+38
+39
+40
+41
def get_ballots(self) -> list[Ballot]:
+    """
+    Returns:
+     List of ballots.
+    """
+    return self.ballots[:]
+
+
+
+ +
+ + +
+ + + +

+ get_candidates(received_votes=True) + +

+ + +
+ + + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
received_votes + Optional[bool] + +
+

If True, only return candidates that received votes. Defaults + to True.

+
+
+ True +
+

Returns: + List of candidates.

+ +
+ Source code in src/votekit/pref_profile.py +
43
+44
+45
+46
+47
+48
+49
+50
+51
+52
+53
+54
+55
+56
+57
+58
+59
def get_candidates(self, received_votes: Optional[bool] = True) -> list:
+    """
+    Args:
+        received_votes: If True, only return candidates that received votes. Defaults
+                to True.
+    Returns:
+      List of candidates.
+    """
+
+    if received_votes or not self.candidates:
+        unique_cands: set = set()
+        for ballot in self.ballots:
+            unique_cands.update(*ballot.ranking)
+
+        return list(unique_cands)
+    else:
+        return self.candidates
+
+
+
+ +
+ + +
+ + + +

+ head(n, sort_by_weight=True, percents=False, totals=False) + +

+ + +
+ +

Displays top-n ballots in profile.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
n + int + +
+

Number of ballots to view.

+
+
+ required +
sort_by_weight + Optional[bool] + +
+

If True, rank ballot from most to least votes. Defaults to True.

+
+
+ True +
percents + Optional[bool] + +
+

If True, show voter share for a given ballot.

+
+
+ False +
totals + Optional[bool] + +
+

If True, show total values for Percent and Weight.

+
+
+ False +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ DataFrame + +
+

A dataframe with top-n ballots.

+
+
+ +
+ Source code in src/votekit/pref_profile.py +
151
+152
+153
+154
+155
+156
+157
+158
+159
+160
+161
+162
+163
+164
+165
+166
+167
+168
+169
+170
+171
+172
+173
+174
+175
+176
+177
+178
+179
+180
+181
+182
+183
+184
+185
+186
+187
+188
def head(
+    self,
+    n: int,
+    sort_by_weight: Optional[bool] = True,
+    percents: Optional[bool] = False,
+    totals: Optional[bool] = False,
+) -> pd.DataFrame:
+    """
+    Displays top-n ballots in profile.
+
+    Args:
+        n: Number of ballots to view.
+        sort_by_weight: If True, rank ballot from most to least votes. Defaults to True.
+        percents: If True, show voter share for a given ballot.
+        totals: If True, show total values for Percent and Weight.
+
+    Returns:
+        A dataframe with top-n ballots.
+    """
+    if self.df.empty:
+        self.df = self._create_df()
+
+    if sort_by_weight:
+        df = (
+            self.df.sort_values(by="Weight", ascending=False)
+            .head(n)
+            .reset_index(drop=True)
+        )
+    else:
+        df = self.df.head(n).reset_index(drop=True)
+
+    if totals:
+        df = self._sum_row(df)
+
+    if not percents:
+        return df.drop(columns="Percent")
+
+    return df
+
+
+
+ +
+ + +
+ + + +

+ num_ballots() + +

+ + +
+ +

Counts number of ballots based on assigned weight.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ Fraction + +
+

Number of ballots cast.

+
+
+ +
+ Source code in src/votekit/pref_profile.py +
62
+63
+64
+65
+66
+67
+68
+69
+70
+71
+72
+73
def num_ballots(self) -> Fraction:
+    """
+    Counts number of ballots based on assigned weight.
+
+    Returns:
+        Number of ballots cast.
+    """
+    num_ballots = Fraction(0)
+    for ballot in self.ballots:
+        num_ballots += ballot.weight
+
+    return num_ballots
+
+
+
+ +
+ + +
+ + + +

+ tail(n, sort_by_weight=True, percents=False, totals=False) + +

+ + +
+ +

Displays bottom-n ballots in profile.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
n + int + +
+

Number of ballots to view.

+
+
+ required +
sort_by_weight + Optional[bool] + +
+

If True, rank ballot from least to most votes. Defaults to True.

+
+
+ True +
percents + Optional[bool] + +
+

If True, show voter share for a given ballot.

+
+
+ False +
totals + Optional[bool] + +
+

If True, show total values for Percent and Weight.

+
+
+ False +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ DataFrame + +
+

A data frame with bottom-n ballots.

+
+
+ +
+ Source code in src/votekit/pref_profile.py +
190
+191
+192
+193
+194
+195
+196
+197
+198
+199
+200
+201
+202
+203
+204
+205
+206
+207
+208
+209
+210
+211
+212
+213
+214
+215
+216
+217
+218
+219
+220
+221
+222
+223
+224
+225
+226
+227
+228
def tail(
+    self,
+    n: int,
+    sort_by_weight: Optional[bool] = True,
+    percents: Optional[bool] = False,
+    totals: Optional[bool] = False,
+) -> pd.DataFrame:
+    """
+    Displays bottom-n ballots in profile.
+
+    Args:
+        n: Number of ballots to view.
+        sort_by_weight: If True, rank ballot from least to most votes. Defaults to True.
+        percents: If True, show voter share for a given ballot.
+        totals: If True, show total values for Percent and Weight.
+
+    Returns:
+        A data frame with bottom-n ballots.
+    """
+
+    if self.df.empty:
+        self.df = self._create_df()
+
+    if sort_by_weight:
+        df = self.df.sort_values(by="Weight", ascending=True)
+        df["New Index"] = [x for x in range(len(self.df) - 1, -1, -1)]
+        df = df.set_index("New Index").head(n)
+        df.index.name = None
+
+    else:
+        df = self.df.iloc[::-1].head(n)
+
+    if totals:
+        df = self._sum_row(df)
+
+    if not percents:
+        return df.drop(columns="Percent")
+
+    return df
+
+
+
+ +
+ + +
+ + + +

+ to_csv(fpath) + +

+ + +
+ +

Saves PreferenceProfile to CSV.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
fpath + str + +
+

Path to the saved csv.

+
+
+ required +
+ +
+ Source code in src/votekit/pref_profile.py +
103
+104
+105
+106
+107
+108
+109
+110
+111
+112
+113
+114
+115
def to_csv(self, fpath: str):
+    """
+    Saves PreferenceProfile to CSV.
+
+    Args:
+        fpath: Path to the saved csv.
+    """
+    with open(fpath, "w", newline="") as csvfile:
+        fieldnames = ["weight", "ranking"]
+        writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
+        writer.writeheader()
+        for ballot in self.ballots:
+            writer.writerow({"weight": ballot.weight, "ranking": ballot.ranking})
+
+
+
+ +
+ + +
+ + + +

+ to_dict(standardize=False) + +

+ + +
+ +

Converts to dictionary with keys = rankings and values = corresponding total weights.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
standardize + Boolean + +
+

If True, divides the weight of each ballot + by the total weight. Defaults to False.

+
+
+ False +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ dict + +
+

A dictionary with ranking (keys) and corresponding total weights (values).

+
+
+ +
+ Source code in src/votekit/pref_profile.py +
75
+76
+77
+78
+79
+80
+81
+82
+83
+84
+85
+86
+87
+88
+89
+90
+91
+92
+93
+94
+95
+96
+97
+98
def to_dict(self, standardize: bool = False) -> dict:
+    """
+    Converts to dictionary with keys = rankings and values = corresponding total weights.
+
+    Args:
+        standardize (Boolean): If True, divides the weight of each ballot
+                        by the total weight. Defaults to False.
+
+    Returns:
+        A dictionary with ranking (keys) and corresponding total weights (values).
+    """
+    num_ballots = self.num_ballots()
+    di: dict = {}
+    for ballot in self.ballots:
+        rank_tuple = tuple(next(iter(item)) for item in ballot.ranking)
+        if standardize:
+            weight = ballot.weight / num_ballots
+        else:
+            weight = ballot.weight
+        if rank_tuple not in di.keys():
+            di[rank_tuple] = weight
+        else:
+            di[rank_tuple] += weight
+    return di
+
+
+
+ +
+ + + +
+ +
+ + +
+ + + + +
+ +
+ +
+ +
+ + + + +
+ + + +
+ + + + + + + + +
+ + + +

+ ElectionState + + +

+ + +
+

+ Bases: BaseModel

+ + +

Class for storing information on each round of an election and the final outcome.

+

Attributes +curr_round +: current round number. Defaults to 0.

+

elected +: list of candidates who pass a threshold to win.

+

eliminated_cands +: list of candidates who were eliminated.

+

remaining +: list of candidates who are still in the running.

+

profile +: an instance of a PreferenceProfile object.

+

previous +: an instance of ElectionState representing the previous round.

+

Methods

+ +
+ Source code in src/votekit/election_state.py +
 13
+ 14
+ 15
+ 16
+ 17
+ 18
+ 19
+ 20
+ 21
+ 22
+ 23
+ 24
+ 25
+ 26
+ 27
+ 28
+ 29
+ 30
+ 31
+ 32
+ 33
+ 34
+ 35
+ 36
+ 37
+ 38
+ 39
+ 40
+ 41
+ 42
+ 43
+ 44
+ 45
+ 46
+ 47
+ 48
+ 49
+ 50
+ 51
+ 52
+ 53
+ 54
+ 55
+ 56
+ 57
+ 58
+ 59
+ 60
+ 61
+ 62
+ 63
+ 64
+ 65
+ 66
+ 67
+ 68
+ 69
+ 70
+ 71
+ 72
+ 73
+ 74
+ 75
+ 76
+ 77
+ 78
+ 79
+ 80
+ 81
+ 82
+ 83
+ 84
+ 85
+ 86
+ 87
+ 88
+ 89
+ 90
+ 91
+ 92
+ 93
+ 94
+ 95
+ 96
+ 97
+ 98
+ 99
+100
+101
+102
+103
+104
+105
+106
+107
+108
+109
+110
+111
+112
+113
+114
+115
+116
+117
+118
+119
+120
+121
+122
+123
+124
+125
+126
+127
+128
+129
+130
+131
+132
+133
+134
+135
+136
+137
+138
+139
+140
+141
+142
+143
+144
+145
+146
+147
+148
+149
+150
+151
+152
+153
+154
+155
+156
+157
+158
+159
+160
+161
+162
+163
+164
+165
+166
+167
+168
+169
+170
+171
+172
+173
+174
+175
+176
+177
+178
+179
+180
+181
+182
+183
+184
+185
+186
+187
+188
+189
+190
+191
+192
+193
+194
+195
+196
+197
+198
+199
+200
+201
+202
+203
+204
+205
+206
+207
+208
+209
+210
+211
+212
+213
+214
+215
+216
+217
+218
+219
+220
+221
+222
class ElectionState(BaseModel):
+    """
+    Class for storing information on each round of an election and the final outcome.
+
+    **Attributes**
+    `curr_round`
+    :   current round number. Defaults to 0.
+
+    `elected`
+    :   list of candidates who pass a threshold to win.
+
+    `eliminated_cands`
+    :   list of candidates who were eliminated.
+
+    `remaining`
+    :   list of candidates who are still in the running.
+
+    `profile`
+    :   an instance of a PreferenceProfile object.
+
+    `previous`
+    :   an instance of ElectionState representing the previous round.
+
+    **Methods**
+    """
+
+    curr_round: int = 0
+    elected: list[set[str]] = []
+    eliminated_cands: list[set[str]] = []
+    remaining: list[set[str]] = []
+    profile: PreferenceProfile
+    scores: dict = {}
+    previous: Optional["ElectionState"] = None
+
+    class Config:
+        allow_mutation = False
+
+    def winners(self) -> list[set[str]]:
+        """
+        Returns:
+         A list of elected candidates ordered from first round to current round.
+        """
+        if self.previous:
+            return self.previous.winners() + self.elected
+
+        return self.elected
+
+    def eliminated(self) -> list[set[str]]:
+        """
+        Returns:
+          A list of eliminated candidates ordered from current round to first round.
+        """
+        if self.previous:
+            return self.eliminated_cands + self.previous.eliminated()
+
+        return self.eliminated_cands
+
+    def rankings(self) -> list[set[str]]:
+        """
+        Returns:
+          List of all candidates in order of their ranking after each round, first the winners,\
+          then the eliminated candidates.
+        """
+        if self.remaining != [{}]:
+            return self.winners() + self.remaining + self.eliminated()
+
+        return self.winners() + self.eliminated()
+
+    def round_outcome(self, round: int) -> dict:
+        # {'elected':list[set[str]], 'eliminated':list[set[str]]}
+        """
+        Finds the outcome of a given round.
+
+        Args:
+            round (int): Round number.
+
+        Returns:
+          A dictionary with elected and eliminated candidates.
+        """
+        if self.curr_round == round:
+            return {
+                "Elected": self.elected,
+                "Eliminated": self.eliminated_cands,
+                "Remaining": self.remaining,
+            }
+        elif self.previous:
+            return self.previous.round_outcome(round)
+        else:
+            raise ValueError("Round number out of range")
+
+    def get_scores(self, round: int = curr_round) -> dict:
+        """
+        Returns a dictionary of the candidate scores for the inputted round.
+        Defaults to the last round
+        """
+        if round == 0 or round > self.curr_round:
+            raise ValueError('Round number out of range"')
+
+        if round == self.curr_round:
+            return self.scores
+
+        return self.previous.get_scores(self.curr_round - 1)  # type: ignore
+
+    def changed_rankings(self) -> dict:
+        """
+        Returns:
+            A dictionary with keys = candidate(s) who changed \
+                ranking from previous round and values = a tuple of (previous rank, new rank).
+        """
+
+        if not self.previous:
+            raise ValueError("This is the first round, cannot compare previous ranking")
+
+        prev_ranking: dict = candidate_position_dict(self.previous.rankings())
+        curr_ranking: dict = candidate_position_dict(self.rankings())
+        if curr_ranking == prev_ranking:
+            return {}
+
+        changes = {}
+        for candidate, index in curr_ranking.items():
+            if prev_ranking[candidate] != index:
+                changes[candidate] = (prev_ranking[candidate], index)
+        return changes
+
+    def status(self) -> pd.DataFrame:
+        """
+        Returns:
+          Data frame displaying candidate, status (elected, eliminated,
+            remaining), and the round their status updated.
+        """
+        all_cands = [c for s in self.rankings() for c in s]
+        status_df = pd.DataFrame(
+            {
+                "Candidate": all_cands,
+                "Status": ["Remaining"] * len(all_cands),
+                "Round": [self.curr_round] * len(all_cands),
+            }
+        )
+
+        for round in range(1, self.curr_round + 1):
+            results = self.round_outcome(round)
+            for status, ranking in results.items():
+                for s in ranking:
+                    for cand in s:
+                        tied_str = ""
+                        # if tie
+                        if len(s) > 1:
+                            remaining_cands = ", ".join(list(s.difference(cand)))
+                            tied_str = f" (tie with {remaining_cands})"
+
+                        status_df.loc[status_df["Candidate"] == cand, "Status"] = (
+                            status + tied_str
+                        )
+                        status_df.loc[status_df["Candidate"] == cand, "Round"] = round
+
+        return status_df
+
+    def to_dict(self, keep: list = []) -> dict:
+        """
+        Returns election results as a dictionary.
+
+        Args:
+            keep (list, optional): List of information to store in dictionary, should be subset of
+                "elected", "eliminated", "remaining", "ranking". Defaults to empty list,
+                which stores all information.
+
+        """
+        keys = ["elected", "eliminated", "remaining", "ranking"]
+        values: list = [
+            self.winners(),
+            self.eliminated(),
+            self.remaining,
+            self.rankings(),
+        ]
+
+        rv = {}
+        for key, values in zip(keys, values):
+            if keep and key not in keep:
+                continue
+            # pull out candidates from sets, if tied adds tuple of tied candidates
+            temp_lst = []
+            for cand_set in values:
+                if len(cand_set) > 1:
+                    temp_lst.append(tuple(cand_set))
+                else:
+                    temp_lst += [cand for cand in cand_set]
+            rv[key] = temp_lst
+
+        return rv
+
+    def to_json(self, file_path: Path, keep: list = []):
+        """
+        Saves election state object as a JSON file:
+
+        Args:
+            keep (list, optional): List of information to store in dictionary, should be subset of
+                "elected", "eliminated", "remaining", "ranking". Defaults to empty list,
+                which stores all information.
+        """
+
+        json_dict = json.dumps(self.to_dict(keep=keep))
+        with open(file_path, "w") as outfile:
+            outfile.write(json_dict)
+
+    def __str__(self):
+        show = self.status()
+        print(f"Current Round: {self.curr_round}")
+        return show.to_string(index=False, justify="justify")
+
+    __repr__ = __str__
+
+
+ + + +
+ + + + + + + + + + +
+ + + +

+ changed_rankings() + +

+ + +
+ + + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ dict + +
+

A dictionary with keys = candidate(s) who changed ranking from previous round and values = a tuple of (previous rank, new rank).

+
+
+ +
+ Source code in src/votekit/election_state.py +
116
+117
+118
+119
+120
+121
+122
+123
+124
+125
+126
+127
+128
+129
+130
+131
+132
+133
+134
+135
def changed_rankings(self) -> dict:
+    """
+    Returns:
+        A dictionary with keys = candidate(s) who changed \
+            ranking from previous round and values = a tuple of (previous rank, new rank).
+    """
+
+    if not self.previous:
+        raise ValueError("This is the first round, cannot compare previous ranking")
+
+    prev_ranking: dict = candidate_position_dict(self.previous.rankings())
+    curr_ranking: dict = candidate_position_dict(self.rankings())
+    if curr_ranking == prev_ranking:
+        return {}
+
+    changes = {}
+    for candidate, index in curr_ranking.items():
+        if prev_ranking[candidate] != index:
+            changes[candidate] = (prev_ranking[candidate], index)
+    return changes
+
+
+
+ +
+ + +
+ + + +

+ eliminated() + +

+ + +
+ + + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ list[set[str]] + +
+

A list of eliminated candidates ordered from current round to first round.

+
+
+ +
+ Source code in src/votekit/election_state.py +
60
+61
+62
+63
+64
+65
+66
+67
+68
def eliminated(self) -> list[set[str]]:
+    """
+    Returns:
+      A list of eliminated candidates ordered from current round to first round.
+    """
+    if self.previous:
+        return self.eliminated_cands + self.previous.eliminated()
+
+    return self.eliminated_cands
+
+
+
+ +
+ + +
+ + + +

+ get_scores(round=curr_round) + +

+ + +
+ +

Returns a dictionary of the candidate scores for the inputted round. +Defaults to the last round

+ +
+ Source code in src/votekit/election_state.py +
103
+104
+105
+106
+107
+108
+109
+110
+111
+112
+113
+114
def get_scores(self, round: int = curr_round) -> dict:
+    """
+    Returns a dictionary of the candidate scores for the inputted round.
+    Defaults to the last round
+    """
+    if round == 0 or round > self.curr_round:
+        raise ValueError('Round number out of range"')
+
+    if round == self.curr_round:
+        return self.scores
+
+    return self.previous.get_scores(self.curr_round - 1)  # type: ignore
+
+
+
+ +
+ + +
+ + + +

+ rankings() + +

+ + +
+ + + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ list[set[str]] + +
+

List of all candidates in order of their ranking after each round, first the winners, then the eliminated candidates.

+
+
+ +
+ Source code in src/votekit/election_state.py +
70
+71
+72
+73
+74
+75
+76
+77
+78
+79
def rankings(self) -> list[set[str]]:
+    """
+    Returns:
+      List of all candidates in order of their ranking after each round, first the winners,\
+      then the eliminated candidates.
+    """
+    if self.remaining != [{}]:
+        return self.winners() + self.remaining + self.eliminated()
+
+    return self.winners() + self.eliminated()
+
+
+
+ +
+ + +
+ + + +

+ round_outcome(round) + +

+ + +
+ +

Finds the outcome of a given round.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
round + int + +
+

Round number.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ dict + +
+

A dictionary with elected and eliminated candidates.

+
+
+ +
+ Source code in src/votekit/election_state.py +
 81
+ 82
+ 83
+ 84
+ 85
+ 86
+ 87
+ 88
+ 89
+ 90
+ 91
+ 92
+ 93
+ 94
+ 95
+ 96
+ 97
+ 98
+ 99
+100
+101
def round_outcome(self, round: int) -> dict:
+    # {'elected':list[set[str]], 'eliminated':list[set[str]]}
+    """
+    Finds the outcome of a given round.
+
+    Args:
+        round (int): Round number.
+
+    Returns:
+      A dictionary with elected and eliminated candidates.
+    """
+    if self.curr_round == round:
+        return {
+            "Elected": self.elected,
+            "Eliminated": self.eliminated_cands,
+            "Remaining": self.remaining,
+        }
+    elif self.previous:
+        return self.previous.round_outcome(round)
+    else:
+        raise ValueError("Round number out of range")
+
+
+
+ +
+ + +
+ + + +

+ status() + +

+ + +
+ + + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ DataFrame + +
+

Data frame displaying candidate, status (elected, eliminated, +remaining), and the round their status updated.

+
+
+ +
+ Source code in src/votekit/election_state.py +
137
+138
+139
+140
+141
+142
+143
+144
+145
+146
+147
+148
+149
+150
+151
+152
+153
+154
+155
+156
+157
+158
+159
+160
+161
+162
+163
+164
+165
+166
+167
+168
def status(self) -> pd.DataFrame:
+    """
+    Returns:
+      Data frame displaying candidate, status (elected, eliminated,
+        remaining), and the round their status updated.
+    """
+    all_cands = [c for s in self.rankings() for c in s]
+    status_df = pd.DataFrame(
+        {
+            "Candidate": all_cands,
+            "Status": ["Remaining"] * len(all_cands),
+            "Round": [self.curr_round] * len(all_cands),
+        }
+    )
+
+    for round in range(1, self.curr_round + 1):
+        results = self.round_outcome(round)
+        for status, ranking in results.items():
+            for s in ranking:
+                for cand in s:
+                    tied_str = ""
+                    # if tie
+                    if len(s) > 1:
+                        remaining_cands = ", ".join(list(s.difference(cand)))
+                        tied_str = f" (tie with {remaining_cands})"
+
+                    status_df.loc[status_df["Candidate"] == cand, "Status"] = (
+                        status + tied_str
+                    )
+                    status_df.loc[status_df["Candidate"] == cand, "Round"] = round
+
+    return status_df
+
+
+
+ +
+ + +
+ + + +

+ to_dict(keep=[]) + +

+ + +
+ +

Returns election results as a dictionary.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
keep + list + +
+

List of information to store in dictionary, should be subset of +"elected", "eliminated", "remaining", "ranking". Defaults to empty list, +which stores all information.

+
+
+ [] +
+ +
+ Source code in src/votekit/election_state.py +
170
+171
+172
+173
+174
+175
+176
+177
+178
+179
+180
+181
+182
+183
+184
+185
+186
+187
+188
+189
+190
+191
+192
+193
+194
+195
+196
+197
+198
+199
+200
+201
def to_dict(self, keep: list = []) -> dict:
+    """
+    Returns election results as a dictionary.
+
+    Args:
+        keep (list, optional): List of information to store in dictionary, should be subset of
+            "elected", "eliminated", "remaining", "ranking". Defaults to empty list,
+            which stores all information.
+
+    """
+    keys = ["elected", "eliminated", "remaining", "ranking"]
+    values: list = [
+        self.winners(),
+        self.eliminated(),
+        self.remaining,
+        self.rankings(),
+    ]
+
+    rv = {}
+    for key, values in zip(keys, values):
+        if keep and key not in keep:
+            continue
+        # pull out candidates from sets, if tied adds tuple of tied candidates
+        temp_lst = []
+        for cand_set in values:
+            if len(cand_set) > 1:
+                temp_lst.append(tuple(cand_set))
+            else:
+                temp_lst += [cand for cand in cand_set]
+        rv[key] = temp_lst
+
+    return rv
+
+
+
+ +
+ + +
+ + + +

+ to_json(file_path, keep=[]) + +

+ + +
+ +

Saves election state object as a JSON file:

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
keep + list + +
+

List of information to store in dictionary, should be subset of +"elected", "eliminated", "remaining", "ranking". Defaults to empty list, +which stores all information.

+
+
+ [] +
+ +
+ Source code in src/votekit/election_state.py +
203
+204
+205
+206
+207
+208
+209
+210
+211
+212
+213
+214
+215
def to_json(self, file_path: Path, keep: list = []):
+    """
+    Saves election state object as a JSON file:
+
+    Args:
+        keep (list, optional): List of information to store in dictionary, should be subset of
+            "elected", "eliminated", "remaining", "ranking". Defaults to empty list,
+            which stores all information.
+    """
+
+    json_dict = json.dumps(self.to_dict(keep=keep))
+    with open(file_path, "w") as outfile:
+        outfile.write(json_dict)
+
+
+
+ +
+ + +
+ + + +

+ winners() + +

+ + +
+ + + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ list[set[str]] + +
+

A list of elected candidates ordered from first round to current round.

+
+
+ +
+ Source code in src/votekit/election_state.py +
50
+51
+52
+53
+54
+55
+56
+57
+58
def winners(self) -> list[set[str]]:
+    """
+    Returns:
+     A list of elected candidates ordered from first round to current round.
+    """
+    if self.previous:
+        return self.previous.winners() + self.elected
+
+    return self.elected
+
+
+
+ +
+ + + +
+ +
+ + +
+ + + + +
+ +
+ +
+ +
+ + + + +
+ + + +
+ + + + + + + + +
+ + + +

+ BallotGraph + + +

+ + +
+

+ Bases: Graph

+ + +

Class to build ballot graphs.

+

Attributes

+

source +: data to create graph from, either PreferenceProfile object, number of + candidates, or list of candidates.

+

allow_partial +: if True, builds graph using all possible ballots, + if False, only uses total linear ordered ballots. + If building from a PreferenceProfile, defaults to True.

+

fix_short +: if True, auto completes ballots of length n-1 to n.

+

Methods

+ +
+ Source code in src/votekit/graphs/ballot_graph.py +
 14
+ 15
+ 16
+ 17
+ 18
+ 19
+ 20
+ 21
+ 22
+ 23
+ 24
+ 25
+ 26
+ 27
+ 28
+ 29
+ 30
+ 31
+ 32
+ 33
+ 34
+ 35
+ 36
+ 37
+ 38
+ 39
+ 40
+ 41
+ 42
+ 43
+ 44
+ 45
+ 46
+ 47
+ 48
+ 49
+ 50
+ 51
+ 52
+ 53
+ 54
+ 55
+ 56
+ 57
+ 58
+ 59
+ 60
+ 61
+ 62
+ 63
+ 64
+ 65
+ 66
+ 67
+ 68
+ 69
+ 70
+ 71
+ 72
+ 73
+ 74
+ 75
+ 76
+ 77
+ 78
+ 79
+ 80
+ 81
+ 82
+ 83
+ 84
+ 85
+ 86
+ 87
+ 88
+ 89
+ 90
+ 91
+ 92
+ 93
+ 94
+ 95
+ 96
+ 97
+ 98
+ 99
+100
+101
+102
+103
+104
+105
+106
+107
+108
+109
+110
+111
+112
+113
+114
+115
+116
+117
+118
+119
+120
+121
+122
+123
+124
+125
+126
+127
+128
+129
+130
+131
+132
+133
+134
+135
+136
+137
+138
+139
+140
+141
+142
+143
+144
+145
+146
+147
+148
+149
+150
+151
+152
+153
+154
+155
+156
+157
+158
+159
+160
+161
+162
+163
+164
+165
+166
+167
+168
+169
+170
+171
+172
+173
+174
+175
+176
+177
+178
+179
+180
+181
+182
+183
+184
+185
+186
+187
+188
+189
+190
+191
+192
+193
+194
+195
+196
+197
+198
+199
+200
+201
+202
+203
+204
+205
+206
+207
+208
+209
+210
+211
+212
+213
+214
+215
+216
+217
+218
+219
+220
+221
+222
+223
+224
+225
+226
+227
+228
+229
+230
+231
+232
+233
+234
+235
+236
+237
+238
+239
+240
+241
+242
+243
+244
+245
+246
+247
+248
+249
+250
+251
+252
+253
+254
+255
+256
+257
+258
+259
+260
+261
+262
+263
+264
+265
+266
+267
+268
+269
+270
+271
+272
+273
+274
+275
+276
+277
+278
+279
+280
+281
+282
+283
+284
+285
+286
+287
+288
+289
+290
+291
+292
+293
+294
+295
+296
+297
+298
+299
+300
+301
+302
+303
+304
+305
+306
+307
+308
+309
+310
+311
+312
+313
+314
+315
+316
+317
+318
+319
+320
+321
+322
+323
+324
+325
+326
+327
+328
+329
+330
+331
+332
+333
+334
+335
class BallotGraph(Graph):
+    """
+    Class to build ballot graphs.
+
+    **Attributes**
+
+    `source`
+    :   data to create graph from, either PreferenceProfile object, number of
+            candidates, or list of candidates.
+
+    `allow_partial`
+    :   if True, builds graph using all possible ballots,
+        if False, only uses total linear ordered ballots.
+        If building from a PreferenceProfile, defaults to True.
+
+    `fix_short`
+    : if True, auto completes ballots of length n-1 to n.
+
+    **Methods**
+    """
+
+    def __init__(
+        self,
+        source: Union[PreferenceProfile, int, list],
+        allow_partial: Optional[bool] = True,
+        fix_short: Optional[bool] = True,
+    ):
+        super().__init__()
+
+        self.profile = None
+        self.candidates = None
+        self.allow_partial = allow_partial
+
+        if isinstance(source, int):
+            self.num_cands = source
+            self.graph = self.build_graph(source)
+
+        if isinstance(source, list):
+            self.num_cands = len(source)
+            self.graph = self.build_graph(len(source))
+            self.candidates = source
+
+        if isinstance(source, PreferenceProfile):
+            self.profile = source
+            self.num_voters = source.num_ballots()
+            self.num_cands = len(source.get_candidates())
+            self.allow_partial = True
+            if not self.graph:
+                self.graph = self.build_graph(len(source.get_candidates()))
+            self.graph = self.from_profile(source, fix_short=fix_short)
+
+        self.num_voters = sum(self.node_weights.values())
+
+        # if no partial ballots allowed, create induced subgraph
+        if not self.allow_partial:
+            total_ballots = [n for n in self.graph.nodes() if len(n) == self.num_cands]
+            self.graph = self.graph.subgraph(total_ballots)
+
+        if not self.node_weights:
+            self.node_weights = {ballot: 0 for ballot in self.graph.nodes}
+
+    def _relabel(self, gr: nx.Graph, new_label: int, num_cands: int) -> nx.Graph:
+        """
+        Relabels nodes in gr based on new_label
+        """
+        node_map = {}
+        graph_nodes = list(gr.nodes)
+
+        for k in graph_nodes:
+            # add the value of new_label to every entry in every ballot
+            tmp = [new_label + y for y in k]
+
+            # reduce everything mod new_label
+            for i in range(len(tmp)):
+                if tmp[i] > num_cands:
+                    tmp[i] = tmp[i] - num_cands
+            node_map[k] = tuple([new_label] + tmp)
+
+        return nx.relabel_nodes(gr, node_map)
+
+    def build_graph(self, n: int) -> nx.Graph:  # ask Gabe about optimizing?
+        """
+        Builds graph of all possible ballots given a number of candiates.
+
+        Args:
+            n: Number of candidates in an election.
+
+        Returns:
+            A networkx graph.
+        """
+        Gc = nx.Graph()
+        # base cases
+        if n == 1:
+            Gc.add_nodes_from([(1)], weight=0, cast=False)
+
+        elif n == 2:
+            Gc.add_nodes_from([(1, 2), (2, 1)], weight=0, cast=False)
+            Gc.add_edges_from([((1, 2), (2, 1))])
+
+        elif n > 2:
+            G_prev = self.build_graph(n - 1)
+            for i in range(1, n + 1):
+                # add the node for the bullet vote i
+                Gc.add_node((i,), weight=0, cast=False)
+
+                # make the subgraph for the ballots where i is ranked first
+                G_corner = self._relabel(G_prev, i, n)
+
+                # add the components from that graph to the larger graph
+                Gc.add_nodes_from(G_corner.nodes, weight=0, cast=False)
+                Gc.add_edges_from(G_corner.edges)
+
+                # connect the bullet vote node to the appropriate vertices
+                if n == 3:
+                    Gc.add_edges_from([(k, (i,)) for k in G_corner.nodes])
+                else:
+                    Gc.add_edges_from(
+                        [(k, (i,)) for k in G_corner.nodes if len(k) == 2]
+                    )
+
+            nodes = Gc.nodes
+
+            new_edges = [
+                (bal, (bal[1], bal[0]) + bal[2:]) for bal in nodes if len(bal) >= 2
+            ]
+            Gc.add_edges_from(new_edges)
+
+        return Gc
+
+    def from_profile(
+        self, profile: PreferenceProfile, fix_short: Optional[bool] = True
+    ) -> nx.Graph:
+        """
+        Updates existing graph based on cast ballots from a PreferenceProfile,
+        or creates graph based on PreferenceProfile.
+
+        Args:
+            profile: PreferenceProfile assigned to graph.
+
+
+        Returns:
+            Graph based on PreferenceProfile, 'cast' node attribute indicates
+                    ballots cast in PreferenceProfile.
+        """
+        if not self.profile:
+            self.profile = profile
+
+        if not self.num_voters:
+            self.num_voters = profile.num_ballots()
+
+        self.candidates = profile.get_candidates()
+        ballots = profile.get_ballots()
+        self.cand_num = self._number_cands(tuple(self.candidates))
+        self.node_weights = {ballot: 0 for ballot in self.graph.nodes}
+
+        for ballot in ballots:
+            ballot_node = []
+            for position in ballot.ranking:
+                if len(position) > 1:
+                    raise ValueError(
+                        "ballots must be cleaned to resolve ties"
+                    )  # still unsure about ties
+                for cand in position:
+                    ballot_node.append(self.cand_num[cand])
+            if len(ballot_node) == len(self.candidates) - 1 and fix_short:
+                ballot_node = self.fix_short_ballot(
+                    ballot_node, list(self.cand_num.values())
+                )
+
+            if tuple(ballot_node) in self.graph.nodes:
+                self.graph.nodes[tuple(ballot_node)]["weight"] += ballot.weight
+                self.graph.nodes[tuple(ballot_node)]["cast"] = True
+                self.node_weights[tuple(ballot_node)] += ballot.weight
+
+        return self.graph
+
+    def fix_short_ballot(self, ballot: list, candidates: list) -> list:
+        """
+        Adds missing candidates to a short ballot.
+
+        Args:
+            ballot: A list of candidates on the ballot.
+            candidates: A list of all candidates.
+
+        Returns:
+            A new list with the missing candidates added to the end of the ballot.
+
+        """
+        missing = set(candidates).difference(set(ballot))
+
+        return ballot + list(missing)
+
+    def label_cands(self, candidates, to_display: Callable = all_nodes):
+        """
+        Assigns candidate labels to ballot graph for plotting.
+
+        Args:
+            candidates (list): A list of candidates.
+            to_display: A Boolean callable that takes in a graph and node,
+                        returns True if node should be displayed.
+        """
+
+        candidate_numbers = self._number_cands(tuple(candidates))
+
+        cand_dict = {value: key for key, value in candidate_numbers.items()}
+
+        cand_labels = {}
+        for node in self.graph.nodes:
+            if to_display(self.graph, node):
+                ballot = []
+                for num in node:
+                    ballot.append(cand_dict[num])
+
+                # label the ballot and give the number of votes
+                cand_labels[node] = (
+                    str(tuple(ballot)) + ": " + str(self.graph.nodes[node]["weight"])
+                )
+
+        return cand_labels
+
+    def label_weights(self, to_display: Callable = all_nodes):
+        """
+        Assigns weight labels to ballot graph for plotting.
+        Only shows weight if non-zero.
+
+        Args:
+            to_display: A Boolean callable that takes in a graph and node,
+                        returns True if node should be displayed.
+        """
+        node_labels = {}
+        for node in self.graph.nodes:
+            if to_display(self.graph, node):
+                # label the ballot and give the number of votes
+                if self.graph.nodes[node]["weight"] > 0:
+                    node_labels[node] = (
+                        str(node) + ": " + str(self.graph.nodes[node]["weight"])
+                    )
+                else:
+                    node_labels[node] = str(node)
+
+        return node_labels
+
+    @cache
+    def _number_cands(self, cands: tuple) -> dict:
+        """
+        Assigns numerical marker to candidates
+        """
+        legend = {}
+        for idx, cand in enumerate(cands):
+            legend[cand] = idx + 1
+
+        return legend
+
+    def draw(
+        self,
+        to_display: Callable = all_nodes,
+        neighborhoods: Optional[list[tuple]] = [],
+        show_cast: Optional[bool] = False,
+        labels: Optional[bool] = False,
+    ):
+        """
+        Visualize the graph.
+
+        Args:
+            to_display: A boolean function that takes the graph and a node as input,
+                returns True if you want that node displayed. Defaults to showing all nodes.
+            neighborhoods: A list of neighborhoods to display, given as tuple (node, radius).
+                            (ex. (n,1) gives all nodes within one step of n).
+            show_cast: If True, show only nodes with "cast" attribute = True.
+                        If False, show all nodes.
+            labels: If True, labels nodes with candidate names and vote totals.
+        """
+
+        def cast_nodes(graph, node):
+            return graph.nodes[node]["cast"]
+
+        def in_neighborhoods(graph, node):
+            centers = [node for node, radius in neighborhoods]
+            radii = [radius for node, radius in neighborhoods]
+
+            distances = [nx.shortest_path_length(graph, node, x) for x in centers]
+
+            return True in [d <= r for d, r in zip(distances, radii)]
+
+        if show_cast:
+            to_display = cast_nodes
+
+        if neighborhoods:
+            to_display = in_neighborhoods
+
+        ballots = [n for n in self.graph.nodes if to_display(self.graph, n)]
+
+        if labels:
+            if not self.candidates:
+                raise ValueError("no candidate names assigned")
+            node_labels = self.label_cands(self.candidates, to_display)
+
+        else:
+            node_labels = self.label_weights(to_display)
+
+            # if not labeling the nodes with candidates and graph is drawn from profile,
+            # print labeling dictionary
+            if self.profile and self.candidates:
+                print("The candidates are labeled as follows.")
+                cand_dict = self._number_cands(cands=tuple(self.candidates))
+                for cand, value in cand_dict.items():
+                    print(value, cand)
+
+        subgraph = self.graph.subgraph(ballots)
+
+        pos = nx.spring_layout(subgraph)
+        nx.draw_networkx(subgraph, pos=pos, with_labels=True, labels=node_labels)
+
+        # handles labels overlapping with margins
+        x_values, y_values = zip(*pos.values())
+        x_max, y_max = max(x_values), max(y_values)
+        x_min, y_min = min(x_values), min(y_values)
+        x_margin = (x_max - x_min) * 0.25
+        y_margin = (y_max - y_min) * 0.25
+        plt.xlim(x_min - x_margin, x_max + x_margin)
+        plt.ylim(y_min - y_margin, y_max + y_margin)
+        plt.show()
+
+
+ + + +
+ + + + + + + + + + +
+ + + +

+ build_graph(n) + +

+ + +
+ +

Builds graph of all possible ballots given a number of candiates.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
n + int + +
+

Number of candidates in an election.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ Graph + +
+

A networkx graph.

+
+
+ +
+ Source code in src/votekit/graphs/ballot_graph.py +
 94
+ 95
+ 96
+ 97
+ 98
+ 99
+100
+101
+102
+103
+104
+105
+106
+107
+108
+109
+110
+111
+112
+113
+114
+115
+116
+117
+118
+119
+120
+121
+122
+123
+124
+125
+126
+127
+128
+129
+130
+131
+132
+133
+134
+135
+136
+137
+138
+139
+140
+141
def build_graph(self, n: int) -> nx.Graph:  # ask Gabe about optimizing?
+    """
+    Builds graph of all possible ballots given a number of candiates.
+
+    Args:
+        n: Number of candidates in an election.
+
+    Returns:
+        A networkx graph.
+    """
+    Gc = nx.Graph()
+    # base cases
+    if n == 1:
+        Gc.add_nodes_from([(1)], weight=0, cast=False)
+
+    elif n == 2:
+        Gc.add_nodes_from([(1, 2), (2, 1)], weight=0, cast=False)
+        Gc.add_edges_from([((1, 2), (2, 1))])
+
+    elif n > 2:
+        G_prev = self.build_graph(n - 1)
+        for i in range(1, n + 1):
+            # add the node for the bullet vote i
+            Gc.add_node((i,), weight=0, cast=False)
+
+            # make the subgraph for the ballots where i is ranked first
+            G_corner = self._relabel(G_prev, i, n)
+
+            # add the components from that graph to the larger graph
+            Gc.add_nodes_from(G_corner.nodes, weight=0, cast=False)
+            Gc.add_edges_from(G_corner.edges)
+
+            # connect the bullet vote node to the appropriate vertices
+            if n == 3:
+                Gc.add_edges_from([(k, (i,)) for k in G_corner.nodes])
+            else:
+                Gc.add_edges_from(
+                    [(k, (i,)) for k in G_corner.nodes if len(k) == 2]
+                )
+
+        nodes = Gc.nodes
+
+        new_edges = [
+            (bal, (bal[1], bal[0]) + bal[2:]) for bal in nodes if len(bal) >= 2
+        ]
+        Gc.add_edges_from(new_edges)
+
+    return Gc
+
+
+
+ +
+ + +
+ + + +

+ draw(to_display=all_nodes, neighborhoods=[], show_cast=False, labels=False) + +

+ + +
+ +

Visualize the graph.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
to_display + Callable + +
+

A boolean function that takes the graph and a node as input, +returns True if you want that node displayed. Defaults to showing all nodes.

+
+
+ all_nodes +
neighborhoods + Optional[list[tuple]] + +
+

A list of neighborhoods to display, given as tuple (node, radius). + (ex. (n,1) gives all nodes within one step of n).

+
+
+ [] +
show_cast + Optional[bool] + +
+

If True, show only nodes with "cast" attribute = True. + If False, show all nodes.

+
+
+ False +
labels + Optional[bool] + +
+

If True, labels nodes with candidate names and vote totals.

+
+
+ False +
+ +
+ Source code in src/votekit/graphs/ballot_graph.py +
267
+268
+269
+270
+271
+272
+273
+274
+275
+276
+277
+278
+279
+280
+281
+282
+283
+284
+285
+286
+287
+288
+289
+290
+291
+292
+293
+294
+295
+296
+297
+298
+299
+300
+301
+302
+303
+304
+305
+306
+307
+308
+309
+310
+311
+312
+313
+314
+315
+316
+317
+318
+319
+320
+321
+322
+323
+324
+325
+326
+327
+328
+329
+330
+331
+332
+333
+334
+335
def draw(
+    self,
+    to_display: Callable = all_nodes,
+    neighborhoods: Optional[list[tuple]] = [],
+    show_cast: Optional[bool] = False,
+    labels: Optional[bool] = False,
+):
+    """
+    Visualize the graph.
+
+    Args:
+        to_display: A boolean function that takes the graph and a node as input,
+            returns True if you want that node displayed. Defaults to showing all nodes.
+        neighborhoods: A list of neighborhoods to display, given as tuple (node, radius).
+                        (ex. (n,1) gives all nodes within one step of n).
+        show_cast: If True, show only nodes with "cast" attribute = True.
+                    If False, show all nodes.
+        labels: If True, labels nodes with candidate names and vote totals.
+    """
+
+    def cast_nodes(graph, node):
+        return graph.nodes[node]["cast"]
+
+    def in_neighborhoods(graph, node):
+        centers = [node for node, radius in neighborhoods]
+        radii = [radius for node, radius in neighborhoods]
+
+        distances = [nx.shortest_path_length(graph, node, x) for x in centers]
+
+        return True in [d <= r for d, r in zip(distances, radii)]
+
+    if show_cast:
+        to_display = cast_nodes
+
+    if neighborhoods:
+        to_display = in_neighborhoods
+
+    ballots = [n for n in self.graph.nodes if to_display(self.graph, n)]
+
+    if labels:
+        if not self.candidates:
+            raise ValueError("no candidate names assigned")
+        node_labels = self.label_cands(self.candidates, to_display)
+
+    else:
+        node_labels = self.label_weights(to_display)
+
+        # if not labeling the nodes with candidates and graph is drawn from profile,
+        # print labeling dictionary
+        if self.profile and self.candidates:
+            print("The candidates are labeled as follows.")
+            cand_dict = self._number_cands(cands=tuple(self.candidates))
+            for cand, value in cand_dict.items():
+                print(value, cand)
+
+    subgraph = self.graph.subgraph(ballots)
+
+    pos = nx.spring_layout(subgraph)
+    nx.draw_networkx(subgraph, pos=pos, with_labels=True, labels=node_labels)
+
+    # handles labels overlapping with margins
+    x_values, y_values = zip(*pos.values())
+    x_max, y_max = max(x_values), max(y_values)
+    x_min, y_min = min(x_values), min(y_values)
+    x_margin = (x_max - x_min) * 0.25
+    y_margin = (y_max - y_min) * 0.25
+    plt.xlim(x_min - x_margin, x_max + x_margin)
+    plt.ylim(y_min - y_margin, y_max + y_margin)
+    plt.show()
+
+
+
+ +
+ + +
+ + + +

+ fix_short_ballot(ballot, candidates) + +

+ + +
+ +

Adds missing candidates to a short ballot.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
ballot + list + +
+

A list of candidates on the ballot.

+
+
+ required +
candidates + list + +
+

A list of all candidates.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ list + +
+

A new list with the missing candidates added to the end of the ballot.

+
+
+ +
+ Source code in src/votekit/graphs/ballot_graph.py +
190
+191
+192
+193
+194
+195
+196
+197
+198
+199
+200
+201
+202
+203
+204
def fix_short_ballot(self, ballot: list, candidates: list) -> list:
+    """
+    Adds missing candidates to a short ballot.
+
+    Args:
+        ballot: A list of candidates on the ballot.
+        candidates: A list of all candidates.
+
+    Returns:
+        A new list with the missing candidates added to the end of the ballot.
+
+    """
+    missing = set(candidates).difference(set(ballot))
+
+    return ballot + list(missing)
+
+
+
+ +
+ + +
+ + + +

+ from_profile(profile, fix_short=True) + +

+ + +
+ +

Updates existing graph based on cast ballots from a PreferenceProfile, +or creates graph based on PreferenceProfile.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
profile + PreferenceProfile + +
+

PreferenceProfile assigned to graph.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ Graph + +
+

Graph based on PreferenceProfile, 'cast' node attribute indicates + ballots cast in PreferenceProfile.

+
+
+ +
+ Source code in src/votekit/graphs/ballot_graph.py +
143
+144
+145
+146
+147
+148
+149
+150
+151
+152
+153
+154
+155
+156
+157
+158
+159
+160
+161
+162
+163
+164
+165
+166
+167
+168
+169
+170
+171
+172
+173
+174
+175
+176
+177
+178
+179
+180
+181
+182
+183
+184
+185
+186
+187
+188
def from_profile(
+    self, profile: PreferenceProfile, fix_short: Optional[bool] = True
+) -> nx.Graph:
+    """
+    Updates existing graph based on cast ballots from a PreferenceProfile,
+    or creates graph based on PreferenceProfile.
+
+    Args:
+        profile: PreferenceProfile assigned to graph.
+
+
+    Returns:
+        Graph based on PreferenceProfile, 'cast' node attribute indicates
+                ballots cast in PreferenceProfile.
+    """
+    if not self.profile:
+        self.profile = profile
+
+    if not self.num_voters:
+        self.num_voters = profile.num_ballots()
+
+    self.candidates = profile.get_candidates()
+    ballots = profile.get_ballots()
+    self.cand_num = self._number_cands(tuple(self.candidates))
+    self.node_weights = {ballot: 0 for ballot in self.graph.nodes}
+
+    for ballot in ballots:
+        ballot_node = []
+        for position in ballot.ranking:
+            if len(position) > 1:
+                raise ValueError(
+                    "ballots must be cleaned to resolve ties"
+                )  # still unsure about ties
+            for cand in position:
+                ballot_node.append(self.cand_num[cand])
+        if len(ballot_node) == len(self.candidates) - 1 and fix_short:
+            ballot_node = self.fix_short_ballot(
+                ballot_node, list(self.cand_num.values())
+            )
+
+        if tuple(ballot_node) in self.graph.nodes:
+            self.graph.nodes[tuple(ballot_node)]["weight"] += ballot.weight
+            self.graph.nodes[tuple(ballot_node)]["cast"] = True
+            self.node_weights[tuple(ballot_node)] += ballot.weight
+
+    return self.graph
+
+
+
+ +
+ + +
+ + + +

+ label_cands(candidates, to_display=all_nodes) + +

+ + +
+ +

Assigns candidate labels to ballot graph for plotting.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
candidates + list + +
+

A list of candidates.

+
+
+ required +
to_display + Callable + +
+

A Boolean callable that takes in a graph and node, + returns True if node should be displayed.

+
+
+ all_nodes +
+ +
+ Source code in src/votekit/graphs/ballot_graph.py +
206
+207
+208
+209
+210
+211
+212
+213
+214
+215
+216
+217
+218
+219
+220
+221
+222
+223
+224
+225
+226
+227
+228
+229
+230
+231
+232
def label_cands(self, candidates, to_display: Callable = all_nodes):
+    """
+    Assigns candidate labels to ballot graph for plotting.
+
+    Args:
+        candidates (list): A list of candidates.
+        to_display: A Boolean callable that takes in a graph and node,
+                    returns True if node should be displayed.
+    """
+
+    candidate_numbers = self._number_cands(tuple(candidates))
+
+    cand_dict = {value: key for key, value in candidate_numbers.items()}
+
+    cand_labels = {}
+    for node in self.graph.nodes:
+        if to_display(self.graph, node):
+            ballot = []
+            for num in node:
+                ballot.append(cand_dict[num])
+
+            # label the ballot and give the number of votes
+            cand_labels[node] = (
+                str(tuple(ballot)) + ": " + str(self.graph.nodes[node]["weight"])
+            )
+
+    return cand_labels
+
+
+
+ +
+ + +
+ + + +

+ label_weights(to_display=all_nodes) + +

+ + +
+ +

Assigns weight labels to ballot graph for plotting. +Only shows weight if non-zero.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
to_display + Callable + +
+

A Boolean callable that takes in a graph and node, + returns True if node should be displayed.

+
+
+ all_nodes +
+ +
+ Source code in src/votekit/graphs/ballot_graph.py +
234
+235
+236
+237
+238
+239
+240
+241
+242
+243
+244
+245
+246
+247
+248
+249
+250
+251
+252
+253
+254
def label_weights(self, to_display: Callable = all_nodes):
+    """
+    Assigns weight labels to ballot graph for plotting.
+    Only shows weight if non-zero.
+
+    Args:
+        to_display: A Boolean callable that takes in a graph and node,
+                    returns True if node should be displayed.
+    """
+    node_labels = {}
+    for node in self.graph.nodes:
+        if to_display(self.graph, node):
+            # label the ballot and give the number of votes
+            if self.graph.nodes[node]["weight"] > 0:
+                node_labels[node] = (
+                    str(node) + ": " + str(self.graph.nodes[node]["weight"])
+                )
+            else:
+                node_labels[node] = str(node)
+
+    return node_labels
+
+
+
+ +
+ + + +
+ +
+ + +
+ + + + +
+ +
+ +
+ +
+ + + + +
+ + + +
+ + + + + + + + +
+ + + +

+ PairwiseComparisonGraph + + +

+ + +
+

+ Bases: Graph

+ + +

Class to construct the pairwise comparison graph where nodes are candidates +and edges are pairwise preferences.

+

Attributes

+

profile +: PreferenceProfile to construct graph from.

+

ballot_length +: (optional) max length of ballot, defaults to longest possible ballot length.

+

Methods

+ +
+ Source code in src/votekit/graphs/pairwise_comparison_graph.py +
 12
+ 13
+ 14
+ 15
+ 16
+ 17
+ 18
+ 19
+ 20
+ 21
+ 22
+ 23
+ 24
+ 25
+ 26
+ 27
+ 28
+ 29
+ 30
+ 31
+ 32
+ 33
+ 34
+ 35
+ 36
+ 37
+ 38
+ 39
+ 40
+ 41
+ 42
+ 43
+ 44
+ 45
+ 46
+ 47
+ 48
+ 49
+ 50
+ 51
+ 52
+ 53
+ 54
+ 55
+ 56
+ 57
+ 58
+ 59
+ 60
+ 61
+ 62
+ 63
+ 64
+ 65
+ 66
+ 67
+ 68
+ 69
+ 70
+ 71
+ 72
+ 73
+ 74
+ 75
+ 76
+ 77
+ 78
+ 79
+ 80
+ 81
+ 82
+ 83
+ 84
+ 85
+ 86
+ 87
+ 88
+ 89
+ 90
+ 91
+ 92
+ 93
+ 94
+ 95
+ 96
+ 97
+ 98
+ 99
+100
+101
+102
+103
+104
+105
+106
+107
+108
+109
+110
+111
+112
+113
+114
+115
+116
+117
+118
+119
+120
+121
+122
+123
+124
+125
+126
+127
+128
+129
+130
+131
+132
+133
+134
+135
+136
+137
+138
+139
+140
+141
+142
+143
+144
+145
+146
+147
+148
+149
+150
+151
+152
+153
+154
+155
+156
+157
+158
+159
+160
+161
+162
+163
+164
+165
+166
+167
+168
+169
+170
+171
+172
+173
+174
+175
+176
+177
+178
+179
+180
+181
+182
+183
+184
+185
+186
+187
+188
+189
+190
+191
+192
+193
+194
+195
+196
+197
+198
+199
+200
+201
+202
+203
+204
+205
+206
+207
+208
+209
+210
+211
+212
+213
+214
+215
+216
+217
+218
+219
+220
+221
+222
+223
+224
+225
+226
+227
+228
+229
+230
+231
+232
+233
+234
+235
+236
+237
+238
+239
+240
+241
+242
+243
+244
+245
+246
+247
+248
+249
+250
+251
+252
+253
+254
+255
+256
+257
+258
+259
+260
+261
+262
+263
class PairwiseComparisonGraph(Graph):
+    """
+    Class to construct the pairwise comparison graph where nodes are candidates
+    and edges are pairwise preferences.
+
+    **Attributes**
+
+    `profile`
+    :   PreferenceProfile to construct graph from.
+
+    `ballot_length`
+    :   (optional) max length of ballot, defaults to longest possible ballot length.
+
+    **Methods**
+    """
+
+    def __init__(self, profile: PreferenceProfile, ballot_length=None):
+        self.ballot_length = ballot_length
+        if ballot_length is None:
+            self.ballot_length = len(profile.get_candidates())
+        full_profile = self.ballot_fill(profile, self.ballot_length)
+        self.profile = full_profile
+        self.candidates = self.profile.get_candidates()
+        self.pairwise_dict = self.compute_pairwise_dict()
+        self.pairwise_graph = self.build_graph()
+
+    def ballot_fill(self, profile: PreferenceProfile, ballot_length: int):
+        """
+        Fills incomplete ballots for pairwise comparison.
+
+        Args:
+            profile: PreferenceProfile to fill.
+            ballot_length: How long a ballot is.
+
+        Returns:
+            PreferenceProfile (PreferenceProfile): A PreferenceProfile with incomplete
+                ballots filled in.
+        """
+        cand_list = [{cand} for cand in profile.get_candidates()]
+        updated_ballot_list = []
+
+        for ballot in profile.get_ballots():
+            if len(ballot.ranking) < ballot_length:
+                missing_cands = [
+                    cand for cand in cand_list if cand not in ballot.ranking
+                ]
+                missing_cands_perms = list(
+                    permutations(missing_cands, len(missing_cands))
+                )
+                frac_freq = ballot.weight / (len(missing_cands_perms))
+                for perm in missing_cands_perms:
+                    updated_rank = ballot.ranking + tuple([frozenset(c) for c in perm])
+                    updated_ballot = Ballot(
+                        ranking=updated_rank, weight=Fraction(frac_freq, 1)
+                    )
+                    updated_ballot_list.append(updated_ballot)
+            else:
+                updated_ballot_list.append(ballot)
+        return PreferenceProfile(ballots=updated_ballot_list)
+
+    # Helper functions to make pairwise comparison graph
+    def head2head_count(self, cand1, cand2) -> Fraction:
+        """
+        Counts head to head comparisons between two candidates. Note that the given order
+        of the candidates matters here.
+
+        Args:
+            cand1 (str): The first candidate to compare.
+            cand2 (str): The second candidate to compare.
+
+        Returns:
+            A count of the number of times cand1 is preferred to cand2.
+        """
+        count = 0
+        ballots_list = self.profile.get_ballots()
+        for ballot in ballots_list:
+            rank_list = ballot.ranking
+            for s in rank_list:
+                if cand1 in s:
+                    count += ballot.weight
+                    break
+                elif cand2 in s:
+                    break
+        return Fraction(count)
+
+    def compute_pairwise_dict(self) -> dict:
+        """
+        Constructs dictionary where keys are tuples (cand_a, cand_b) containing
+        two candidates and values is the frequency cand_a is preferred to
+        cand_b.
+
+        Returns:
+            A dictionary with keys = (cand_a, cand_b) and values = frequency cand_a is preferred
+                to cand_b.
+        """
+        pairwise_dict = {}  # {(cand_a, cand_b): freq cand_a is preferred over cand_b}
+        cand_pairs = combinations(self.candidates, 2)
+
+        for pair in cand_pairs:
+            cand_a, cand_b = pair[0], pair[1]
+            head_2_head_dict = {
+                (cand_a, cand_b): self.head2head_count(cand_a, cand_b),
+                (cand_b, cand_a): self.head2head_count(cand_b, cand_a),
+            }
+            max_pair = max(zip(head_2_head_dict.values(), head_2_head_dict.keys()))
+            pairwise_dict[max_pair[1]] = abs(
+                self.head2head_count(cand_a, cand_b)
+                - self.head2head_count(cand_b, cand_a)
+            )
+
+            ## would display x:y instead of abs(x-y)
+            # winner, loser = max_pair[1]
+            # pairwise_dict[max_pair[1]] = f"{head_2_head_dict[(winner, loser)]}: \
+            # {head_2_head_dict[(loser, winner)]}"
+
+        return pairwise_dict
+
+    def build_graph(self) -> nx.DiGraph:
+        """
+        Builds the networkx pairwise comparison graph.
+
+        Returns:
+            The networkx digraph representing the pairwise comparison graph.
+        """
+        G = nx.DiGraph()
+        G.add_nodes_from(self.candidates)
+        for e in self.pairwise_dict.keys():
+            G.add_edge(e[0], e[1], weight=self.pairwise_dict[e])
+        return G
+
+    def draw(self, outfile=None):
+        """
+        Draws pairwise comparison graph.
+
+        Args:
+            outfile (str): The filepath to save the graph. Defaults to not saving.
+        """
+        G = self.pairwise_graph
+
+        pos = nx.circular_layout(G)
+        nx.draw_networkx(
+            G,
+            pos,
+            with_labels=True,
+            node_size=500,
+            node_color="skyblue",
+            edgelist=list(),
+        )
+        nx.draw_networkx_edges(
+            G,
+            pos,
+            edgelist=G.edges,
+            width=1.5,
+            edge_color="b",
+            arrows=True,
+            alpha=1,
+            node_size=1000,
+            arrowsize=25,
+        )
+        edge_labels = {(i, j): G[i][j]["weight"] for i, j in G.edges()}
+        nx.draw_networkx_edge_labels(
+            G, pos, edge_labels=edge_labels, label_pos=1 / 3, font_size=10
+        )
+        # Out stuff
+        if outfile is not None:
+            plt.savefig(outfile)
+        else:
+            plt.show()
+        plt.close()
+
+    # More complicated Requests
+    def has_condorcet_winner(self) -> bool:
+        """
+        Checks if graph has a condorcet winner.
+
+        Returns:
+            True if condorcet winner exists, False otherwise.
+        """
+        dominating_tiers = self.dominating_tiers()
+        if len(dominating_tiers[0]) == 1:
+            return True
+        return False
+
+    def get_condorcet_winner(self) -> str:
+        """
+        Returns the condorcet winner. Raises a ValueError if no condorcet winner.
+
+        Returns:
+            The condorcet winner.
+        """
+
+        if self.has_condorcet_winner():
+            return list(self.dominating_tiers()[0])[0]
+
+        else:
+            raise ValueError("There is no condorcet winner.")
+
+    @cache
+    def dominating_tiers(self) -> list[set]:
+        """
+        Finds dominating tiers within an election.
+
+        Returns:
+            A list of dominating tiers.
+        """
+        beat_set_size_dict = {}
+        for i, cand in enumerate(self.candidates):
+            beat_set = set()
+            for j, other_cand in enumerate(self.candidates):
+                if i != j:
+                    if nx.has_path(self.pairwise_graph, cand, other_cand):
+                        beat_set.add(other_cand)
+            beat_set_size_dict[cand] = len(beat_set)
+
+        # We want to return candidates sorted and grouped by beat set size
+        tier_dict: dict = {}
+        for k, v in beat_set_size_dict.items():
+            if v in tier_dict.keys():
+                tier_dict[v].add(k)
+            else:
+                tier_dict[v] = {k}
+        tier_list = [tier_dict[k] for k in sorted(tier_dict.keys(), reverse=True)]
+        return tier_list
+
+    def has_condorcet_cycles(self) -> bool:
+        """
+        Checks if graph has any condorcet cycles, which we define as any cycle of length
+            greater than 2 in the graph.
+
+        Returns:
+            True if condorcet cycles exists, False otherwise.
+        """
+
+        if len(self.get_condorcet_cycles()) > 0:
+            return True
+
+        else:
+            return False
+
+    @cache
+    def get_condorcet_cycles(self) -> list:
+        """
+        Returns a list of condorcet cycles in the graph, which we define as any cycle of length
+            greater than 2.
+
+        Returns:
+            List of condorcet cycles sorted by length.
+        """
+
+        G = self.pairwise_graph
+        list_of_cycles = nx.recursive_simple_cycles(G)
+        return sorted(list_of_cycles, key=lambda x: len(x))
+
+
+ + + +
+ + + + + + + + + + +
+ + + +

+ ballot_fill(profile, ballot_length) + +

+ + +
+ +

Fills incomplete ballots for pairwise comparison.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
profile + PreferenceProfile + +
+

PreferenceProfile to fill.

+
+
+ required +
ballot_length + int + +
+

How long a ballot is.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
Name TypeDescription
PreferenceProfile + PreferenceProfile + +
+

A PreferenceProfile with incomplete +ballots filled in.

+
+
+ +
+ Source code in src/votekit/graphs/pairwise_comparison_graph.py +
38
+39
+40
+41
+42
+43
+44
+45
+46
+47
+48
+49
+50
+51
+52
+53
+54
+55
+56
+57
+58
+59
+60
+61
+62
+63
+64
+65
+66
+67
+68
+69
+70
def ballot_fill(self, profile: PreferenceProfile, ballot_length: int):
+    """
+    Fills incomplete ballots for pairwise comparison.
+
+    Args:
+        profile: PreferenceProfile to fill.
+        ballot_length: How long a ballot is.
+
+    Returns:
+        PreferenceProfile (PreferenceProfile): A PreferenceProfile with incomplete
+            ballots filled in.
+    """
+    cand_list = [{cand} for cand in profile.get_candidates()]
+    updated_ballot_list = []
+
+    for ballot in profile.get_ballots():
+        if len(ballot.ranking) < ballot_length:
+            missing_cands = [
+                cand for cand in cand_list if cand not in ballot.ranking
+            ]
+            missing_cands_perms = list(
+                permutations(missing_cands, len(missing_cands))
+            )
+            frac_freq = ballot.weight / (len(missing_cands_perms))
+            for perm in missing_cands_perms:
+                updated_rank = ballot.ranking + tuple([frozenset(c) for c in perm])
+                updated_ballot = Ballot(
+                    ranking=updated_rank, weight=Fraction(frac_freq, 1)
+                )
+                updated_ballot_list.append(updated_ballot)
+        else:
+            updated_ballot_list.append(ballot)
+    return PreferenceProfile(ballots=updated_ballot_list)
+
+
+
+ +
+ + +
+ + + +

+ build_graph() + +

+ + +
+ +

Builds the networkx pairwise comparison graph.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ DiGraph + +
+

The networkx digraph representing the pairwise comparison graph.

+
+
+ +
+ Source code in src/votekit/graphs/pairwise_comparison_graph.py +
129
+130
+131
+132
+133
+134
+135
+136
+137
+138
+139
+140
def build_graph(self) -> nx.DiGraph:
+    """
+    Builds the networkx pairwise comparison graph.
+
+    Returns:
+        The networkx digraph representing the pairwise comparison graph.
+    """
+    G = nx.DiGraph()
+    G.add_nodes_from(self.candidates)
+    for e in self.pairwise_dict.keys():
+        G.add_edge(e[0], e[1], weight=self.pairwise_dict[e])
+    return G
+
+
+
+ +
+ + +
+ + + +

+ compute_pairwise_dict() + +

+ + +
+ +

Constructs dictionary where keys are tuples (cand_a, cand_b) containing +two candidates and values is the frequency cand_a is preferred to +cand_b.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ dict + +
+

A dictionary with keys = (cand_a, cand_b) and values = frequency cand_a is preferred +to cand_b.

+
+
+ +
+ Source code in src/votekit/graphs/pairwise_comparison_graph.py +
 97
+ 98
+ 99
+100
+101
+102
+103
+104
+105
+106
+107
+108
+109
+110
+111
+112
+113
+114
+115
+116
+117
+118
+119
+120
+121
+122
+123
+124
+125
+126
+127
def compute_pairwise_dict(self) -> dict:
+    """
+    Constructs dictionary where keys are tuples (cand_a, cand_b) containing
+    two candidates and values is the frequency cand_a is preferred to
+    cand_b.
+
+    Returns:
+        A dictionary with keys = (cand_a, cand_b) and values = frequency cand_a is preferred
+            to cand_b.
+    """
+    pairwise_dict = {}  # {(cand_a, cand_b): freq cand_a is preferred over cand_b}
+    cand_pairs = combinations(self.candidates, 2)
+
+    for pair in cand_pairs:
+        cand_a, cand_b = pair[0], pair[1]
+        head_2_head_dict = {
+            (cand_a, cand_b): self.head2head_count(cand_a, cand_b),
+            (cand_b, cand_a): self.head2head_count(cand_b, cand_a),
+        }
+        max_pair = max(zip(head_2_head_dict.values(), head_2_head_dict.keys()))
+        pairwise_dict[max_pair[1]] = abs(
+            self.head2head_count(cand_a, cand_b)
+            - self.head2head_count(cand_b, cand_a)
+        )
+
+        ## would display x:y instead of abs(x-y)
+        # winner, loser = max_pair[1]
+        # pairwise_dict[max_pair[1]] = f"{head_2_head_dict[(winner, loser)]}: \
+        # {head_2_head_dict[(loser, winner)]}"
+
+    return pairwise_dict
+
+
+
+ +
+ + +
+ + + +

+ dominating_tiers() + + + cached + + +

+ + +
+ +

Finds dominating tiers within an election.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ list[set] + +
+

A list of dominating tiers.

+
+
+ +
+ Source code in src/votekit/graphs/pairwise_comparison_graph.py +
209
+210
+211
+212
+213
+214
+215
+216
+217
+218
+219
+220
+221
+222
+223
+224
+225
+226
+227
+228
+229
+230
+231
+232
+233
+234
@cache
+def dominating_tiers(self) -> list[set]:
+    """
+    Finds dominating tiers within an election.
+
+    Returns:
+        A list of dominating tiers.
+    """
+    beat_set_size_dict = {}
+    for i, cand in enumerate(self.candidates):
+        beat_set = set()
+        for j, other_cand in enumerate(self.candidates):
+            if i != j:
+                if nx.has_path(self.pairwise_graph, cand, other_cand):
+                    beat_set.add(other_cand)
+        beat_set_size_dict[cand] = len(beat_set)
+
+    # We want to return candidates sorted and grouped by beat set size
+    tier_dict: dict = {}
+    for k, v in beat_set_size_dict.items():
+        if v in tier_dict.keys():
+            tier_dict[v].add(k)
+        else:
+            tier_dict[v] = {k}
+    tier_list = [tier_dict[k] for k in sorted(tier_dict.keys(), reverse=True)]
+    return tier_list
+
+
+
+ +
+ + +
+ + + +

+ draw(outfile=None) + +

+ + +
+ +

Draws pairwise comparison graph.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
outfile + str + +
+

The filepath to save the graph. Defaults to not saving.

+
+
+ None +
+ +
+ Source code in src/votekit/graphs/pairwise_comparison_graph.py +
142
+143
+144
+145
+146
+147
+148
+149
+150
+151
+152
+153
+154
+155
+156
+157
+158
+159
+160
+161
+162
+163
+164
+165
+166
+167
+168
+169
+170
+171
+172
+173
+174
+175
+176
+177
+178
+179
+180
def draw(self, outfile=None):
+    """
+    Draws pairwise comparison graph.
+
+    Args:
+        outfile (str): The filepath to save the graph. Defaults to not saving.
+    """
+    G = self.pairwise_graph
+
+    pos = nx.circular_layout(G)
+    nx.draw_networkx(
+        G,
+        pos,
+        with_labels=True,
+        node_size=500,
+        node_color="skyblue",
+        edgelist=list(),
+    )
+    nx.draw_networkx_edges(
+        G,
+        pos,
+        edgelist=G.edges,
+        width=1.5,
+        edge_color="b",
+        arrows=True,
+        alpha=1,
+        node_size=1000,
+        arrowsize=25,
+    )
+    edge_labels = {(i, j): G[i][j]["weight"] for i, j in G.edges()}
+    nx.draw_networkx_edge_labels(
+        G, pos, edge_labels=edge_labels, label_pos=1 / 3, font_size=10
+    )
+    # Out stuff
+    if outfile is not None:
+        plt.savefig(outfile)
+    else:
+        plt.show()
+    plt.close()
+
+
+
+ +
+ + +
+ + + +

+ get_condorcet_cycles() + + + cached + + +

+ + +
+ +

Returns a list of condorcet cycles in the graph, which we define as any cycle of length + greater than 2.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ list + +
+

List of condorcet cycles sorted by length.

+
+
+ +
+ Source code in src/votekit/graphs/pairwise_comparison_graph.py +
251
+252
+253
+254
+255
+256
+257
+258
+259
+260
+261
+262
+263
@cache
+def get_condorcet_cycles(self) -> list:
+    """
+    Returns a list of condorcet cycles in the graph, which we define as any cycle of length
+        greater than 2.
+
+    Returns:
+        List of condorcet cycles sorted by length.
+    """
+
+    G = self.pairwise_graph
+    list_of_cycles = nx.recursive_simple_cycles(G)
+    return sorted(list_of_cycles, key=lambda x: len(x))
+
+
+
+ +
+ + +
+ + + +

+ get_condorcet_winner() + +

+ + +
+ +

Returns the condorcet winner. Raises a ValueError if no condorcet winner.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ str + +
+

The condorcet winner.

+
+
+ +
+ Source code in src/votekit/graphs/pairwise_comparison_graph.py +
195
+196
+197
+198
+199
+200
+201
+202
+203
+204
+205
+206
+207
def get_condorcet_winner(self) -> str:
+    """
+    Returns the condorcet winner. Raises a ValueError if no condorcet winner.
+
+    Returns:
+        The condorcet winner.
+    """
+
+    if self.has_condorcet_winner():
+        return list(self.dominating_tiers()[0])[0]
+
+    else:
+        raise ValueError("There is no condorcet winner.")
+
+
+
+ +
+ + +
+ + + +

+ has_condorcet_cycles() + +

+ + +
+ +

Checks if graph has any condorcet cycles, which we define as any cycle of length + greater than 2 in the graph.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ bool + +
+

True if condorcet cycles exists, False otherwise.

+
+
+ +
+ Source code in src/votekit/graphs/pairwise_comparison_graph.py +
236
+237
+238
+239
+240
+241
+242
+243
+244
+245
+246
+247
+248
+249
def has_condorcet_cycles(self) -> bool:
+    """
+    Checks if graph has any condorcet cycles, which we define as any cycle of length
+        greater than 2 in the graph.
+
+    Returns:
+        True if condorcet cycles exists, False otherwise.
+    """
+
+    if len(self.get_condorcet_cycles()) > 0:
+        return True
+
+    else:
+        return False
+
+
+
+ +
+ + +
+ + + +

+ has_condorcet_winner() + +

+ + +
+ +

Checks if graph has a condorcet winner.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ bool + +
+

True if condorcet winner exists, False otherwise.

+
+
+ +
+ Source code in src/votekit/graphs/pairwise_comparison_graph.py +
183
+184
+185
+186
+187
+188
+189
+190
+191
+192
+193
def has_condorcet_winner(self) -> bool:
+    """
+    Checks if graph has a condorcet winner.
+
+    Returns:
+        True if condorcet winner exists, False otherwise.
+    """
+    dominating_tiers = self.dominating_tiers()
+    if len(dominating_tiers[0]) == 1:
+        return True
+    return False
+
+
+
+ +
+ + +
+ + + +

+ head2head_count(cand1, cand2) + +

+ + +
+ +

Counts head to head comparisons between two candidates. Note that the given order +of the candidates matters here.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
cand1 + str + +
+

The first candidate to compare.

+
+
+ required +
cand2 + str + +
+

The second candidate to compare.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ Fraction + +
+

A count of the number of times cand1 is preferred to cand2.

+
+
+ +
+ Source code in src/votekit/graphs/pairwise_comparison_graph.py +
73
+74
+75
+76
+77
+78
+79
+80
+81
+82
+83
+84
+85
+86
+87
+88
+89
+90
+91
+92
+93
+94
+95
def head2head_count(self, cand1, cand2) -> Fraction:
+    """
+    Counts head to head comparisons between two candidates. Note that the given order
+    of the candidates matters here.
+
+    Args:
+        cand1 (str): The first candidate to compare.
+        cand2 (str): The second candidate to compare.
+
+    Returns:
+        A count of the number of times cand1 is preferred to cand2.
+    """
+    count = 0
+    ballots_list = self.profile.get_ballots()
+    for ballot in ballots_list:
+        rank_list = ballot.ranking
+        for s in rank_list:
+            if cand1 in s:
+                count += ballot.weight
+                break
+            elif cand2 in s:
+                break
+    return Fraction(count)
+
+
+
+ +
+ + + +
+ +
+ + +
+ + + + +
+ +
+ +

CVR Loaders

+ + +
+ + + + +
+ + + +
+ + + + + + + + + + +
+ + + +

+ load_csv(fpath, rank_cols=[], *, weight_col=None, delimiter=None, id_col=None) + +

+ + +
+ +

Given a file path, loads cast vote records (cvr) with ranks as columns and voters as rows. +Empty cells are treated as None.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
fpath + str + +
+

Path to cvr file.

+
+
+ required +
rank_cols + list[int] + +
+

List of column indexes that contain rankings. Indexing starts from 0, + in order from top to bottom rank. + Default implies that all columns contain rankings.

+
+
+ [] +
weight_col + Optional[int] + +
+

The column position for ballot weights.

+
+
+ None +
delimiter + Optional[str] + +
+

The character that breaks up rows.

+
+
+ None +
id_col + Optional[int] + +
+

Index for the column with voter ids.

+
+
+ None +
+ + + +

Raises:

+ + + + + + + + + + + + + + + + + + + + + + + + + +
TypeDescription
+ FileNotFoundError + +
+

If fpath is invalid.

+
+
+ EmptyDataError + +
+

If dataset is empty.

+
+
+ ValueError + +
+

If the voter id column has missing values.

+
+
+ DataError + +
+

If the voter id column has duplicate values.

+
+
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ PreferenceProfile + +
+

A PreferenceProfile that represents all the ballots in the election.

+
+
+ +
+ Source code in src/votekit/cvr_loaders.py +
12
+13
+14
+15
+16
+17
+18
+19
+20
+21
+22
+23
+24
+25
+26
+27
+28
+29
+30
+31
+32
+33
+34
+35
+36
+37
+38
+39
+40
+41
+42
+43
+44
+45
+46
+47
+48
+49
+50
+51
+52
+53
+54
+55
+56
+57
+58
+59
+60
+61
+62
+63
+64
+65
+66
+67
+68
+69
+70
+71
+72
+73
+74
+75
+76
+77
+78
+79
+80
+81
+82
+83
+84
+85
+86
+87
def load_csv(
+    fpath: str,
+    rank_cols: list[int] = [],
+    *,
+    weight_col: Optional[int] = None,
+    delimiter: Optional[str] = None,
+    id_col: Optional[int] = None,
+) -> PreferenceProfile:
+    """
+    Given a file path, loads cast vote records (cvr) with ranks as columns and voters as rows.
+    Empty cells are treated as None.
+
+    Args:
+        fpath: Path to cvr file.
+        rank_cols: List of column indexes that contain rankings. Indexing starts from 0,
+                    in order from top to bottom rank.
+                    Default implies that all columns contain rankings.
+        weight_col: The column position for ballot weights.
+        delimiter: The character that breaks up rows.
+        id_col: Index for the column with voter ids.
+
+    Raises:
+        FileNotFoundError: If fpath is invalid.
+        EmptyDataError: If dataset is empty.
+        ValueError: If the voter id column has missing values.
+        DataError: If the voter id column has duplicate values.
+
+    Returns:
+        A PreferenceProfile that represents all the ballots in the election.
+    """
+    if not os.path.isfile(fpath):
+        raise FileNotFoundError(f"File with path {fpath} cannot be found")
+
+    cvr_path = pathlib.Path(fpath)
+    df = pd.read_csv(
+        cvr_path,
+        on_bad_lines="error",
+        encoding="utf8",
+        index_col=False,
+        delimiter=delimiter,
+    )
+
+    if df.empty:
+        raise EmptyDataError("Dataset cannot be empty")
+    if id_col is not None and df.iloc[:, id_col].isnull().values.any():  # type: ignore
+        raise ValueError(f"Missing value(s) in column at index {id_col}")
+    if id_col is not None and not df.iloc[:, id_col].is_unique:
+        raise DataError(f"Duplicate value(s) in column at index {id_col}")
+
+    if rank_cols:
+        if id_col is not None:
+            df = df.iloc[:, rank_cols + [id_col]]
+        else:
+            df = df.iloc[:, rank_cols]
+
+    ranks = list(df.columns)
+    if id_col is not None:
+        ranks.remove(df.columns[id_col])
+    grouped = df.groupby(ranks, dropna=False)
+    ballots = []
+
+    for group, group_df in grouped:
+        ranking = tuple(
+            [frozenset({None}) if pd.isnull(c) else frozenset({c}) for c in group]
+        )
+
+        voter_set = None
+        if id_col is not None:
+            voter_set = set(group_df.iloc[:, id_col])
+        weight = len(group_df)
+        if weight_col is not None:
+            weight = sum(group_df.iloc[:, weight_col])
+        b = Ballot(ranking=ranking, weight=Fraction(weight), voter_set=voter_set)
+        ballots.append(b)
+
+    return PreferenceProfile(ballots=ballots)
+
+
+
+ +
+ + +
+ + + +

+ load_scottish(fpath) + +

+ + +
+ +

Given a file path, loads cvr from format used for Scottish election data.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
fpath + str + +
+

Path to cvr file.

+
+
+ required +
+ + + +

Raises:

+ + + + + + + + + + + + + + + + + + + + + +
TypeDescription
+ FileNotFoundError + +
+

If fpath is invalid.

+
+
+ EmptyDataError + +
+

If dataset is empty.

+
+
+ DataError + +
+

If there is missing or incorrect metadata or candidate data.

+
+
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ tuple + +
+

A tuple (PreferenceProfile, seats) representing the election and the + number of seats in the election.

+
+
+ +
+ Source code in src/votekit/cvr_loaders.py +
 90
+ 91
+ 92
+ 93
+ 94
+ 95
+ 96
+ 97
+ 98
+ 99
+100
+101
+102
+103
+104
+105
+106
+107
+108
+109
+110
+111
+112
+113
+114
+115
+116
+117
+118
+119
+120
+121
+122
+123
+124
+125
+126
+127
+128
+129
+130
+131
+132
+133
+134
+135
+136
+137
+138
+139
+140
+141
+142
+143
+144
+145
+146
+147
+148
+149
+150
+151
+152
+153
+154
+155
+156
+157
+158
+159
+160
+161
+162
+163
+164
+165
+166
+167
+168
+169
+170
+171
+172
def load_scottish(fpath: str) -> tuple[PreferenceProfile, int]:
+    """
+    Given a file path, loads cvr from format used for Scottish election data.
+
+    Args:
+        fpath: Path to cvr file.
+
+    Raises:
+        FileNotFoundError: If fpath is invalid.
+        EmptyDataError: If dataset is empty.
+        DataError: If there is missing or incorrect metadata or candidate data.
+
+    Returns:
+        (tuple): A tuple (PreferenceProfile, seats) representing the election and the
+                number of seats in the election.
+    """
+    ballots = []
+    names = []
+    name_map = {}
+    numbers = True
+    cands_included = False
+
+    if not os.path.isfile(fpath):
+        raise FileNotFoundError(f"File with path {fpath} cannot be found")
+    if os.path.getsize(fpath) == 0:
+        raise EmptyDataError("Dataset cannot be empty")
+
+    with open(fpath, "r") as file:
+        for i, line in enumerate(file):
+            s = line.rstrip("\n").rstrip()
+            if i == 0:
+                # first number is number of candidates, second is number of seats to elect
+                metadata = [int(data) for data in s.split(" ")]
+                if len(metadata) != 2:
+                    raise DataError(
+                        "metadata (first line) should have two parameters"
+                        " (number of candidates, number of seats)"
+                    )
+                seats = metadata[1]
+            # read in ballots, cleaning out rankings labeled '0' (designating end of line)
+            elif numbers:
+                ballot = [int(vote) for vote in s.split(" ")]
+                num_votes = ballot[0]
+                # ballots terminate with a single row with the character '0'
+                if num_votes == 0:
+                    numbers = False
+                else:
+                    ranking = [rank for rank in list(ballot[1:]) if rank != 0]
+                    b = (ranking, num_votes)
+                    ballots.append(b)  # this is converted to the PP format later
+            # read in candidates
+            elif "(" in s:
+                cands_included = True
+                name_parts = s.strip('"').split(" ")
+                first_name = " ".join(name_parts[:-2])
+                last_name = name_parts[-2]
+                party = name_parts[-1].strip("(").strip(")")
+                names.append(str((first_name, last_name, party)))
+            else:
+                if len(names) != metadata[0]:
+                    err_message = (
+                        f"Number of candidates listed, {len(names)}," + f" differs from"
+                        f"number of candidates recorded in metadata, {metadata[0]}"
+                    )
+                    raise DataError(err_message)
+                # read in election location (do we need this?)
+                # location = s.strip("\"")
+                if not cands_included:
+                    raise DataError("Candidates missing from file")
+                # map candidate numbers onto their names and convert ballots to PP format
+                for i, name in enumerate(names):
+                    name_map[i + 1] = name
+                clean_ballots = [
+                    Ballot(
+                        ranking=tuple(
+                            [frozenset({name_map[cand]}) for cand in ballot[0]]
+                        ),
+                        weight=Fraction(ballot[1]),
+                    )
+                    for ballot in ballots
+                ]
+
+        return PreferenceProfile(ballots=clean_ballots, candidates=names), seats
+
+
+
+ +
+ + + +
+ +
+ +

Ballot Generators

+ + +
+ + + + +
+ + + +
+ + + + + + + + +
+ + + +

+ BallotGenerator + + +

+ + +
+ + +

Base class for ballot generation models that use the candidate simplex +(e.g. Plackett-Luce, Bradley-Terry, etc.).

+

Attributes

+

candidates +: list of candidates in the election.

+

cohesion_parameters +: dictionary of dictionaries mapping of bloc to cohesion parameters. + (ex. {bloc_1: {bloc_1: .7, bloc_2: .2, bloc_3:.1}})

+

pref_intervals_by_bloc +: dictionary of dictionaries mapping of bloc to preference intervals. + (ex. {bloc_1: {bloc_1 : PI, bloc_2: PI}}).

+

bloc_voter_prop +: dictionary mapping of bloc to voter proportions (ex. {bloc: voter proportion}).

+
+Note +
    +
  • Voter proportion for blocs must sum to 1.
  • +
  • Preference interval for candidates must sum to 1.
  • +
  • Must have same blocs in pref_intervals_by_bloc and bloc_voter_prop.
  • +
+
+

Methods

+ +
+ Source code in src/votekit/ballot_generator.py +
 77
+ 78
+ 79
+ 80
+ 81
+ 82
+ 83
+ 84
+ 85
+ 86
+ 87
+ 88
+ 89
+ 90
+ 91
+ 92
+ 93
+ 94
+ 95
+ 96
+ 97
+ 98
+ 99
+100
+101
+102
+103
+104
+105
+106
+107
+108
+109
+110
+111
+112
+113
+114
+115
+116
+117
+118
+119
+120
+121
+122
+123
+124
+125
+126
+127
+128
+129
+130
+131
+132
+133
+134
+135
+136
+137
+138
+139
+140
+141
+142
+143
+144
+145
+146
+147
+148
+149
+150
+151
+152
+153
+154
+155
+156
+157
+158
+159
+160
+161
+162
+163
+164
+165
+166
+167
+168
+169
+170
+171
+172
+173
+174
+175
+176
+177
+178
+179
+180
+181
+182
+183
+184
+185
+186
+187
+188
+189
+190
+191
+192
+193
+194
+195
+196
+197
+198
+199
+200
+201
+202
+203
+204
+205
+206
+207
+208
+209
+210
+211
+212
+213
+214
+215
+216
+217
+218
+219
+220
+221
+222
+223
+224
+225
+226
+227
+228
+229
+230
+231
+232
+233
+234
+235
+236
+237
+238
+239
+240
+241
+242
+243
+244
+245
+246
+247
+248
+249
+250
+251
+252
+253
+254
+255
+256
+257
+258
+259
+260
+261
+262
+263
+264
+265
+266
+267
+268
+269
+270
+271
+272
+273
+274
+275
+276
+277
+278
+279
+280
+281
+282
+283
+284
+285
+286
+287
+288
+289
+290
+291
+292
+293
+294
+295
+296
+297
+298
+299
+300
+301
+302
+303
+304
+305
class BallotGenerator:
+    """
+    Base class for ballot generation models that use the candidate simplex
+    (e.g. Plackett-Luce, Bradley-Terry, etc.).
+
+    **Attributes**
+
+    `candidates`
+    :   list of candidates in the election.
+
+    `cohesion_parameters`
+    : dictionary of dictionaries mapping of bloc to cohesion parameters.
+        (ex. {bloc_1: {bloc_1: .7, bloc_2: .2, bloc_3:.1}})
+
+    `pref_intervals_by_bloc`
+    :   dictionary of dictionaries mapping of bloc to preference intervals.
+        (ex. {bloc_1: {bloc_1 : PI, bloc_2: PI}}).
+
+    `bloc_voter_prop`
+    :   dictionary mapping of bloc to voter proportions (ex. {bloc: voter proportion}).
+
+
+    ???+ note
+        * Voter proportion for blocs must sum to 1.
+        * Preference interval for candidates must sum to 1.
+        * Must have same blocs in `pref_intervals_by_bloc` and `bloc_voter_prop`.
+
+    **Methods**
+    """
+
+    def __init__(
+        self,
+        **kwargs,
+    ):
+        if "candidates" not in kwargs and "slate_to_candidates" not in kwargs:
+            raise ValueError(
+                "At least one of candidates or slate_to_candidates must be provided."
+            )
+
+        if "candidates" in kwargs:
+            self.candidates = kwargs["candidates"]
+
+        if "slate_to_candidates" in kwargs:
+            self.slate_to_candidates = kwargs["slate_to_candidates"]
+            self.candidates = [
+                c for c_list in self.slate_to_candidates.values() for c in c_list
+            ]
+
+        nec_parameters = [
+            "pref_intervals_by_bloc",
+            "cohesion_parameters",
+            "bloc_voter_prop",
+        ]
+
+        if any(x in kwargs for x in nec_parameters):
+            if not all(x in kwargs for x in nec_parameters):
+                raise ValueError(
+                    f"If one of {nec_parameters} is provided, all must be provided."
+                )
+
+            bloc_voter_prop = kwargs["bloc_voter_prop"]
+            pref_intervals_by_bloc = kwargs["pref_intervals_by_bloc"]
+            cohesion_parameters = kwargs["cohesion_parameters"]
+
+            if round(sum(bloc_voter_prop.values()), 8) != 1.0:
+                raise ValueError("Voter proportion for blocs must sum to 1")
+
+            if bloc_voter_prop.keys() != pref_intervals_by_bloc.keys():
+                raise ValueError(
+                    "Blocs are not the same between bloc_voter_prop and pref_intervals_by_bloc."
+                )
+
+            if bloc_voter_prop.keys() != cohesion_parameters.keys():
+                raise ValueError(
+                    "Blocs are not the same between bloc_voter_prop and cohesion_parameters."
+                )
+
+            if pref_intervals_by_bloc.keys() != cohesion_parameters.keys():
+                raise ValueError(
+                    "Blocs are not the same between pref_intervals_by_bloc and cohesion_parameters."
+                )
+
+            for bloc, cohesion_parameter_dict in cohesion_parameters.items():
+                if round(sum(cohesion_parameter_dict.values()), 8) != 1.0:
+                    raise ValueError(
+                        f"Cohesion parameters for bloc {bloc} must sum to 1."
+                    )
+
+            self.pref_intervals_by_bloc = pref_intervals_by_bloc
+            self.bloc_voter_prop = bloc_voter_prop
+            self.blocs = list(self.bloc_voter_prop.keys())
+            self.cohesion_parameters = cohesion_parameters
+
+    @classmethod
+    def from_params(
+        cls,
+        slate_to_candidates: dict,
+        bloc_voter_prop: dict,
+        cohesion_parameters: dict,
+        alphas: dict,
+        **data,
+    ):
+        """
+        Initializes a BallotGenerator by constructing a preference interval
+        from parameters; the prior parameters (if inputted) will be overwritten.
+
+        Args:
+            slate_to_candidates (dict): A mapping of blocs to candidates
+                (ex. {bloc: [candidate]})
+            bloc_voter_prop (dict): A mapping of the percentage of total voters
+                 per bloc (ex. {bloc: 0.7})
+            cohesion_parameters (dict): Cohension factors for each bloc (ex. {bloc_1: {bloc_1: .9,
+                                                                                        bloc_2:.1})
+            alphas (dict): Alpha for the Dirichlet distribution of each bloc
+                            (ex. {bloc: {bloc: 1, opposing_bloc: 1/2}}).
+
+        Raises:
+            ValueError: If the voter proportion for blocs don't sum to 1.
+            ValueError: Blocs are not the same.
+
+        Returns:
+            (BallotGenerator): Initialized ballot generator.
+
+        ???+ note
+            * Voter proportion for blocs must sum to 1.
+            * Each cohesion parameter must be in the interval [0,1].
+            * Dirichlet parameters are in the interval $(0,\infty)$.
+        """
+        if round(sum(bloc_voter_prop.values()), 8) != 1.0:
+            raise ValueError("Voter proportion for blocs must sum to 1")
+
+        if slate_to_candidates.keys() != bloc_voter_prop.keys():
+            raise ValueError("Blocs are not the same")
+
+        pref_intervals_by_bloc = {}
+        for current_bloc in bloc_voter_prop:
+            intervals = {}
+            for b in bloc_voter_prop:
+                interval = PreferenceInterval.from_dirichlet(
+                    candidates=slate_to_candidates[b], alpha=alphas[current_bloc][b]
+                )
+                intervals[b] = interval
+
+            pref_intervals_by_bloc[current_bloc] = intervals
+
+        if "candidates" not in data:
+            cands = [cand for cands in slate_to_candidates.values() for cand in cands]
+            data["candidates"] = cands
+
+        data["pref_intervals_by_bloc"] = pref_intervals_by_bloc
+        data["bloc_voter_prop"] = bloc_voter_prop
+        data["cohesion_parameters"] = cohesion_parameters
+
+        if cls in [
+            AlternatingCrossover,
+            slate_PlackettLuce,
+            slate_BradleyTerry,
+            CambridgeSampler,
+        ]:
+            generator = cls(
+                slate_to_candidates=slate_to_candidates,
+                **data,
+            )
+
+        else:
+            generator = cls(**data)
+
+        return generator
+
+    @abstractmethod
+    def generate_profile(
+        self, number_of_ballots: int, by_bloc: bool = False
+    ) -> Union[PreferenceProfile, Tuple, dict]:
+        """
+        Generates a `PreferenceProfile`.
+
+        Args:
+            number_of_ballots (int): Number of ballots to generate.
+            by_bloc (bool): True if you want a tuple (pp_by_bloc, pp), which is a dictionary of
+                            PreferenceProfiles with keys = blocs and the aggregated profile.
+                    False if you want the aggregated profile. Defaults to False.
+
+        Returns:
+            (PreferenceProfile): A generated `PreferenceProfile`.
+        """
+        pass
+
+    @staticmethod
+    def _round_num(num: float) -> int:
+        """
+        Rounds up or down a float randomly.
+
+        Args:
+            num (float): Number to round.
+
+        Returns:
+            int: A whole number.
+        """
+        rand = np.random.random()
+        return math.ceil(num) if rand > 0.5 else math.floor(num)
+
+    @staticmethod
+    def ballot_pool_to_profile(ballot_pool, candidates) -> PreferenceProfile:
+        """
+        Given a list of ballots and candidates, convert them into a `PreferenceProfile.`
+
+        Args:
+            ballot_pool (list of tuple): A list of ballots, where each ballot is a tuple
+                    of candidates indicating their ranking from top to bottom.
+            candidates (list): A list of candidates.
+
+        Returns:
+            (PreferenceProfile): A PreferenceProfile representing the ballots in the election.
+        """
+        ranking_counts: dict[tuple, int] = {}
+        ballot_list: list[Ballot] = []
+
+        for ranking in ballot_pool:
+            tuple_rank = tuple(ranking)
+            ranking_counts[tuple_rank] = (
+                ranking_counts[tuple_rank] + 1 if tuple_rank in ranking_counts else 1
+            )
+
+        for ranking, count in ranking_counts.items():
+            rank = tuple([frozenset([cand]) for cand in ranking])
+            b = Ballot(ranking=rank, weight=Fraction(count))
+            ballot_list.append(b)
+
+        return PreferenceProfile(ballots=ballot_list, candidates=candidates)
+
+
+ + + +
+ + + + + + + + + + +
+ + + +

+ ballot_pool_to_profile(ballot_pool, candidates) + + + staticmethod + + +

+ + +
+ +

Given a list of ballots and candidates, convert them into a PreferenceProfile.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
ballot_pool + list of tuple + +
+

A list of ballots, where each ballot is a tuple + of candidates indicating their ranking from top to bottom.

+
+
+ required +
candidates + list + +
+

A list of candidates.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ PreferenceProfile + +
+

A PreferenceProfile representing the ballots in the election.

+
+
+ +
+ Source code in src/votekit/ballot_generator.py +
278
+279
+280
+281
+282
+283
+284
+285
+286
+287
+288
+289
+290
+291
+292
+293
+294
+295
+296
+297
+298
+299
+300
+301
+302
+303
+304
+305
@staticmethod
+def ballot_pool_to_profile(ballot_pool, candidates) -> PreferenceProfile:
+    """
+    Given a list of ballots and candidates, convert them into a `PreferenceProfile.`
+
+    Args:
+        ballot_pool (list of tuple): A list of ballots, where each ballot is a tuple
+                of candidates indicating their ranking from top to bottom.
+        candidates (list): A list of candidates.
+
+    Returns:
+        (PreferenceProfile): A PreferenceProfile representing the ballots in the election.
+    """
+    ranking_counts: dict[tuple, int] = {}
+    ballot_list: list[Ballot] = []
+
+    for ranking in ballot_pool:
+        tuple_rank = tuple(ranking)
+        ranking_counts[tuple_rank] = (
+            ranking_counts[tuple_rank] + 1 if tuple_rank in ranking_counts else 1
+        )
+
+    for ranking, count in ranking_counts.items():
+        rank = tuple([frozenset([cand]) for cand in ranking])
+        b = Ballot(ranking=rank, weight=Fraction(count))
+        ballot_list.append(b)
+
+    return PreferenceProfile(ballots=ballot_list, candidates=candidates)
+
+
+
+ +
+ + +
+ + + +

+ from_params(slate_to_candidates, bloc_voter_prop, cohesion_parameters, alphas, **data) + + + classmethod + + +

+ + +
+ +

Initializes a BallotGenerator by constructing a preference interval +from parameters; the prior parameters (if inputted) will be overwritten.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
slate_to_candidates + dict + +
+

A mapping of blocs to candidates +(ex. {bloc: [candidate]})

+
+
+ required +
bloc_voter_prop + dict + +
+

A mapping of the percentage of total voters + per bloc (ex. {bloc: 0.7})

+
+
+ required +
cohesion_parameters + dict + +
+

Cohension factors for each bloc (ex. {bloc_1: {bloc_1: .9, + bloc_2:.1})

+
+
+ required +
alphas + dict + +
+

Alpha for the Dirichlet distribution of each bloc + (ex. {bloc: {bloc: 1, opposing_bloc: 1/2}}).

+
+
+ required +
+ + + +

Raises:

+ + + + + + + + + + + + + + + + + +
TypeDescription
+ ValueError + +
+

If the voter proportion for blocs don't sum to 1.

+
+
+ ValueError + +
+

Blocs are not the same.

+
+
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ BallotGenerator + +
+

Initialized ballot generator.

+
+
+
+Note +
    +
  • Voter proportion for blocs must sum to 1.
  • +
  • Each cohesion parameter must be in the interval [0,1].
  • +
  • Dirichlet parameters are in the interval \((0,\infty)\).
  • +
+
+ +
+ Source code in src/votekit/ballot_generator.py +
170
+171
+172
+173
+174
+175
+176
+177
+178
+179
+180
+181
+182
+183
+184
+185
+186
+187
+188
+189
+190
+191
+192
+193
+194
+195
+196
+197
+198
+199
+200
+201
+202
+203
+204
+205
+206
+207
+208
+209
+210
+211
+212
+213
+214
+215
+216
+217
+218
+219
+220
+221
+222
+223
+224
+225
+226
+227
+228
+229
+230
+231
+232
+233
+234
+235
+236
+237
+238
+239
+240
+241
+242
+243
+244
@classmethod
+def from_params(
+    cls,
+    slate_to_candidates: dict,
+    bloc_voter_prop: dict,
+    cohesion_parameters: dict,
+    alphas: dict,
+    **data,
+):
+    """
+    Initializes a BallotGenerator by constructing a preference interval
+    from parameters; the prior parameters (if inputted) will be overwritten.
+
+    Args:
+        slate_to_candidates (dict): A mapping of blocs to candidates
+            (ex. {bloc: [candidate]})
+        bloc_voter_prop (dict): A mapping of the percentage of total voters
+             per bloc (ex. {bloc: 0.7})
+        cohesion_parameters (dict): Cohension factors for each bloc (ex. {bloc_1: {bloc_1: .9,
+                                                                                    bloc_2:.1})
+        alphas (dict): Alpha for the Dirichlet distribution of each bloc
+                        (ex. {bloc: {bloc: 1, opposing_bloc: 1/2}}).
+
+    Raises:
+        ValueError: If the voter proportion for blocs don't sum to 1.
+        ValueError: Blocs are not the same.
+
+    Returns:
+        (BallotGenerator): Initialized ballot generator.
+
+    ???+ note
+        * Voter proportion for blocs must sum to 1.
+        * Each cohesion parameter must be in the interval [0,1].
+        * Dirichlet parameters are in the interval $(0,\infty)$.
+    """
+    if round(sum(bloc_voter_prop.values()), 8) != 1.0:
+        raise ValueError("Voter proportion for blocs must sum to 1")
+
+    if slate_to_candidates.keys() != bloc_voter_prop.keys():
+        raise ValueError("Blocs are not the same")
+
+    pref_intervals_by_bloc = {}
+    for current_bloc in bloc_voter_prop:
+        intervals = {}
+        for b in bloc_voter_prop:
+            interval = PreferenceInterval.from_dirichlet(
+                candidates=slate_to_candidates[b], alpha=alphas[current_bloc][b]
+            )
+            intervals[b] = interval
+
+        pref_intervals_by_bloc[current_bloc] = intervals
+
+    if "candidates" not in data:
+        cands = [cand for cands in slate_to_candidates.values() for cand in cands]
+        data["candidates"] = cands
+
+    data["pref_intervals_by_bloc"] = pref_intervals_by_bloc
+    data["bloc_voter_prop"] = bloc_voter_prop
+    data["cohesion_parameters"] = cohesion_parameters
+
+    if cls in [
+        AlternatingCrossover,
+        slate_PlackettLuce,
+        slate_BradleyTerry,
+        CambridgeSampler,
+    ]:
+        generator = cls(
+            slate_to_candidates=slate_to_candidates,
+            **data,
+        )
+
+    else:
+        generator = cls(**data)
+
+    return generator
+
+
+
+ +
+ + +
+ + + +

+ generate_profile(number_of_ballots, by_bloc=False) + + + abstractmethod + + +

+ + +
+ +

Generates a PreferenceProfile.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
number_of_ballots + int + +
+

Number of ballots to generate.

+
+
+ required +
by_bloc + bool + +
+

True if you want a tuple (pp_by_bloc, pp), which is a dictionary of + PreferenceProfiles with keys = blocs and the aggregated profile. + False if you want the aggregated profile. Defaults to False.

+
+
+ False +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ PreferenceProfile + +
+

A generated PreferenceProfile.

+
+
+ +
+ Source code in src/votekit/ballot_generator.py +
246
+247
+248
+249
+250
+251
+252
+253
+254
+255
+256
+257
+258
+259
+260
+261
+262
@abstractmethod
+def generate_profile(
+    self, number_of_ballots: int, by_bloc: bool = False
+) -> Union[PreferenceProfile, Tuple, dict]:
+    """
+    Generates a `PreferenceProfile`.
+
+    Args:
+        number_of_ballots (int): Number of ballots to generate.
+        by_bloc (bool): True if you want a tuple (pp_by_bloc, pp), which is a dictionary of
+                        PreferenceProfiles with keys = blocs and the aggregated profile.
+                False if you want the aggregated profile. Defaults to False.
+
+    Returns:
+        (PreferenceProfile): A generated `PreferenceProfile`.
+    """
+    pass
+
+
+
+ +
+ + + +
+ +
+ + +
+ +
+ + + +

+ BallotSimplex + + +

+ + +
+

+ Bases: BallotGenerator

+ + +

Base class for ballot generation models that use the ballot simplex +(e.g. ImpartialCulture, ImpartialAnonymousCulture).

+

Attributes

+

alpha +: (float) alpha parameter for ballot simplex. Defaults to None.

+

point +: dictionary representing a point in the ballot simplex with candidate as + keys and electoral support as values. Defaults to None.

+
+Note +

Point or alpha arguments must be included to initialize.

+
+

Methods

+ +
+ Source code in src/votekit/ballot_generator.py +
308
+309
+310
+311
+312
+313
+314
+315
+316
+317
+318
+319
+320
+321
+322
+323
+324
+325
+326
+327
+328
+329
+330
+331
+332
+333
+334
+335
+336
+337
+338
+339
+340
+341
+342
+343
+344
+345
+346
+347
+348
+349
+350
+351
+352
+353
+354
+355
+356
+357
+358
+359
+360
+361
+362
+363
+364
+365
+366
+367
+368
+369
+370
+371
+372
+373
+374
+375
+376
+377
+378
+379
+380
+381
+382
+383
+384
+385
+386
+387
+388
+389
+390
+391
+392
+393
+394
+395
+396
+397
+398
+399
+400
+401
+402
+403
+404
+405
+406
+407
+408
+409
+410
+411
+412
+413
class BallotSimplex(BallotGenerator):
+    """
+    Base class for ballot generation models that use the ballot simplex
+    (e.g. ImpartialCulture, ImpartialAnonymousCulture).
+
+    **Attributes**
+
+    `alpha`
+    :   (float) alpha parameter for ballot simplex. Defaults to None.
+
+    `point`
+    :   dictionary representing a point in the ballot simplex with candidate as
+        keys and electoral support as values. Defaults to None.
+
+    ???+ note
+
+        Point or alpha arguments must be included to initialize.
+
+    **Methods**
+    """
+
+    def __init__(
+        self, alpha: Optional[float] = None, point: Optional[dict] = None, **data
+    ):
+        if alpha is None and point is None:
+            raise AttributeError("point or alpha must be initialized")
+        self.alpha = alpha
+        if alpha == float("inf"):
+            self.alpha = 1e20
+        if alpha == 0:
+            self.alpha = 1e-10
+        self.point = point
+        super().__init__(**data)
+
+    @classmethod
+    def from_point(cls, point: dict, **data):
+        """
+        Initializes a Ballot Simplex model from a point in the Dirichlet distribution.
+
+        Args:
+            point (dict): A mapping of candidate to candidate support.
+
+        Raises:
+            ValueError: If the candidate support does not sum to 1.
+
+        Returns:
+            (BallotSimplex): Initialized from point.
+        """
+        if sum(point.values()) != 1.0:
+            raise ValueError(
+                f"probability distribution from point ({point.values()}) does not sum to 1"
+            )
+        return cls(point=point, **data)
+
+    @classmethod
+    def from_alpha(cls, alpha: float, **data):
+        """
+        Initializes a Ballot Simplex model from an alpha value for the Dirichlet
+        distribution.
+
+        Args:
+            alpha (float): An alpha parameter for the Dirichlet distribution.
+
+        Returns:
+            (BallotSimplex): Initialized from alpha.
+        """
+
+        return cls(alpha=alpha, **data)
+
+    def generate_profile(
+        self, number_of_ballots, by_bloc: bool = False
+    ) -> Union[PreferenceProfile, dict]:
+        """
+        Generates a PreferenceProfile from the ballot simplex.
+        """
+
+        perm_set = it.permutations(self.candidates, len(self.candidates))
+
+        perm_rankings = [list(value) for value in perm_set]
+
+        if self.alpha is not None:
+            draw_probabilities = list(
+                np.random.default_rng().dirichlet([self.alpha] * len(perm_rankings))
+            )
+
+        elif self.point:
+            # calculates probabilities for each ranking
+            # using probability distribution for candidate support
+            draw_probabilities = [
+                reduce(
+                    lambda prod, cand: prod * self.point[cand] if self.point else 0,
+                    ranking,
+                    1.0,
+                )
+                for ranking in perm_rankings
+            ]
+            draw_probabilities = [
+                prob / sum(draw_probabilities) for prob in draw_probabilities
+            ]
+
+        indices = np.random.choice(
+            a=len(perm_rankings), size=number_of_ballots, p=draw_probabilities
+        )
+        ballot_pool = [perm_rankings[indices[i]] for i in range(number_of_ballots)]
+
+        return self.ballot_pool_to_profile(ballot_pool, self.candidates)
+
+
+ + + +
+ + + + + + + + + + +
+ + + +

+ from_alpha(alpha, **data) + + + classmethod + + +

+ + +
+ +

Initializes a Ballot Simplex model from an alpha value for the Dirichlet +distribution.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
alpha + float + +
+

An alpha parameter for the Dirichlet distribution.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ BallotSimplex + +
+

Initialized from alpha.

+
+
+ +
+ Source code in src/votekit/ballot_generator.py +
362
+363
+364
+365
+366
+367
+368
+369
+370
+371
+372
+373
+374
+375
@classmethod
+def from_alpha(cls, alpha: float, **data):
+    """
+    Initializes a Ballot Simplex model from an alpha value for the Dirichlet
+    distribution.
+
+    Args:
+        alpha (float): An alpha parameter for the Dirichlet distribution.
+
+    Returns:
+        (BallotSimplex): Initialized from alpha.
+    """
+
+    return cls(alpha=alpha, **data)
+
+
+
+ +
+ + +
+ + + +

+ from_point(point, **data) + + + classmethod + + +

+ + +
+ +

Initializes a Ballot Simplex model from a point in the Dirichlet distribution.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
point + dict + +
+

A mapping of candidate to candidate support.

+
+
+ required +
+ + + +

Raises:

+ + + + + + + + + + + + + +
TypeDescription
+ ValueError + +
+

If the candidate support does not sum to 1.

+
+
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ BallotSimplex + +
+

Initialized from point.

+
+
+ +
+ Source code in src/votekit/ballot_generator.py +
342
+343
+344
+345
+346
+347
+348
+349
+350
+351
+352
+353
+354
+355
+356
+357
+358
+359
+360
@classmethod
+def from_point(cls, point: dict, **data):
+    """
+    Initializes a Ballot Simplex model from a point in the Dirichlet distribution.
+
+    Args:
+        point (dict): A mapping of candidate to candidate support.
+
+    Raises:
+        ValueError: If the candidate support does not sum to 1.
+
+    Returns:
+        (BallotSimplex): Initialized from point.
+    """
+    if sum(point.values()) != 1.0:
+        raise ValueError(
+            f"probability distribution from point ({point.values()}) does not sum to 1"
+        )
+    return cls(point=point, **data)
+
+
+
+ +
+ + +
+ + + +

+ generate_profile(number_of_ballots, by_bloc=False) + +

+ + +
+ +

Generates a PreferenceProfile from the ballot simplex.

+ +
+ Source code in src/votekit/ballot_generator.py +
377
+378
+379
+380
+381
+382
+383
+384
+385
+386
+387
+388
+389
+390
+391
+392
+393
+394
+395
+396
+397
+398
+399
+400
+401
+402
+403
+404
+405
+406
+407
+408
+409
+410
+411
+412
+413
def generate_profile(
+    self, number_of_ballots, by_bloc: bool = False
+) -> Union[PreferenceProfile, dict]:
+    """
+    Generates a PreferenceProfile from the ballot simplex.
+    """
+
+    perm_set = it.permutations(self.candidates, len(self.candidates))
+
+    perm_rankings = [list(value) for value in perm_set]
+
+    if self.alpha is not None:
+        draw_probabilities = list(
+            np.random.default_rng().dirichlet([self.alpha] * len(perm_rankings))
+        )
+
+    elif self.point:
+        # calculates probabilities for each ranking
+        # using probability distribution for candidate support
+        draw_probabilities = [
+            reduce(
+                lambda prod, cand: prod * self.point[cand] if self.point else 0,
+                ranking,
+                1.0,
+            )
+            for ranking in perm_rankings
+        ]
+        draw_probabilities = [
+            prob / sum(draw_probabilities) for prob in draw_probabilities
+        ]
+
+    indices = np.random.choice(
+        a=len(perm_rankings), size=number_of_ballots, p=draw_probabilities
+    )
+    ballot_pool = [perm_rankings[indices[i]] for i in range(number_of_ballots)]
+
+    return self.ballot_pool_to_profile(ballot_pool, self.candidates)
+
+
+
+ +
+ + + +
+ +
+ + +
+ +
+ + + +

+ slate_PlackettLuce + + +

+ + +
+

+ Bases: BallotGenerator

+ + +

Class for generating ballots using a slate-PlackettLuce model. +This model first samples a ballot type by flipping a cohesion parameter weighted coin. +It then fills out the ballot type via sampling with out replacement from the interval.

+

Can be initialized with an interval or can be +constructed with the Dirichlet distribution using the from_params method in the +BallotGenerator class.

+

Attributes

+

slate_to_candidates +: dictionary mapping of slate to candidates (ex. {bloc: [candidate]}).

+

pref_intervals_by_bloc +: dictionary of dictionaries mapping of bloc to preference intervals. + (ex. {bloc_1: {bloc_1 : PI, bloc_2: PI}}).

+

bloc_voter_prop +: dictionary mapping of bloc to voter proportions (ex. {bloc: proportion}).

+

cohesion_parameters +: dictionary of dictionaries of cohesion parameters (ex. {bloc_1: {bloc_1:.7, bloc_2: .3}})

+

Methods

+

See BallotGenerator base class

+ +
+ Source code in src/votekit/ballot_generator.py +
1480
+1481
+1482
+1483
+1484
+1485
+1486
+1487
+1488
+1489
+1490
+1491
+1492
+1493
+1494
+1495
+1496
+1497
+1498
+1499
+1500
+1501
+1502
+1503
+1504
+1505
+1506
+1507
+1508
+1509
+1510
+1511
+1512
+1513
+1514
+1515
+1516
+1517
+1518
+1519
+1520
+1521
+1522
+1523
+1524
+1525
+1526
+1527
+1528
+1529
+1530
+1531
+1532
+1533
+1534
+1535
+1536
+1537
+1538
+1539
+1540
+1541
+1542
+1543
+1544
+1545
+1546
+1547
+1548
+1549
+1550
+1551
+1552
+1553
+1554
+1555
+1556
+1557
+1558
+1559
+1560
+1561
+1562
+1563
+1564
+1565
+1566
+1567
+1568
+1569
+1570
+1571
+1572
+1573
+1574
+1575
+1576
+1577
+1578
+1579
+1580
+1581
+1582
+1583
+1584
+1585
+1586
+1587
+1588
+1589
+1590
+1591
+1592
class slate_PlackettLuce(BallotGenerator):
+    """
+    Class for generating ballots using a slate-PlackettLuce model.
+    This model first samples a ballot type by flipping a cohesion parameter weighted coin.
+    It then fills out the ballot type via sampling with out replacement from the interval.
+
+    Can be initialized with an interval or can be
+    constructed with the Dirichlet distribution using the `from_params` method in the
+    `BallotGenerator` class.
+
+    **Attributes**
+
+    `slate_to_candidates`
+    :   dictionary mapping of slate to candidates (ex. {bloc: [candidate]}).
+
+    `pref_intervals_by_bloc`
+    :   dictionary of dictionaries mapping of bloc to preference intervals.
+        (ex. {bloc_1: {bloc_1 : PI, bloc_2: PI}}).
+
+    `bloc_voter_prop`
+    :   dictionary mapping of bloc to voter proportions (ex. {bloc: proportion}).
+
+    `cohesion_parameters`
+    : dictionary of dictionaries of cohesion parameters (ex. {bloc_1: {bloc_1:.7, bloc_2: .3}})
+
+    **Methods**
+
+    See `BallotGenerator` base class
+    """
+
+    def __init__(self, cohesion_parameters: dict, **data):
+        # Call the parent class's __init__ method to handle common parameters
+        super().__init__(cohesion_parameters=cohesion_parameters, **data)
+
+    def generate_profile(
+        self, number_of_ballots: int, by_bloc: bool = False
+    ) -> Union[PreferenceProfile, Tuple]:
+        """
+        Args:
+        `number_of_ballots`: The number of ballots to generate.
+
+        `by_bloc`: True if you want to return a dictionary of PreferenceProfiles by bloc.
+                    False if you want the full, aggregated PreferenceProfile.
+        """
+        bloc_props = list(self.bloc_voter_prop.values())
+        ballots_per_block = dict(
+            zip(
+                self.blocs,
+                apportion.compute("huntington", bloc_props, number_of_ballots),
+            )
+        )
+
+        pref_profile_by_bloc = {}
+
+        for i, bloc in enumerate(self.blocs):
+            # number of voters in this bloc
+            num_ballots = ballots_per_block[bloc]
+            ballot_pool = [Ballot()] * num_ballots
+            ballot_types = sample_cohesion_ballot_types(
+                slate_to_candidates=self.slate_to_candidates,
+                num_ballots=num_ballots,
+                cohesion_parameters_for_bloc=self.cohesion_parameters[bloc],
+            )
+            pref_intervals = self.pref_intervals_by_bloc[bloc]
+            zero_cands = set(
+                it.chain(*[pi.zero_cands for pi in pref_intervals.values()])
+            )
+
+            for j, bt in enumerate(ballot_types):
+                cand_ordering_by_bloc = {}
+
+                for b in self.blocs:
+                    # create a pref interval dict of only this blocs candidates
+                    bloc_cand_pref_interval = pref_intervals[b].interval
+                    cands = pref_intervals[b].non_zero_cands
+
+                    # if there are no non-zero candidates, skip this bloc
+                    if len(cands) == 0:
+                        continue
+
+                    distribution = [bloc_cand_pref_interval[c] for c in cands]
+
+                    # sample
+                    cand_ordering = np.random.choice(
+                        a=list(cands), size=len(cands), p=distribution, replace=False
+                    )
+                    cand_ordering_by_bloc[b] = list(cand_ordering)
+
+                ranking = [frozenset({-1})] * len(bt)
+                for i, b in enumerate(bt):
+                    # append the current first candidate, then remove them from the ordering
+                    ranking[i] = frozenset({cand_ordering_by_bloc[b][0]})
+                    cand_ordering_by_bloc[b].pop(0)
+
+                if len(zero_cands) > 0:
+                    ranking.append(frozenset(zero_cands))
+                ballot_pool[j] = Ballot(ranking=tuple(ranking), weight=Fraction(1, 1))
+
+            pp = PreferenceProfile(ballots=ballot_pool)
+            pp = pp.condense_ballots()
+            pref_profile_by_bloc[bloc] = pp
+
+        # combine the profiles
+        pp = PreferenceProfile(ballots=[])
+        for profile in pref_profile_by_bloc.values():
+            pp += profile
+
+        if by_bloc:
+            return (pref_profile_by_bloc, pp)
+
+        # else return the combined profiles
+        else:
+            return pp
+
+
+ + + +
+ + + + + + + + + + +
+ + + +

+ generate_profile(number_of_ballots, by_bloc=False) + +

+ + +
+ +

Args: +number_of_ballots: The number of ballots to generate.

+

by_bloc: True if you want to return a dictionary of PreferenceProfiles by bloc. + False if you want the full, aggregated PreferenceProfile.

+ +
+ Source code in src/votekit/ballot_generator.py +
1514
+1515
+1516
+1517
+1518
+1519
+1520
+1521
+1522
+1523
+1524
+1525
+1526
+1527
+1528
+1529
+1530
+1531
+1532
+1533
+1534
+1535
+1536
+1537
+1538
+1539
+1540
+1541
+1542
+1543
+1544
+1545
+1546
+1547
+1548
+1549
+1550
+1551
+1552
+1553
+1554
+1555
+1556
+1557
+1558
+1559
+1560
+1561
+1562
+1563
+1564
+1565
+1566
+1567
+1568
+1569
+1570
+1571
+1572
+1573
+1574
+1575
+1576
+1577
+1578
+1579
+1580
+1581
+1582
+1583
+1584
+1585
+1586
+1587
+1588
+1589
+1590
+1591
+1592
def generate_profile(
+    self, number_of_ballots: int, by_bloc: bool = False
+) -> Union[PreferenceProfile, Tuple]:
+    """
+    Args:
+    `number_of_ballots`: The number of ballots to generate.
+
+    `by_bloc`: True if you want to return a dictionary of PreferenceProfiles by bloc.
+                False if you want the full, aggregated PreferenceProfile.
+    """
+    bloc_props = list(self.bloc_voter_prop.values())
+    ballots_per_block = dict(
+        zip(
+            self.blocs,
+            apportion.compute("huntington", bloc_props, number_of_ballots),
+        )
+    )
+
+    pref_profile_by_bloc = {}
+
+    for i, bloc in enumerate(self.blocs):
+        # number of voters in this bloc
+        num_ballots = ballots_per_block[bloc]
+        ballot_pool = [Ballot()] * num_ballots
+        ballot_types = sample_cohesion_ballot_types(
+            slate_to_candidates=self.slate_to_candidates,
+            num_ballots=num_ballots,
+            cohesion_parameters_for_bloc=self.cohesion_parameters[bloc],
+        )
+        pref_intervals = self.pref_intervals_by_bloc[bloc]
+        zero_cands = set(
+            it.chain(*[pi.zero_cands for pi in pref_intervals.values()])
+        )
+
+        for j, bt in enumerate(ballot_types):
+            cand_ordering_by_bloc = {}
+
+            for b in self.blocs:
+                # create a pref interval dict of only this blocs candidates
+                bloc_cand_pref_interval = pref_intervals[b].interval
+                cands = pref_intervals[b].non_zero_cands
+
+                # if there are no non-zero candidates, skip this bloc
+                if len(cands) == 0:
+                    continue
+
+                distribution = [bloc_cand_pref_interval[c] for c in cands]
+
+                # sample
+                cand_ordering = np.random.choice(
+                    a=list(cands), size=len(cands), p=distribution, replace=False
+                )
+                cand_ordering_by_bloc[b] = list(cand_ordering)
+
+            ranking = [frozenset({-1})] * len(bt)
+            for i, b in enumerate(bt):
+                # append the current first candidate, then remove them from the ordering
+                ranking[i] = frozenset({cand_ordering_by_bloc[b][0]})
+                cand_ordering_by_bloc[b].pop(0)
+
+            if len(zero_cands) > 0:
+                ranking.append(frozenset(zero_cands))
+            ballot_pool[j] = Ballot(ranking=tuple(ranking), weight=Fraction(1, 1))
+
+        pp = PreferenceProfile(ballots=ballot_pool)
+        pp = pp.condense_ballots()
+        pref_profile_by_bloc[bloc] = pp
+
+    # combine the profiles
+    pp = PreferenceProfile(ballots=[])
+    for profile in pref_profile_by_bloc.values():
+        pp += profile
+
+    if by_bloc:
+        return (pref_profile_by_bloc, pp)
+
+    # else return the combined profiles
+    else:
+        return pp
+
+
+
+ +
+ + + +
+ +
+ + +
+ +
+ + + +

+ name_PlackettLuce + + +

+ + +
+

+ Bases: short_name_PlackettLuce

+ + +

Class for generating full ballots with name-PlackettLuce. This model samples without +replacement from a preference interval. Can be initialized with an interval or can be +constructed with the Dirichlet distribution using the from_params method in the +BallotGenerator class.

+

Attributes

+

candidates +: a list of candidates.

+

pref_intervals_by_bloc +: dictionary of dictionaries mapping of bloc to preference intervals. + (ex. {bloc_1: {bloc_1 : PI, bloc_2: PI}}).

+

cohesion_parameters +: dictionary of dictionaries of cohesion parameters (ex. {bloc_1: {bloc_1:.7, bloc_2: .3}})

+

bloc_voter_prop +: dictionary mapping of bloc to voter proportions (ex. {bloc: proportion}).

+

Methods

+

See BallotGenerator base class

+ +
+ Source code in src/votekit/ballot_generator.py +
619
+620
+621
+622
+623
+624
+625
+626
+627
+628
+629
+630
+631
+632
+633
+634
+635
+636
+637
+638
+639
+640
+641
+642
+643
+644
+645
+646
+647
+648
+649
+650
+651
+652
+653
+654
+655
+656
+657
+658
+659
+660
class name_PlackettLuce(short_name_PlackettLuce):
+    """
+    Class for generating full ballots with name-PlackettLuce. This model samples without
+    replacement from a preference interval. Can be initialized with an interval or can be
+    constructed with the Dirichlet distribution using the `from_params` method in the
+    `BallotGenerator` class.
+
+    **Attributes**
+
+    `candidates`
+    : a list of candidates.
+
+    `pref_intervals_by_bloc`
+    :   dictionary of dictionaries mapping of bloc to preference intervals.
+        (ex. {bloc_1: {bloc_1 : PI, bloc_2: PI}}).
+
+    `cohesion_parameters`
+    : dictionary of dictionaries of cohesion parameters (ex. {bloc_1: {bloc_1:.7, bloc_2: .3}})
+
+    `bloc_voter_prop`
+    :   dictionary mapping of bloc to voter proportions (ex. {bloc: proportion}).
+
+
+    **Methods**
+
+    See `BallotGenerator` base class
+    """
+
+    def __init__(self, cohesion_parameters: dict, **data):
+        if "candidates" in data:
+            ballot_length = len(data["candidates"])
+        elif "slate_to_candidates" in data:
+            ballot_length = sum(
+                len(c_list) for c_list in data["slate_to_candidates"].values()
+            )
+        else:
+            raise ValueError("One of candidates or slate_to_candidates must be passed.")
+
+        # Call the parent class's __init__ method to handle common parameters
+        super().__init__(
+            ballot_length=ballot_length, cohesion_parameters=cohesion_parameters, **data
+        )
+
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+ +
+ + + +

+ slate_BradleyTerry + + +

+ + +
+

+ Bases: BallotGenerator

+ + +

Class for generating ballots using a slate-BradleyTerry model. It +presamples ballot types by checking all pairwise comparisons, then fills out candidate +ordering by sampling without replacement from preference intervals.

+

Only works with 2 blocs at the moment.

+

Can be initialized with an interval or can be +constructed with the Dirichlet distribution using the from_params method in the +BallotGenerator class.

+

Attributes

+

slate_to_candidates +: dictionary mapping of slate to candidates (ex. {bloc: [candidate]}).

+

pref_intervals_by_bloc +: dictionary of dictionaries mapping of bloc to preference intervals. + (ex. {bloc_1: {bloc_1 : PI, bloc_2: PI}}).

+

bloc_voter_prop +: dictionary mapping of bloc to voter proportions (ex. {bloc: proportion}).

+

cohesion_parameters +: dictionary of dictionaries of cohesion parameters (ex. {bloc_1: {bloc_1:.7, bloc_2: .3}})

+

Methods

+

See BallotGenerator base class

+ +
+ Source code in src/votekit/ballot_generator.py +
1595
+1596
+1597
+1598
+1599
+1600
+1601
+1602
+1603
+1604
+1605
+1606
+1607
+1608
+1609
+1610
+1611
+1612
+1613
+1614
+1615
+1616
+1617
+1618
+1619
+1620
+1621
+1622
+1623
+1624
+1625
+1626
+1627
+1628
+1629
+1630
+1631
+1632
+1633
+1634
+1635
+1636
+1637
+1638
+1639
+1640
+1641
+1642
+1643
+1644
+1645
+1646
+1647
+1648
+1649
+1650
+1651
+1652
+1653
+1654
+1655
+1656
+1657
+1658
+1659
+1660
+1661
+1662
+1663
+1664
+1665
+1666
+1667
+1668
+1669
+1670
+1671
+1672
+1673
+1674
+1675
+1676
+1677
+1678
+1679
+1680
+1681
+1682
+1683
+1684
+1685
+1686
+1687
+1688
+1689
+1690
+1691
+1692
+1693
+1694
+1695
+1696
+1697
+1698
+1699
+1700
+1701
+1702
+1703
+1704
+1705
+1706
+1707
+1708
+1709
+1710
+1711
+1712
+1713
+1714
+1715
+1716
+1717
+1718
+1719
+1720
+1721
+1722
+1723
+1724
+1725
+1726
+1727
+1728
+1729
+1730
+1731
+1732
+1733
+1734
+1735
+1736
+1737
+1738
+1739
+1740
+1741
+1742
+1743
+1744
+1745
+1746
+1747
+1748
+1749
+1750
+1751
+1752
+1753
+1754
+1755
+1756
+1757
+1758
+1759
+1760
+1761
+1762
+1763
+1764
+1765
+1766
+1767
+1768
+1769
+1770
+1771
+1772
+1773
+1774
+1775
+1776
+1777
+1778
+1779
+1780
+1781
+1782
+1783
+1784
+1785
+1786
+1787
+1788
+1789
+1790
+1791
+1792
+1793
+1794
+1795
+1796
+1797
+1798
+1799
+1800
+1801
+1802
+1803
+1804
+1805
+1806
+1807
+1808
+1809
+1810
+1811
+1812
+1813
+1814
+1815
+1816
+1817
+1818
+1819
+1820
+1821
+1822
+1823
+1824
+1825
+1826
+1827
+1828
+1829
+1830
+1831
+1832
+1833
+1834
+1835
+1836
+1837
class slate_BradleyTerry(BallotGenerator):
+    """
+    Class for generating ballots using a slate-BradleyTerry model. It
+    presamples ballot types by checking all pairwise comparisons, then fills out candidate
+    ordering by sampling without replacement from preference intervals.
+
+    Only works with 2 blocs at the moment.
+
+    Can be initialized with an interval or can be
+    constructed with the Dirichlet distribution using the `from_params` method in the
+    `BallotGenerator` class.
+
+    **Attributes**
+
+    `slate_to_candidates`
+    :   dictionary mapping of slate to candidates (ex. {bloc: [candidate]}).
+
+    `pref_intervals_by_bloc`
+    :   dictionary of dictionaries mapping of bloc to preference intervals.
+        (ex. {bloc_1: {bloc_1 : PI, bloc_2: PI}}).
+
+    `bloc_voter_prop`
+    :   dictionary mapping of bloc to voter proportions (ex. {bloc: proportion}).
+
+    `cohesion_parameters`
+    : dictionary of dictionaries of cohesion parameters (ex. {bloc_1: {bloc_1:.7, bloc_2: .3}})
+
+    **Methods**
+
+    See `BallotGenerator` base class
+    """
+
+    def __init__(self, cohesion_parameters: dict, **data):
+        # Call the parent class's __init__ method to handle common parameters
+        super().__init__(cohesion_parameters=cohesion_parameters, **data)
+
+        if len(self.slate_to_candidates.keys()) > 2:
+            raise UserWarning(
+                f"This model currently only supports at most two blocs, but you \
+                              passed {len(self.slate_to_candidates.keys())}"
+            )
+
+        self.ballot_type_pdf = {
+            b: self._compute_ballot_type_dist(b, self.blocs[(i + 1) % 2])
+            for i, b in enumerate(self.blocs)
+        }
+
+    def _compute_ballot_type_dist(self, bloc, opp_bloc):
+        """
+        Return a dictionary with keys ballot types and values equal to probability of sampling.
+        """
+        blocs_to_sample = [
+            b for b in self.blocs for _ in range(len(self.slate_to_candidates[b]))
+        ]
+        total_comparisons = np.prod(
+            [len(l_of_c) for l_of_c in self.slate_to_candidates.values()]
+        )
+        cohesion = self.cohesion_parameters[bloc][bloc]
+
+        def prob_of_type(b_type):
+            success = sum(
+                b_type[i + 1 :].count(opp_bloc)
+                for i, b in enumerate(b_type)
+                if b == bloc
+            )
+            return pow(cohesion, success) * pow(
+                1 - cohesion, total_comparisons - success
+            )
+
+        pdf = {
+            b: prob_of_type(b)
+            for b in set(it.permutations(blocs_to_sample, len(blocs_to_sample)))
+        }
+
+        summ = sum(pdf.values())
+        return {b: v / summ for b, v in pdf.items()}
+
+    def _sample_ballot_types_deterministic(
+        self, bloc: str, opp_bloc: str, num_ballots: int
+    ):
+        """
+        Used to generate bloc orderings for deliberative.
+
+        Returns a list of lists, where each sublist contains the bloc names in order they appear
+        on the ballot.
+        """
+        # pdf = self._compute_ballot_type_dist(bloc=bloc, opp_bloc=opp_bloc)
+        pdf = self.ballot_type_pdf[bloc]
+        b_types = list(pdf.keys())
+        probs = list(pdf.values())
+
+        sampled_indices = np.random.choice(len(b_types), size=num_ballots, p=probs)
+
+        return [b_types[i] for i in sampled_indices]
+
+    def _sample_ballot_types_MCMC(
+        self, bloc: str, num_ballots: int, verbose: bool = False
+    ):
+        """
+        Generate ballot types using MCMC that has desired stationary distribution.
+        """
+
+        seed_ballot_type = [
+            b for b in self.blocs for _ in range(len(self.slate_to_candidates[b]))
+        ]
+
+        ballots = [[-1]] * num_ballots
+        accept = 0
+        current_ranking = seed_ballot_type
+
+        cohesion = self.cohesion_parameters[bloc][bloc]
+
+        # presample swap indices
+        swap_indices = [
+            (j1, j1 + 1)
+            for j1 in np.random.choice(len(seed_ballot_type) - 1, size=num_ballots)
+        ]
+
+        odds = (1 - cohesion) / cohesion
+        # generate MCMC sample
+        for i in range(num_ballots):
+            # choose adjacent pair to propose a swap
+            j1, j2 = swap_indices[i]
+
+            # if swap reduces number of voters bloc above opposing bloc
+            if (
+                current_ranking[j1] != current_ranking[j2]
+                and current_ranking[j1] == bloc
+            ):
+                acceptance_prob = odds
+
+            # if swap increases number of voters bloc above opposing or swaps two of same bloc
+            else:
+                acceptance_prob = 1
+
+            # if you accept, make the swap
+            if random.random() < acceptance_prob:
+                current_ranking[j1], current_ranking[j2] = (
+                    current_ranking[j2],
+                    current_ranking[j1],
+                )
+                accept += 1
+
+            ballots[i] = current_ranking.copy()
+
+        if verbose:
+            print(
+                f"Acceptance ratio as number accepted / total steps: {accept/num_ballots:.2}"
+            )
+
+        if -1 in ballots:
+            raise ValueError("Some element of ballots list is not a ballot.")
+
+        return ballots
+
+    def generate_profile(
+        self, number_of_ballots: int, by_bloc: bool = False, deterministic: bool = True
+    ) -> Union[PreferenceProfile, Tuple]:
+        """
+        Args:
+        `number_of_ballots`: The number of ballots to generate.
+
+        `by_bloc`: True if you want to return a dictionary of PreferenceProfiles by bloc.
+                    False if you want the full, aggregated PreferenceProfile.
+
+        `deterministic`: True if you want to use the computed pdf for the slate-BT model,
+                        False if you want to use MCMC approximation. Defaults to True.
+        """
+        # the number of ballots per bloc is determined by Huntington-Hill apportionment
+        bloc_props = list(self.bloc_voter_prop.values())
+        ballots_per_block = dict(
+            zip(
+                self.blocs,
+                apportion.compute("huntington", bloc_props, number_of_ballots),
+            )
+        )
+
+        pref_profile_by_bloc = {}
+
+        for i, bloc in enumerate(self.blocs):
+            # number of voters in this bloc
+            num_ballots = ballots_per_block[bloc]
+            ballot_pool = [Ballot()] * num_ballots
+            pref_intervals = self.pref_intervals_by_bloc[bloc]
+            zero_cands = set(
+                it.chain(*[pi.zero_cands for pi in pref_intervals.values()])
+            )
+
+            if deterministic:
+                ballot_types = self._sample_ballot_types_deterministic(
+                    bloc=bloc, opp_bloc=self.blocs[(i + 1) % 2], num_ballots=num_ballots
+                )
+            else:
+                ballot_types = self._sample_ballot_types_MCMC(
+                    bloc=bloc, num_ballots=num_ballots
+                )
+
+            for j, bt in enumerate(ballot_types):
+                cand_ordering_by_bloc = {}
+
+                for b in self.blocs:
+                    # create a pref interval dict of only this blocs candidates
+                    bloc_cand_pref_interval = pref_intervals[b].interval
+                    cands = pref_intervals[b].non_zero_cands
+
+                    # if there are no non-zero candidates, skip this bloc
+                    if len(cands) == 0:
+                        continue
+
+                    distribution = [bloc_cand_pref_interval[c] for c in cands]
+
+                    # sample
+                    cand_ordering = np.random.choice(
+                        a=list(cands), size=len(cands), p=distribution, replace=False
+                    )
+
+                    cand_ordering_by_bloc[b] = list(cand_ordering)
+
+                ranking = [frozenset({-1})] * len(bt)
+                for i, b in enumerate(bt):
+                    # append the current first candidate, then remove them from the ordering
+                    ranking[i] = frozenset({cand_ordering_by_bloc[b][0]})
+                    cand_ordering_by_bloc[b].pop(0)
+
+                if len(zero_cands) > 0:
+                    ranking.append(frozenset(zero_cands))
+                ballot_pool[j] = Ballot(ranking=tuple(ranking), weight=Fraction(1, 1))
+
+            pp = PreferenceProfile(ballots=ballot_pool)
+            pp = pp.condense_ballots()
+            pref_profile_by_bloc[bloc] = pp
+
+        # combine the profiles
+        pp = PreferenceProfile(ballots=[])
+        for profile in pref_profile_by_bloc.values():
+            pp += profile
+
+        if by_bloc:
+            return (pref_profile_by_bloc, pp)
+
+        # else return the combined profiles
+        else:
+            return pp
+
+
+ + + +
+ + + + + + + + + + +
+ + + +

+ generate_profile(number_of_ballots, by_bloc=False, deterministic=True) + +

+ + +
+ +

Args: +number_of_ballots: The number of ballots to generate.

+

by_bloc: True if you want to return a dictionary of PreferenceProfiles by bloc. + False if you want the full, aggregated PreferenceProfile.

+

deterministic: True if you want to use the computed pdf for the slate-BT model, + False if you want to use MCMC approximation. Defaults to True.

+ +
+ Source code in src/votekit/ballot_generator.py +
1750
+1751
+1752
+1753
+1754
+1755
+1756
+1757
+1758
+1759
+1760
+1761
+1762
+1763
+1764
+1765
+1766
+1767
+1768
+1769
+1770
+1771
+1772
+1773
+1774
+1775
+1776
+1777
+1778
+1779
+1780
+1781
+1782
+1783
+1784
+1785
+1786
+1787
+1788
+1789
+1790
+1791
+1792
+1793
+1794
+1795
+1796
+1797
+1798
+1799
+1800
+1801
+1802
+1803
+1804
+1805
+1806
+1807
+1808
+1809
+1810
+1811
+1812
+1813
+1814
+1815
+1816
+1817
+1818
+1819
+1820
+1821
+1822
+1823
+1824
+1825
+1826
+1827
+1828
+1829
+1830
+1831
+1832
+1833
+1834
+1835
+1836
+1837
def generate_profile(
+    self, number_of_ballots: int, by_bloc: bool = False, deterministic: bool = True
+) -> Union[PreferenceProfile, Tuple]:
+    """
+    Args:
+    `number_of_ballots`: The number of ballots to generate.
+
+    `by_bloc`: True if you want to return a dictionary of PreferenceProfiles by bloc.
+                False if you want the full, aggregated PreferenceProfile.
+
+    `deterministic`: True if you want to use the computed pdf for the slate-BT model,
+                    False if you want to use MCMC approximation. Defaults to True.
+    """
+    # the number of ballots per bloc is determined by Huntington-Hill apportionment
+    bloc_props = list(self.bloc_voter_prop.values())
+    ballots_per_block = dict(
+        zip(
+            self.blocs,
+            apportion.compute("huntington", bloc_props, number_of_ballots),
+        )
+    )
+
+    pref_profile_by_bloc = {}
+
+    for i, bloc in enumerate(self.blocs):
+        # number of voters in this bloc
+        num_ballots = ballots_per_block[bloc]
+        ballot_pool = [Ballot()] * num_ballots
+        pref_intervals = self.pref_intervals_by_bloc[bloc]
+        zero_cands = set(
+            it.chain(*[pi.zero_cands for pi in pref_intervals.values()])
+        )
+
+        if deterministic:
+            ballot_types = self._sample_ballot_types_deterministic(
+                bloc=bloc, opp_bloc=self.blocs[(i + 1) % 2], num_ballots=num_ballots
+            )
+        else:
+            ballot_types = self._sample_ballot_types_MCMC(
+                bloc=bloc, num_ballots=num_ballots
+            )
+
+        for j, bt in enumerate(ballot_types):
+            cand_ordering_by_bloc = {}
+
+            for b in self.blocs:
+                # create a pref interval dict of only this blocs candidates
+                bloc_cand_pref_interval = pref_intervals[b].interval
+                cands = pref_intervals[b].non_zero_cands
+
+                # if there are no non-zero candidates, skip this bloc
+                if len(cands) == 0:
+                    continue
+
+                distribution = [bloc_cand_pref_interval[c] for c in cands]
+
+                # sample
+                cand_ordering = np.random.choice(
+                    a=list(cands), size=len(cands), p=distribution, replace=False
+                )
+
+                cand_ordering_by_bloc[b] = list(cand_ordering)
+
+            ranking = [frozenset({-1})] * len(bt)
+            for i, b in enumerate(bt):
+                # append the current first candidate, then remove them from the ordering
+                ranking[i] = frozenset({cand_ordering_by_bloc[b][0]})
+                cand_ordering_by_bloc[b].pop(0)
+
+            if len(zero_cands) > 0:
+                ranking.append(frozenset(zero_cands))
+            ballot_pool[j] = Ballot(ranking=tuple(ranking), weight=Fraction(1, 1))
+
+        pp = PreferenceProfile(ballots=ballot_pool)
+        pp = pp.condense_ballots()
+        pref_profile_by_bloc[bloc] = pp
+
+    # combine the profiles
+    pp = PreferenceProfile(ballots=[])
+    for profile in pref_profile_by_bloc.values():
+        pp += profile
+
+    if by_bloc:
+        return (pref_profile_by_bloc, pp)
+
+    # else return the combined profiles
+    else:
+        return pp
+
+
+
+ +
+ + + +
+ +
+ + +
+ +
+ + + +

+ name_BradleyTerry + + +

+ + +
+

+ Bases: BallotGenerator

+ + +

Class for generating ballots using a name-BradleyTerry model. The probability of sampling +the ranking \(X>Y>Z\) is proportional to \(P(X>Y)*P(X>Z)*P(Y>Z)\). +These individual probabilities are based on the preference interval: \(P(X>Y) = x/(x+y)\). +Can be initialized with an interval or can be constructed with the Dirichlet distribution using +the from_params method in the BallotGenerator class.

+

Attributes

+

candidates +: a list of candidates.

+

pref_intervals_by_bloc +: dictionary of dictionaries mapping of bloc to preference intervals or dictionary of PIs. + (ex. {bloc_1: {bloc_1 : PI, bloc_2: PI}}).

+

bloc_voter_prop +: dictionary mapping of slate to voter proportions (ex. {race: voter proportion}).

+

cohesion_parameters +: dictionary of dictionaries of cohesion parameters (ex. {bloc_1: {bloc_1:.7, bloc_2: .3}})

+

Methods

+

See BallotGenerator base class.

+ +
+ Source code in src/votekit/ballot_generator.py +
663
+664
+665
+666
+667
+668
+669
+670
+671
+672
+673
+674
+675
+676
+677
+678
+679
+680
+681
+682
+683
+684
+685
+686
+687
+688
+689
+690
+691
+692
+693
+694
+695
+696
+697
+698
+699
+700
+701
+702
+703
+704
+705
+706
+707
+708
+709
+710
+711
+712
+713
+714
+715
+716
+717
+718
+719
+720
+721
+722
+723
+724
+725
+726
+727
+728
+729
+730
+731
+732
+733
+734
+735
+736
+737
+738
+739
+740
+741
+742
+743
+744
+745
+746
+747
+748
+749
+750
+751
+752
+753
+754
+755
+756
+757
+758
+759
+760
+761
+762
+763
+764
+765
+766
+767
+768
+769
+770
+771
+772
+773
+774
+775
+776
+777
+778
+779
+780
+781
+782
+783
+784
+785
+786
+787
+788
+789
+790
+791
+792
+793
+794
+795
+796
+797
+798
+799
+800
+801
+802
+803
+804
+805
+806
+807
+808
+809
+810
+811
+812
+813
+814
+815
+816
+817
+818
+819
+820
+821
+822
+823
+824
+825
+826
+827
+828
+829
+830
+831
+832
+833
+834
+835
+836
+837
+838
+839
+840
+841
+842
+843
+844
+845
+846
+847
+848
+849
+850
+851
+852
+853
+854
+855
+856
+857
+858
+859
+860
+861
+862
+863
+864
+865
+866
+867
+868
+869
+870
+871
+872
+873
+874
+875
+876
+877
+878
+879
+880
+881
+882
+883
+884
+885
+886
+887
+888
+889
+890
+891
+892
+893
+894
+895
+896
+897
+898
+899
+900
+901
+902
+903
+904
+905
+906
+907
+908
+909
+910
+911
+912
+913
+914
+915
+916
+917
+918
+919
+920
+921
+922
+923
+924
+925
+926
+927
+928
+929
+930
+931
+932
+933
+934
+935
+936
+937
+938
+939
+940
+941
+942
+943
+944
+945
+946
+947
+948
+949
+950
+951
+952
+953
+954
+955
+956
+957
+958
+959
+960
+961
+962
+963
+964
+965
+966
+967
class name_BradleyTerry(BallotGenerator):
+    """
+    Class for generating ballots using a name-BradleyTerry model. The probability of sampling
+    the ranking $X>Y>Z$ is proportional to $P(X>Y)*P(X>Z)*P(Y>Z)$.
+    These individual probabilities are based on the preference interval: $P(X>Y) = x/(x+y)$.
+    Can be initialized with an interval or can be constructed with the Dirichlet distribution using
+    the `from_params` method in the `BallotGenerator` class.
+
+    **Attributes**
+
+    `candidates`
+    : a list of candidates.
+
+    `pref_intervals_by_bloc`
+    : dictionary of dictionaries mapping of bloc to preference intervals or dictionary of PIs.
+        (ex. {bloc_1: {bloc_1 : PI, bloc_2: PI}}).
+
+    `bloc_voter_prop`
+    :   dictionary mapping of slate to voter proportions (ex. {race: voter proportion}).
+
+    `cohesion_parameters`
+    : dictionary of dictionaries of cohesion parameters (ex. {bloc_1: {bloc_1:.7, bloc_2: .3}})
+
+    **Methods**
+
+    See `BallotGenerator` base class.
+    """
+
+    def __init__(self, cohesion_parameters: dict, **data):
+        # Call the parent class's __init__ method to handle common parameters
+        super().__init__(cohesion_parameters=cohesion_parameters, **data)
+
+        # if dictionary of pref intervals
+        if isinstance(
+            list(self.pref_intervals_by_bloc.values())[0], PreferenceInterval
+        ):
+            self.pref_interval_by_bloc = self.pref_intervals_by_bloc
+
+        # if nested dictionary of pref intervals, combine by cohesion
+        else:
+            self.pref_interval_by_bloc = {
+                bloc: combine_preference_intervals(
+                    [self.pref_intervals_by_bloc[bloc][b] for b in self.blocs],
+                    [self.cohesion_parameters[bloc][b] for b in self.blocs],
+                )
+                for bloc in self.blocs
+            }
+
+        if len(self.candidates) < 12:
+            # precompute pdfs for sampling
+            self.pdfs_by_bloc = {
+                bloc: self._BT_pdf(self.pref_interval_by_bloc[bloc].interval)
+                for bloc in self.blocs
+            }
+        else:
+            warnings.warn(
+                "For 12 or more candidates, exact sampling is computationally infeasible. \
+                    Please only use the built in generate_profile_MCMC method."
+            )
+
+    def _calc_prob(self, permutations: list[tuple], cand_support_dict: dict) -> dict:
+        """
+        given a list of (possibly incomplete) rankings and the preference interval, \
+        calculates the probability of observing each ranking
+
+        Args:
+            permutations (list[tuple]): a list of permuted rankings
+            cand_support_dict (dict): a mapping from candidate to their \
+            support (preference interval)
+
+        Returns:
+            dict: a mapping of the rankings to their probability
+        """
+        ranking_to_prob = {}
+        for ranking in permutations:
+            prob = 1
+            for i in range(len(ranking)):
+                cand_i = ranking[i]
+                greater_cand_support = cand_support_dict[cand_i]
+                for j in range(i + 1, len(ranking)):
+                    cand_j = ranking[j]
+                    cand_support = cand_support_dict[cand_j]
+                    prob *= greater_cand_support / (greater_cand_support + cand_support)
+            ranking_to_prob[ranking] = prob
+        return ranking_to_prob
+
+    def _make_pow(self, lst):
+        """
+        Helper method for _BT_pdf.
+        Takes is a list representing the preference lengths of each candidate
+        in a permutation.
+        Computes the numerator of BT probability.
+        """
+        ret = 1
+        m = len(lst)
+        for i, val in enumerate(lst):
+            if i < m - 1:
+                ret *= val ** (m - i - 1)
+        return ret
+
+    def _BT_pdf(self, dct):
+        """
+        Construct the BT pdf as a dictionary (ballot, probability) given a preference
+        interval as a dictionary (candidate, preference).
+        """
+
+        # gives PI lengths for each candidate in permutation
+        def pull_perm(lst):
+            nonlocal dct
+            return [dct[i] for i in lst]
+
+        new_dct = {
+            perm: self._make_pow(pull_perm(perm))
+            for perm in it.permutations(dct.keys(), len(dct))
+        }
+        summ = sum(new_dct.values())
+        return {key: value / summ for key, value in new_dct.items()}
+
+    def generate_profile(
+        self, number_of_ballots, by_bloc: bool = False
+    ) -> Union[PreferenceProfile, Tuple]:
+        # the number of ballots per bloc is determined by Huntington-Hill apportionment
+
+        bloc_props = list(self.bloc_voter_prop.values())
+        ballots_per_block = dict(
+            zip(
+                self.blocs,
+                apportion.compute("huntington", bloc_props, number_of_ballots),
+            )
+        )
+
+        pp_by_bloc = {b: PreferenceProfile() for b in self.blocs}
+
+        for bloc in self.blocs:
+            num_ballots = ballots_per_block[bloc]
+
+            # Directly initialize the list using good memory trick
+            ballot_pool = [Ballot()] * num_ballots
+            zero_cands = self.pref_interval_by_bloc[bloc].zero_cands
+            pdf_dict = self.pdfs_by_bloc[bloc]
+
+            # Directly use the keys and values from the dictionary for sampling
+            rankings, probs = zip(*pdf_dict.items())
+
+            # The return of this will be a numpy array, so we don't need to make it into a list
+            sampled_indices = np.array(
+                np.random.choice(
+                    a=len(rankings),
+                    size=num_ballots,
+                    p=probs,
+                ),
+                ndmin=1,
+            )
+
+            for j, index in enumerate(sampled_indices):
+                ranking = [frozenset({cand}) for cand in rankings[index]]
+
+                # Add any zero candidates as ties only if they exist
+                if zero_cands:
+                    ranking.append(frozenset(zero_cands))
+
+                ballot_pool[j] = Ballot(ranking=tuple(ranking), weight=Fraction(1, 1))
+
+            pp = PreferenceProfile(ballots=ballot_pool)
+            pp = pp.condense_ballots()
+            pp_by_bloc[bloc] = pp
+
+        # combine the profiles
+        pp = PreferenceProfile(ballots=[])
+        for profile in pp_by_bloc.values():
+            pp += profile
+
+        if by_bloc:
+            return (pp_by_bloc, pp)
+
+        # else return the combined profiles
+        else:
+            return pp
+
+    def _BT_mcmc(
+        self, num_ballots, pref_interval, seed_ballot, zero_cands={}, verbose=False
+    ):
+        """
+        Sample from BT distribution for a given preference interval using MCMC.
+
+        num_ballots (int): the number of ballots to sample
+        pref_interval (dict): the preference interval to determine BT distribution
+        sub_sample_length (int): how many attempts at swaps to make before saving ballot
+        seed_ballot: Ballot, the seed ballot for the Markov chain
+        verbose: bool, if True, print the acceptance ratio of the chain
+        """
+
+        # check that seed ballot has no ties
+        for s in seed_ballot.ranking:
+            if len(s) > 1:
+                raise ValueError("Seed ballot contains ties")
+
+        ballots = [-1] * num_ballots
+        accept = 0
+        current_ranking = list(seed_ballot.ranking)
+        num_candidates = len(current_ranking)
+
+        # presample swap indices
+        swap_indices = [
+            (j1, j1 + 1)
+            for j1 in random.choices(range(num_candidates - 1), k=num_ballots)
+        ]
+
+        # generate MCMC sample
+        for i in range(num_ballots):
+            # choose adjacent pair to propose a swap
+            j1, j2 = swap_indices[i]
+            acceptance_prob = min(
+                1,
+                pref_interval[next(iter(current_ranking[j2]))]
+                / pref_interval[next(iter(current_ranking[j1]))],
+            )
+
+            # if you accept, make the swap
+            if random.random() < acceptance_prob:
+                current_ranking[j1], current_ranking[j2] = (
+                    current_ranking[j2],
+                    current_ranking[j1],
+                )
+                accept += 1
+
+            if len(zero_cands) > 0:
+                ballots[i] = Ballot(ranking=current_ranking + [zero_cands])
+            else:
+                ballots[i] = Ballot(ranking=current_ranking)
+
+        if verbose:
+            print(
+                f"Acceptance ratio as number accepted / total steps: {accept/num_ballots:.2}"
+            )
+
+        if -1 in ballots:
+            raise ValueError("Some element of ballots list is not a ballot.")
+
+        pp = PreferenceProfile(ballots=ballots)
+        pp = pp.condense_ballots()
+        return pp
+
+    def generate_profile_MCMC(
+        self, number_of_ballots: int, verbose=False, by_bloc: bool = False
+    ) -> Union[PreferenceProfile, Tuple]:
+        """
+        Sample from the BT distribution using Markov Chain Monte Carlo. `number_of_ballots` should
+        be sufficiently large to allow for convergence of the chain.
+
+        Args:
+            number_of_ballots (int): Number of ballots to generate.
+            verbose (bool, optional): If True, print the acceptance ratio of the chain. Default
+                                        is False.
+            by_bloc (bool, optional): True if you want a tuple (pp_by_bloc, pp), which is a
+                                    dictionary of  PreferenceProfiles with keys = blocs and the
+                                    aggregated profile. False if you want the aggregated profile.
+                                    Defaults to False.
+
+        Returns:
+            Generated ballots as a PreferenceProfile or tuple (dict, PreferenceProfile).
+        """
+
+        # the number of ballots per bloc is determined by Huntington-Hill apportionment
+        bloc_props = list(self.bloc_voter_prop.values())
+        ballots_per_block = dict(
+            zip(
+                self.blocs,
+                apportion.compute("huntington", bloc_props, number_of_ballots),
+            )
+        )
+
+        pp_by_bloc = {b: PreferenceProfile() for b in self.blocs}
+
+        for bloc in self.blocs:
+            num_ballots = ballots_per_block[bloc]
+            pref_interval = self.pref_interval_by_bloc[bloc]
+            pref_interval_dict = pref_interval.interval
+            non_zero_cands = pref_interval.non_zero_cands
+            zero_cands = pref_interval.zero_cands
+
+            seed_ballot = Ballot(
+                ranking=tuple([frozenset({c}) for c in non_zero_cands])
+            )
+            pp = self._BT_mcmc(
+                num_ballots,
+                pref_interval_dict,
+                seed_ballot,
+                zero_cands=zero_cands,
+                verbose=verbose,
+            )
+
+            pp_by_bloc[bloc] = pp
+
+        # combine the profiles
+        pp = PreferenceProfile(ballots=[])
+        for profile in pp_by_bloc.values():
+            pp += profile
+
+        if by_bloc:
+            return (pp_by_bloc, pp)
+
+        # else return the combined profiles
+        else:
+            return pp
+
+
+ + + +
+ + + + + + + + + + +
+ + + +

+ generate_profile_MCMC(number_of_ballots, verbose=False, by_bloc=False) + +

+ + +
+ +

Sample from the BT distribution using Markov Chain Monte Carlo. number_of_ballots should +be sufficiently large to allow for convergence of the chain.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
number_of_ballots + int + +
+

Number of ballots to generate.

+
+
+ required +
verbose + bool + +
+

If True, print the acceptance ratio of the chain. Default + is False.

+
+
+ False +
by_bloc + bool + +
+

True if you want a tuple (pp_by_bloc, pp), which is a + dictionary of PreferenceProfiles with keys = blocs and the + aggregated profile. False if you want the aggregated profile. + Defaults to False.

+
+
+ False +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ Union[PreferenceProfile, Tuple] + +
+

Generated ballots as a PreferenceProfile or tuple (dict, PreferenceProfile).

+
+
+ +
+ Source code in src/votekit/ballot_generator.py +
906
+907
+908
+909
+910
+911
+912
+913
+914
+915
+916
+917
+918
+919
+920
+921
+922
+923
+924
+925
+926
+927
+928
+929
+930
+931
+932
+933
+934
+935
+936
+937
+938
+939
+940
+941
+942
+943
+944
+945
+946
+947
+948
+949
+950
+951
+952
+953
+954
+955
+956
+957
+958
+959
+960
+961
+962
+963
+964
+965
+966
+967
def generate_profile_MCMC(
+    self, number_of_ballots: int, verbose=False, by_bloc: bool = False
+) -> Union[PreferenceProfile, Tuple]:
+    """
+    Sample from the BT distribution using Markov Chain Monte Carlo. `number_of_ballots` should
+    be sufficiently large to allow for convergence of the chain.
+
+    Args:
+        number_of_ballots (int): Number of ballots to generate.
+        verbose (bool, optional): If True, print the acceptance ratio of the chain. Default
+                                    is False.
+        by_bloc (bool, optional): True if you want a tuple (pp_by_bloc, pp), which is a
+                                dictionary of  PreferenceProfiles with keys = blocs and the
+                                aggregated profile. False if you want the aggregated profile.
+                                Defaults to False.
+
+    Returns:
+        Generated ballots as a PreferenceProfile or tuple (dict, PreferenceProfile).
+    """
+
+    # the number of ballots per bloc is determined by Huntington-Hill apportionment
+    bloc_props = list(self.bloc_voter_prop.values())
+    ballots_per_block = dict(
+        zip(
+            self.blocs,
+            apportion.compute("huntington", bloc_props, number_of_ballots),
+        )
+    )
+
+    pp_by_bloc = {b: PreferenceProfile() for b in self.blocs}
+
+    for bloc in self.blocs:
+        num_ballots = ballots_per_block[bloc]
+        pref_interval = self.pref_interval_by_bloc[bloc]
+        pref_interval_dict = pref_interval.interval
+        non_zero_cands = pref_interval.non_zero_cands
+        zero_cands = pref_interval.zero_cands
+
+        seed_ballot = Ballot(
+            ranking=tuple([frozenset({c}) for c in non_zero_cands])
+        )
+        pp = self._BT_mcmc(
+            num_ballots,
+            pref_interval_dict,
+            seed_ballot,
+            zero_cands=zero_cands,
+            verbose=verbose,
+        )
+
+        pp_by_bloc[bloc] = pp
+
+    # combine the profiles
+    pp = PreferenceProfile(ballots=[])
+    for profile in pp_by_bloc.values():
+        pp += profile
+
+    if by_bloc:
+        return (pp_by_bloc, pp)
+
+    # else return the combined profiles
+    else:
+        return pp
+
+
+
+ +
+ + + +
+ +
+ + +
+ +
+ + + +

+ AlternatingCrossover + + +

+ + +
+

+ Bases: BallotGenerator

+ + +

Class for Alternating Crossover style of generating ballots. +AC assumes that voters either rank all of their own blocs candidates above the other bloc, +or the voters "crossover" and rank a candidate from the other bloc first, then alternate +between candidates from their own bloc and the opposing. +Should only be used when there are two blocs.

+

Can be initialized with an interval or can be +constructed with the Dirichlet distribution using the from_params method in the +BallotGenerator class.

+

Attributes

+

pref_intervals_by_bloc +: dictionary of dictionaries mapping of bloc to preference intervals. + (ex. {bloc_1: {bloc_1 : PI, bloc_2: PI}}).

+

bloc_voter_prop +: dictionary mapping of slate to voter proportions (ex. {bloc: voter proportion}).

+

slate_to_candidates +: dictionary mapping of slate to candidates (ex. {bloc: [candidate1, candidate2]}).

+

cohesion_parameters +: dictionary of dictionaries of cohesion parameters (ex. {bloc_1: {bloc_1:.7, bloc_2: .3}})

+

Methods

+

See BallotGenerator base class.

+ +
+ Source code in src/votekit/ballot_generator.py +
 970
+ 971
+ 972
+ 973
+ 974
+ 975
+ 976
+ 977
+ 978
+ 979
+ 980
+ 981
+ 982
+ 983
+ 984
+ 985
+ 986
+ 987
+ 988
+ 989
+ 990
+ 991
+ 992
+ 993
+ 994
+ 995
+ 996
+ 997
+ 998
+ 999
+1000
+1001
+1002
+1003
+1004
+1005
+1006
+1007
+1008
+1009
+1010
+1011
+1012
+1013
+1014
+1015
+1016
+1017
+1018
+1019
+1020
+1021
+1022
+1023
+1024
+1025
+1026
+1027
+1028
+1029
+1030
+1031
+1032
+1033
+1034
+1035
+1036
+1037
+1038
+1039
+1040
+1041
+1042
+1043
+1044
+1045
+1046
+1047
+1048
+1049
+1050
+1051
+1052
+1053
+1054
+1055
+1056
+1057
+1058
+1059
+1060
+1061
+1062
+1063
+1064
+1065
+1066
+1067
+1068
+1069
+1070
+1071
+1072
+1073
+1074
+1075
+1076
+1077
+1078
+1079
+1080
+1081
+1082
+1083
+1084
+1085
+1086
+1087
+1088
+1089
+1090
+1091
+1092
+1093
+1094
+1095
+1096
+1097
+1098
+1099
+1100
class AlternatingCrossover(BallotGenerator):
+    """
+    Class for Alternating Crossover style of generating ballots.
+    AC assumes that voters either rank all of their own blocs candidates above the other bloc,
+    or the voters "crossover" and rank a candidate from the other bloc first, then alternate
+    between candidates from their own bloc and the opposing.
+    Should only be used when there are two blocs.
+
+    Can be initialized with an interval or can be
+    constructed with the Dirichlet distribution using the `from_params` method in the
+    `BallotGenerator` class.
+
+    **Attributes**
+
+    `pref_intervals_by_bloc`
+    :   dictionary of dictionaries mapping of bloc to preference intervals.
+        (ex. {bloc_1: {bloc_1 : PI, bloc_2: PI}}).
+
+    `bloc_voter_prop`
+    :   dictionary mapping of slate to voter proportions (ex. {bloc: voter proportion}).
+
+    `slate_to_candidates`
+    :   dictionary mapping of slate to candidates (ex. {bloc: [candidate1, candidate2]}).
+
+    `cohesion_parameters`
+    : dictionary of dictionaries of cohesion parameters (ex. {bloc_1: {bloc_1:.7, bloc_2: .3}})
+
+    **Methods**
+
+    See `BallotGenerator` base class.
+    """
+
+    def __init__(
+        self,
+        cohesion_parameters: dict,
+        **data,
+    ):
+        # Call the parent class's __init__ method to handle common parameters
+        super().__init__(cohesion_parameters=cohesion_parameters, **data)
+
+    def generate_profile(
+        self, number_of_ballots: int, by_bloc: bool = False
+    ) -> Union[PreferenceProfile, Tuple]:
+        # compute the number of bloc and crossover voters in each bloc using Huntington Hill
+        cohesion_parameters = {
+            b: self.cohesion_parameters[b][b] for b in self.cohesion_parameters
+        }
+
+        voter_types = [(b, type) for b in self.blocs for type in ["bloc", "cross"]]
+
+        voter_props = [
+            cohesion_parameters[b] * self.bloc_voter_prop[b]
+            if t == "bloc"
+            else (1 - cohesion_parameters[b]) * self.bloc_voter_prop[b]
+            for b, t in voter_types
+        ]
+
+        ballots_per_type = dict(
+            zip(
+                voter_types,
+                apportion.compute("huntington", voter_props, number_of_ballots),
+            )
+        )
+
+        pp_by_bloc = {b: PreferenceProfile() for b in self.blocs}
+
+        for i, bloc in enumerate(self.blocs):
+            ballot_pool = []
+            num_bloc_ballots = ballots_per_type[(bloc, "bloc")]
+            num_cross_ballots = ballots_per_type[(bloc, "cross")]
+
+            pref_interval_dict = self.pref_intervals_by_bloc[bloc]
+
+            opposing_slate = self.blocs[(i + 1) % 2]
+
+            opposing_cands = list(pref_interval_dict[opposing_slate].interval.keys())
+            bloc_cands = list(pref_interval_dict[bloc].interval.keys())
+
+            pref_for_opposing = list(
+                pref_interval_dict[opposing_slate].interval.values()
+            )
+            pref_for_bloc = list(pref_interval_dict[bloc].interval.values())
+
+            for i in range(num_cross_ballots + num_bloc_ballots):
+                bloc_cands = list(
+                    np.random.choice(
+                        bloc_cands,
+                        p=pref_for_bloc,
+                        size=len(bloc_cands),
+                        replace=False,
+                    )
+                )
+                opposing_cands = list(
+                    np.random.choice(
+                        opposing_cands,
+                        p=pref_for_opposing,
+                        size=len(opposing_cands),
+                        replace=False,
+                    )
+                )
+
+                if i < num_cross_ballots:
+                    # alternate the bloc and opposing bloc candidates to create crossover ballots
+                    ranking = [
+                        frozenset({cand})
+                        for pair in zip(opposing_cands, bloc_cands)
+                        for cand in pair
+                    ]
+                else:
+                    ranking = [frozenset({c}) for c in bloc_cands] + [
+                        frozenset({c}) for c in opposing_cands
+                    ]
+
+                ballot = Ballot(ranking=tuple(ranking), weight=Fraction(1, 1))
+                ballot_pool.append(ballot)
+
+            pp = PreferenceProfile(ballots=ballot_pool)
+            pp = pp.condense_ballots()
+            pp_by_bloc[bloc] = pp
+
+        # combine the profiles
+        pp = PreferenceProfile(ballots=[])
+        for profile in pp_by_bloc.values():
+            pp += profile
+
+        if by_bloc:
+            return (pp_by_bloc, pp)
+
+        # else return the combined profiles
+        else:
+            return pp
+
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+ +
+ + + +

+ CambridgeSampler + + +

+ + +
+

+ Bases: BallotGenerator

+ + +

Class for generating ballots based on historical RCV elections occurring +in Cambridge. Alternative election data can be used if specified. Assumes that there are two +blocs, a majority and a minority bloc, and determines this based on the bloc_voter_prop attr.

+

Based on cohesion parameters, decides if a voter casts their top choice within their bloc +or in the opposing bloc. Then uses historical data; given their first choice, choose a +ballot type from the historical distribution.

+

Attributes

+

slate_to_candidates +: dictionary mapping of slate to candidates (ex. {bloc: [candidate]}).

+

bloc_voter_prop +: dictionary mapping of bloc to voter proportions (ex. {bloc: voter proportion}).

+

cohesion_parameters +: dictionary of dictionaries of cohesion parameters (ex. {bloc_1: {bloc_1:.7, bloc_2: .3}})

+

pref_intervals_by_bloc +: dictionary of dictionaries mapping of bloc to preference intervals. + (ex. {bloc_1: {bloc_1 : PI, bloc_2: PI}}).

+

historical_majority +: name of majority bloc in historical data, defaults to W for Cambridge.

+

historical_minority +: name of minority bloc in historical data, defaults to C for Cambridge.

+

path +: file path to an election data file to sample from. Defaults to Cambridge elections.

+

Methods

+

See BallotGenerator base class.

+ +
+ Source code in src/votekit/ballot_generator.py +
1138
+1139
+1140
+1141
+1142
+1143
+1144
+1145
+1146
+1147
+1148
+1149
+1150
+1151
+1152
+1153
+1154
+1155
+1156
+1157
+1158
+1159
+1160
+1161
+1162
+1163
+1164
+1165
+1166
+1167
+1168
+1169
+1170
+1171
+1172
+1173
+1174
+1175
+1176
+1177
+1178
+1179
+1180
+1181
+1182
+1183
+1184
+1185
+1186
+1187
+1188
+1189
+1190
+1191
+1192
+1193
+1194
+1195
+1196
+1197
+1198
+1199
+1200
+1201
+1202
+1203
+1204
+1205
+1206
+1207
+1208
+1209
+1210
+1211
+1212
+1213
+1214
+1215
+1216
+1217
+1218
+1219
+1220
+1221
+1222
+1223
+1224
+1225
+1226
+1227
+1228
+1229
+1230
+1231
+1232
+1233
+1234
+1235
+1236
+1237
+1238
+1239
+1240
+1241
+1242
+1243
+1244
+1245
+1246
+1247
+1248
+1249
+1250
+1251
+1252
+1253
+1254
+1255
+1256
+1257
+1258
+1259
+1260
+1261
+1262
+1263
+1264
+1265
+1266
+1267
+1268
+1269
+1270
+1271
+1272
+1273
+1274
+1275
+1276
+1277
+1278
+1279
+1280
+1281
+1282
+1283
+1284
+1285
+1286
+1287
+1288
+1289
+1290
+1291
+1292
+1293
+1294
+1295
+1296
+1297
+1298
+1299
+1300
+1301
+1302
+1303
+1304
+1305
+1306
+1307
+1308
+1309
+1310
+1311
+1312
+1313
+1314
+1315
+1316
+1317
+1318
+1319
+1320
+1321
+1322
+1323
+1324
+1325
+1326
+1327
+1328
+1329
+1330
+1331
+1332
+1333
+1334
+1335
+1336
+1337
+1338
+1339
+1340
+1341
+1342
+1343
+1344
+1345
+1346
+1347
+1348
+1349
+1350
+1351
+1352
+1353
+1354
+1355
+1356
+1357
+1358
+1359
+1360
+1361
+1362
class CambridgeSampler(BallotGenerator):
+    """
+    Class for generating ballots based on historical RCV elections occurring
+    in Cambridge. Alternative election data can be used if specified. Assumes that there are two
+    blocs, a majority and a minority bloc, and determines this based on the bloc_voter_prop attr.
+
+    Based on cohesion parameters, decides if a voter casts their top choice within their bloc
+    or in the opposing bloc. Then uses historical data; given their first choice, choose a
+    ballot type from the historical distribution.
+
+
+    **Attributes**
+
+    `slate_to_candidates`
+    :   dictionary mapping of slate to candidates (ex. {bloc: [candidate]}).
+
+    `bloc_voter_prop`
+    :   dictionary mapping of bloc to voter proportions (ex. {bloc: voter proportion}).
+
+    `cohesion_parameters`
+    : dictionary of dictionaries of cohesion parameters (ex. {bloc_1: {bloc_1:.7, bloc_2: .3}})
+
+    `pref_intervals_by_bloc`
+    :   dictionary of dictionaries mapping of bloc to preference intervals.
+        (ex. {bloc_1: {bloc_1 : PI, bloc_2: PI}}).
+
+    `historical_majority`
+    : name of majority bloc in historical data, defaults to W for Cambridge.
+
+    `historical_minority`
+    : name of minority bloc in historical data, defaults to C for Cambridge.
+
+    `path`
+    :   file path to an election data file to sample from. Defaults to Cambridge elections.
+
+    **Methods**
+
+    See `BallotGenerator` base class.
+    """
+
+    def __init__(
+        self,
+        cohesion_parameters: dict,
+        path: Optional[Path] = None,
+        historical_majority: Optional[str] = "W",
+        historical_minority: Optional[str] = "C",
+        **data,
+    ):
+        # Call the parent class's __init__ method to handle common parameters
+        super().__init__(cohesion_parameters=cohesion_parameters, **data)
+
+        self.historical_majority = historical_majority
+        self.historical_minority = historical_minority
+
+        if len(self.slate_to_candidates.keys()) > 2:
+            raise UserWarning(
+                f"This model currently only supports at two blocs, but you \
+                              passed {len(self.slate_to_candidates.keys())}"
+            )
+
+        self.majority_bloc = [
+            bloc for bloc, prop in self.bloc_voter_prop.items() if prop >= 0.5
+        ][0]
+
+        self.minority_bloc = [
+            bloc for bloc in self.bloc_voter_prop.keys() if bloc != self.majority_bloc
+        ][0]
+
+        self.bloc_to_historical = {
+            self.majority_bloc: self.historical_majority,
+            self.minority_bloc: self.historical_minority,
+        }
+
+        # # changing names to match historical data, if statement handles generating from_params
+        # # only want to run this now if generating from init
+        # if len(self.cohesion_parameters) > 0:
+        #     self._rename_blocs()
+
+        if path:
+            self.path = path
+        else:
+            BASE_DIR = Path(__file__).resolve().parent
+            DATA_DIR = BASE_DIR / "data/"
+            self.path = Path(DATA_DIR, "Cambridge_09to17_ballot_types.p")
+
+    def generate_profile(
+        self, number_of_ballots: int, by_bloc: bool = False
+    ) -> Union[PreferenceProfile, Tuple]:
+        with open(self.path, "rb") as pickle_file:
+            ballot_frequencies = pickle.load(pickle_file)
+
+        cohesion_parameters = {b: self.cohesion_parameters[b][b] for b in self.blocs}
+
+        # compute the number of bloc and crossover voters in each bloc using Huntington Hill
+        voter_types = [
+            (b, t) for b in list(self.bloc_voter_prop.keys()) for t in ["bloc", "cross"]
+        ]
+
+        voter_props = [
+            cohesion_parameters[b] * self.bloc_voter_prop[b]
+            if t == "bloc"
+            else (1 - cohesion_parameters[b]) * self.bloc_voter_prop[b]
+            for b, t in voter_types
+        ]
+
+        ballots_per_type = dict(
+            zip(
+                voter_types,
+                apportion.compute("huntington", voter_props, number_of_ballots),
+            )
+        )
+
+        pp_by_bloc = {b: PreferenceProfile() for b in self.blocs}
+
+        for i, bloc in enumerate(self.blocs):
+            bloc_voters = ballots_per_type[(bloc, "bloc")]
+            cross_voters = ballots_per_type[(bloc, "cross")]
+            ballot_pool = [Ballot()] * (bloc_voters + cross_voters)
+
+            # store the opposition bloc
+            opp_bloc = self.blocs[(i + 1) % 2]
+
+            # find total number of ballots that start with bloc and opp_bloc
+            bloc_first_count = sum(
+                [
+                    freq
+                    for ballot, freq in ballot_frequencies.items()
+                    if ballot[0] == self.bloc_to_historical[bloc]
+                ]
+            )
+
+            opp_bloc_first_count = sum(
+                [
+                    freq
+                    for ballot, freq in ballot_frequencies.items()
+                    if ballot[0] == self.bloc_to_historical[opp_bloc]
+                ]
+            )
+
+            # Compute the pref interval for this bloc
+            pref_interval_dict = combine_preference_intervals(
+                list(self.pref_intervals_by_bloc[bloc].values()),
+                [cohesion_parameters[bloc], 1 - cohesion_parameters[bloc]],
+            )
+
+            # compute the relative probabilities of each ballot
+            # sorted by ones where the ballot lists the bloc first
+            # and those that list the opp first
+            prob_ballot_given_bloc_first = {
+                ballot: freq / bloc_first_count
+                for ballot, freq in ballot_frequencies.items()
+                if ballot[0] == self.bloc_to_historical[bloc]
+            }
+
+            prob_ballot_given_opp_first = {
+                ballot: freq / opp_bloc_first_count
+                for ballot, freq in ballot_frequencies.items()
+                if ballot[0] == self.bloc_to_historical[opp_bloc]
+            }
+
+            bloc_voter_ordering = random.choices(
+                list(prob_ballot_given_bloc_first.keys()),
+                weights=list(prob_ballot_given_bloc_first.values()),
+                k=bloc_voters,
+            )
+            cross_voter_ordering = random.choices(
+                list(prob_ballot_given_opp_first.keys()),
+                weights=list(prob_ballot_given_opp_first.values()),
+                k=cross_voters,
+            )
+
+            # Generate ballots
+            for i in range(bloc_voters + cross_voters):
+                # Based on first choice, randomly choose
+                # ballots weighted by Cambridge frequency
+                if i < bloc_voters:
+                    bloc_ordering = bloc_voter_ordering[i]
+                else:
+                    bloc_ordering = cross_voter_ordering[i - bloc_voters]
+
+                # Now turn bloc ordering into candidate ordering
+                pl_ordering = list(
+                    np.random.choice(
+                        list(pref_interval_dict.interval.keys()),
+                        len(pref_interval_dict.interval),
+                        p=list(pref_interval_dict.interval.values()),
+                        replace=False,
+                    )
+                )
+                ordered_bloc_slate = [
+                    c for c in pl_ordering if c in self.slate_to_candidates[bloc]
+                ]
+                ordered_opp_slate = [
+                    c for c in pl_ordering if c in self.slate_to_candidates[opp_bloc]
+                ]
+
+                # Fill in the bloc slots as determined
+                # With the candidate ordering generated with PL
+                full_ballot = []
+                for b in bloc_ordering:
+                    if b == self.bloc_to_historical[bloc]:
+                        if ordered_bloc_slate:
+                            full_ballot.append(ordered_bloc_slate.pop(0))
+                    else:
+                        if ordered_opp_slate:
+                            full_ballot.append(ordered_opp_slate.pop(0))
+
+                ranking = tuple([frozenset({cand}) for cand in full_ballot])
+                ballot_pool[i] = Ballot(ranking=ranking, weight=Fraction(1, 1))
+
+            pp = PreferenceProfile(ballots=ballot_pool)
+            pp = pp.condense_ballots()
+            pp_by_bloc[bloc] = pp
+
+        # combine the profiles
+        pp = PreferenceProfile(ballots=[])
+        for profile in pp_by_bloc.values():
+            pp += profile
+
+        if by_bloc:
+            return (pp_by_bloc, pp)
+
+        # else return the combined profiles
+        else:
+            return pp
+
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+ +
+ + + +

+ OneDimSpatial + + +

+ + +
+

+ Bases: BallotGenerator

+ + +

1-D spatial model for ballot generation. Assumes the candidates are normally distributed on +the real line. Then voters are also normally distributed, and vote based on Euclidean distance +to the candidates.

+

Attributes +candidates + : a list of candidates.

+

See BallotGenerator base class.

+

Methods

+

See BallotGenerator base class.

+ +
+ Source code in src/votekit/ballot_generator.py +
1103
+1104
+1105
+1106
+1107
+1108
+1109
+1110
+1111
+1112
+1113
+1114
+1115
+1116
+1117
+1118
+1119
+1120
+1121
+1122
+1123
+1124
+1125
+1126
+1127
+1128
+1129
+1130
+1131
+1132
+1133
+1134
+1135
class OneDimSpatial(BallotGenerator):
+    """
+    1-D spatial model for ballot generation. Assumes the candidates are normally distributed on
+    the real line. Then voters are also normally distributed, and vote based on Euclidean distance
+    to the candidates.
+
+    **Attributes**
+    `candidates`
+        : a list of candidates.
+
+    See `BallotGenerator` base class.
+
+    **Methods**
+
+    See `BallotGenerator` base class.
+    """
+
+    def generate_profile(
+        self, number_of_ballots: int, by_bloc: bool = False
+    ) -> Union[PreferenceProfile, Tuple]:
+        candidate_position_dict = {c: np.random.normal(0, 1) for c in self.candidates}
+        voter_positions = np.random.normal(0, 1, number_of_ballots)
+
+        ballot_pool = []
+
+        for vp in voter_positions:
+            distance_dict = {
+                c: abs(v - vp) for c, v, in candidate_position_dict.items()
+            }
+            candidate_order = sorted(distance_dict, key=distance_dict.__getitem__)
+            ballot_pool.append(candidate_order)
+
+        return self.ballot_pool_to_profile(ballot_pool, self.candidates)
+
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+ +
+ + + +

+ ImpartialCulture + + +

+ + +
+

+ Bases: BallotSimplex

+ + +

Impartial Culture model with an alpha value of 1e10 (should be infinity theoretically). +This model is uniform on all linear rankings.

+

Attributes

+

candidates +: (list) a list of candidates

+

alpha +: (float) alpha parameter for ballot simplex. Defaults to None.

+

point +: dictionary representing a point in the ballot simplex with candidate as + keys and electoral support as values. Defaults to None.

+

Methods

+

See BallotSimplex object.

+
+Note +

Point or alpha arguments must be included to initialize. For details see +BallotSimplex and BallotGenerator object.

+
+ +
+ Source code in src/votekit/ballot_generator.py +
416
+417
+418
+419
+420
+421
+422
+423
+424
+425
+426
+427
+428
+429
+430
+431
+432
+433
+434
+435
+436
+437
+438
+439
+440
+441
+442
+443
+444
+445
+446
+447
class ImpartialCulture(BallotSimplex):
+    """
+    Impartial Culture model with an alpha value of 1e10 (should be infinity theoretically).
+    This model is uniform on all linear rankings.
+
+
+    **Attributes**
+
+    `candidates`
+    : (list) a list of candidates
+
+    `alpha`
+    :   (float) alpha parameter for ballot simplex. Defaults to None.
+
+    `point`
+    :   dictionary representing a point in the ballot simplex with candidate as
+        keys and electoral support as values. Defaults to None.
+
+
+
+    **Methods**
+
+    See `BallotSimplex` object.
+
+    ???+ note
+
+        Point or alpha arguments must be included to initialize. For details see
+        `BallotSimplex` and `BallotGenerator` object.
+    """
+
+    def __init__(self, **data):
+        super().__init__(alpha=float("inf"), **data)
+
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+ +
+ + + +

+ ImpartialAnonymousCulture + + +

+ + +
+

+ Bases: BallotSimplex

+ + +

Impartial Anonymous Culture model with an alpha value of 1. This model choose uniformly + from among all distributions on full linear rankings, and then draws according to the + chosen distribution.

+

Attributes

+

candidates +: (list) a list of candidates

+

alpha +: (float) alpha parameter for ballot simplex. Defaults to None.

+

point +: dictionary representing a point in the ballot simplex with candidate as + keys and electoral support as values. Defaults to None.

+

Methods

+

See BallotSimplex base class.

+
+Note +

Point or alpha arguments must be included to initialize. For details see +BallotSimplex and BallotGenerator object.

+
+ +
+ Source code in src/votekit/ballot_generator.py +
450
+451
+452
+453
+454
+455
+456
+457
+458
+459
+460
+461
+462
+463
+464
+465
+466
+467
+468
+469
+470
+471
+472
+473
+474
+475
+476
+477
+478
+479
class ImpartialAnonymousCulture(BallotSimplex):
+    """
+    Impartial Anonymous Culture model with an alpha value of 1. This model choose uniformly
+        from among all distributions on full linear rankings, and then draws according to the
+        chosen distribution.
+
+    **Attributes**
+
+    `candidates`
+    : (list) a list of candidates
+
+    `alpha`
+    :   (float) alpha parameter for ballot simplex. Defaults to None.
+
+    `point`
+    :   dictionary representing a point in the ballot simplex with candidate as
+        keys and electoral support as values. Defaults to None.
+
+    **Methods**
+
+    See `BallotSimplex` base class.
+
+    ???+ note
+
+        Point or alpha arguments must be included to initialize. For details see
+        `BallotSimplex` and `BallotGenerator` object.
+    """
+
+    def __init__(self, **data):
+        super().__init__(alpha=1, **data)
+
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+ +
+ + + +

+ name_Cumulative + + +

+ + +
+

+ Bases: BallotGenerator

+ + +

Class for generating cumulative ballots. This model samples with +replacement from a combined preference interval and counts candidates with multiplicity. +Can be initialized with an interval or can be constructed with the Dirichlet distribution +using the from_params method in the BallotGenerator class.

+

Attributes

+

candidates +: a list of candidates.

+

pref_intervals_by_bloc +: dictionary of dictionaries mapping of bloc to preference intervals. + (ex. {bloc_1: {bloc_1 : PI, bloc_2: PI}}).

+

cohesion_parameters +: dictionary of dictionaries of cohesion parameters (ex. {bloc_1: {bloc_1:.7, bloc_2: .3}})

+

bloc_voter_prop +: dictionary mapping of bloc to voter proportions (ex. {bloc: proportion}).

+

num_votes +: the number of votes allowed per ballot.

+

Methods

+

See BallotGenerator base class

+ +
+ Source code in src/votekit/ballot_generator.py +
1365
+1366
+1367
+1368
+1369
+1370
+1371
+1372
+1373
+1374
+1375
+1376
+1377
+1378
+1379
+1380
+1381
+1382
+1383
+1384
+1385
+1386
+1387
+1388
+1389
+1390
+1391
+1392
+1393
+1394
+1395
+1396
+1397
+1398
+1399
+1400
+1401
+1402
+1403
+1404
+1405
+1406
+1407
+1408
+1409
+1410
+1411
+1412
+1413
+1414
+1415
+1416
+1417
+1418
+1419
+1420
+1421
+1422
+1423
+1424
+1425
+1426
+1427
+1428
+1429
+1430
+1431
+1432
+1433
+1434
+1435
+1436
+1437
+1438
+1439
+1440
+1441
+1442
+1443
+1444
+1445
+1446
+1447
+1448
+1449
+1450
+1451
+1452
+1453
+1454
+1455
+1456
+1457
+1458
+1459
+1460
+1461
+1462
+1463
+1464
+1465
+1466
+1467
+1468
+1469
+1470
+1471
+1472
+1473
+1474
+1475
+1476
+1477
class name_Cumulative(BallotGenerator):
+    """
+    Class for generating cumulative ballots. This model samples with
+    replacement from a combined preference interval and counts candidates with multiplicity.
+    Can be initialized with an interval or can be constructed with the Dirichlet distribution
+    using the `from_params` method in the `BallotGenerator` class.
+
+    **Attributes**
+
+    `candidates`
+    : a list of candidates.
+
+    `pref_intervals_by_bloc`
+    :   dictionary of dictionaries mapping of bloc to preference intervals.
+        (ex. {bloc_1: {bloc_1 : PI, bloc_2: PI}}).
+
+    `cohesion_parameters`
+    : dictionary of dictionaries of cohesion parameters (ex. {bloc_1: {bloc_1:.7, bloc_2: .3}})
+
+    `bloc_voter_prop`
+    :   dictionary mapping of bloc to voter proportions (ex. {bloc: proportion}).
+
+    `num_votes`
+    : the number of votes allowed per ballot.
+
+    **Methods**
+
+    See `BallotGenerator` base class
+    """
+
+    def __init__(self, cohesion_parameters: dict, num_votes: int, **data):
+        # Call the parent class's __init__ method to handle common parameters
+        super().__init__(cohesion_parameters=cohesion_parameters, **data)
+        self.num_votes = num_votes
+
+        # if dictionary of pref intervals is passed
+        if isinstance(
+            list(self.pref_intervals_by_bloc.values())[0], PreferenceInterval
+        ):
+            self.pref_interval_by_bloc = self.pref_intervals_by_bloc
+
+        # if nested dictionary of pref intervals, combine by cohesion
+        else:
+            self.pref_interval_by_bloc = {
+                bloc: combine_preference_intervals(
+                    [self.pref_intervals_by_bloc[bloc][b] for b in self.blocs],
+                    [self.cohesion_parameters[bloc][b] for b in self.blocs],
+                )
+                for bloc in self.blocs
+            }
+
+    def generate_profile(
+        self, number_of_ballots: int, by_bloc: bool = False
+    ) -> Union[PreferenceProfile, Tuple]:
+        """
+        Args:
+        `number_of_ballots`: The number of ballots to generate.
+
+        `by_bloc`: True if you want to return a dictionary of PreferenceProfiles by bloc.
+                    False if you want the full, aggregated PreferenceProfile.
+        """
+        # the number of ballots per bloc is determined by Huntington-Hill apportionment
+        bloc_props = list(self.bloc_voter_prop.values())
+        ballots_per_block = dict(
+            zip(
+                self.blocs,
+                apportion.compute("huntington", bloc_props, number_of_ballots),
+            )
+        )
+
+        pp_by_bloc = {b: PreferenceProfile() for b in self.blocs}
+
+        for bloc in self.bloc_voter_prop.keys():
+            ballot_pool = []
+            # number of voters in this bloc
+            num_ballots = ballots_per_block[bloc]
+            pref_interval = self.pref_interval_by_bloc[bloc]
+
+            # finds candidates with non-zero preference
+            non_zero_cands = list(pref_interval.non_zero_cands)
+            # creates the interval of probabilities for candidates supported by this block
+            cand_support_vec = [pref_interval.interval[cand] for cand in non_zero_cands]
+
+            for _ in range(num_ballots):
+                # generates ranking based on probability distribution of non zero candidate support
+                list_ranking = list(
+                    np.random.choice(
+                        non_zero_cands,
+                        self.num_votes,
+                        p=cand_support_vec,
+                        replace=True,
+                    )
+                )
+
+                ranking = tuple([frozenset({cand}) for cand in list_ranking])
+
+                ballot_pool.append(Ballot(ranking=ranking, weight=Fraction(1, 1)))
+
+            pp = PreferenceProfile(ballots=ballot_pool)
+            pp = pp.condense_ballots()
+            pp_by_bloc[bloc] = pp
+
+        # combine the profiles
+        pp = PreferenceProfile(ballots=[])
+        for profile in pp_by_bloc.values():
+            pp += profile
+
+        if by_bloc:
+            return (pp_by_bloc, pp)
+
+        # else return the combined profiles
+        else:
+            return pp
+
+
+ + + +
+ + + + + + + + + + +
+ + + +

+ generate_profile(number_of_ballots, by_bloc=False) + +

+ + +
+ +

Args: +number_of_ballots: The number of ballots to generate.

+

by_bloc: True if you want to return a dictionary of PreferenceProfiles by bloc. + False if you want the full, aggregated PreferenceProfile.

+ +
+ Source code in src/votekit/ballot_generator.py +
1416
+1417
+1418
+1419
+1420
+1421
+1422
+1423
+1424
+1425
+1426
+1427
+1428
+1429
+1430
+1431
+1432
+1433
+1434
+1435
+1436
+1437
+1438
+1439
+1440
+1441
+1442
+1443
+1444
+1445
+1446
+1447
+1448
+1449
+1450
+1451
+1452
+1453
+1454
+1455
+1456
+1457
+1458
+1459
+1460
+1461
+1462
+1463
+1464
+1465
+1466
+1467
+1468
+1469
+1470
+1471
+1472
+1473
+1474
+1475
+1476
+1477
def generate_profile(
+    self, number_of_ballots: int, by_bloc: bool = False
+) -> Union[PreferenceProfile, Tuple]:
+    """
+    Args:
+    `number_of_ballots`: The number of ballots to generate.
+
+    `by_bloc`: True if you want to return a dictionary of PreferenceProfiles by bloc.
+                False if you want the full, aggregated PreferenceProfile.
+    """
+    # the number of ballots per bloc is determined by Huntington-Hill apportionment
+    bloc_props = list(self.bloc_voter_prop.values())
+    ballots_per_block = dict(
+        zip(
+            self.blocs,
+            apportion.compute("huntington", bloc_props, number_of_ballots),
+        )
+    )
+
+    pp_by_bloc = {b: PreferenceProfile() for b in self.blocs}
+
+    for bloc in self.bloc_voter_prop.keys():
+        ballot_pool = []
+        # number of voters in this bloc
+        num_ballots = ballots_per_block[bloc]
+        pref_interval = self.pref_interval_by_bloc[bloc]
+
+        # finds candidates with non-zero preference
+        non_zero_cands = list(pref_interval.non_zero_cands)
+        # creates the interval of probabilities for candidates supported by this block
+        cand_support_vec = [pref_interval.interval[cand] for cand in non_zero_cands]
+
+        for _ in range(num_ballots):
+            # generates ranking based on probability distribution of non zero candidate support
+            list_ranking = list(
+                np.random.choice(
+                    non_zero_cands,
+                    self.num_votes,
+                    p=cand_support_vec,
+                    replace=True,
+                )
+            )
+
+            ranking = tuple([frozenset({cand}) for cand in list_ranking])
+
+            ballot_pool.append(Ballot(ranking=ranking, weight=Fraction(1, 1)))
+
+        pp = PreferenceProfile(ballots=ballot_pool)
+        pp = pp.condense_ballots()
+        pp_by_bloc[bloc] = pp
+
+    # combine the profiles
+    pp = PreferenceProfile(ballots=[])
+    for profile in pp_by_bloc.values():
+        pp += profile
+
+    if by_bloc:
+        return (pp_by_bloc, pp)
+
+    # else return the combined profiles
+    else:
+        return pp
+
+
+
+ +
+ + + +
+ +
+ + +
+ + + + +
+ +
+ +

Elections

+ + +
+ + + + +
+ + + +
+ + + + + + + + +
+ + + +

+ Bloc + + +

+ + +
+

+ Bases: Election

+ + +

Elects m candidates with the highest m-approval scores. The m-approval +score of a candidate is equal to the number of voters who rank this +candidate among their m top ranked candidates.

+

Attributes

+

profile +: PreferenceProfile to run election on.

+

seats +: number of seats to be elected.

+

ballot_ties +: (optional) resolves input ballot ties if True, else assumes ballots have no ties. + Defaults to True.

+

tiebreak +: (optional) resolves procedural and final ties by specified tiebreak. + Can either be a custom tiebreak function or a string. Supported strings are + given in tie_broken_ranking documentation. The custom function must take as + input two named parameters; ranking, a list-of-sets ranking of candidates and + profile, the original PreferenceProfile. It must return a list-of-sets + ranking of candidates with no ties. Defaults to random tiebreak.

+

Methods

+ +
+ Source code in src/votekit/elections/election_types.py +
340
+341
+342
+343
+344
+345
+346
+347
+348
+349
+350
+351
+352
+353
+354
+355
+356
+357
+358
+359
+360
+361
+362
+363
+364
+365
+366
+367
+368
+369
+370
+371
+372
+373
+374
+375
+376
+377
+378
+379
+380
+381
+382
+383
+384
+385
+386
+387
+388
+389
+390
+391
+392
+393
+394
+395
+396
+397
+398
+399
+400
+401
+402
+403
+404
+405
+406
class Bloc(Election):
+    """
+    Elects m candidates with the highest m-approval scores. The m-approval
+    score of a candidate is equal to the number of voters who rank this
+    candidate among their m top ranked candidates.
+
+    **Attributes**
+
+    `profile`
+    :   PreferenceProfile to run election on.
+
+    `seats`
+    :   number of seats to be elected.
+
+    `ballot_ties`
+    :   (optional) resolves input ballot ties if True, else assumes ballots have no ties.
+                    Defaults to True.
+
+     `tiebreak`
+    :   (optional) resolves procedural and final ties by specified tiebreak.
+                    Can either be a custom tiebreak function or a string. Supported strings are
+                    given in `tie_broken_ranking` documentation. The custom function must take as
+                    input two named parameters; `ranking`, a list-of-sets ranking of candidates and
+                    `profile`, the original `PreferenceProfile`. It must return a list-of-sets
+                    ranking of candidates with no ties. Defaults to random tiebreak.
+
+    **Methods**
+    """
+
+    def __init__(
+        self,
+        profile: PreferenceProfile,
+        seats: int,
+        ballot_ties: bool = True,
+        tiebreak: Union[Callable, str] = "random",
+    ):
+        super().__init__(profile, ballot_ties)
+        self.seats = seats
+        self.tiebreak = tiebreak
+
+    def run_step(self) -> ElectionState:
+        """
+        Conducts a Limited election to elect m-candidates.
+
+        Returns:
+           An ElectionState object for a Limited election.
+        """
+        limited_equivalent = Limited(
+            profile=self.state.profile,
+            seats=self.seats,
+            k=self.seats,
+            tiebreak=self.tiebreak,
+        )
+        outcome = limited_equivalent.run_election()
+        self.state = outcome
+        return outcome
+
+    @lru_cache
+    def run_election(self) -> ElectionState:
+        """
+        Runs complete Bloc election.
+
+        Returns:
+            An ElectionState object with results for a complete election.
+        """
+        self.run_step()
+        return self.state
+
+
+ + + +
+ + + + + + + + + + +
+ + + +

+ run_election() + + + cached + + +

+ + +
+ +

Runs complete Bloc election.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ ElectionState + +
+

An ElectionState object with results for a complete election.

+
+
+ +
+ Source code in src/votekit/elections/election_types.py +
397
+398
+399
+400
+401
+402
+403
+404
+405
+406
@lru_cache
+def run_election(self) -> ElectionState:
+    """
+    Runs complete Bloc election.
+
+    Returns:
+        An ElectionState object with results for a complete election.
+    """
+    self.run_step()
+    return self.state
+
+
+
+ +
+ + +
+ + + +

+ run_step() + +

+ + +
+ +

Conducts a Limited election to elect m-candidates.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ ElectionState + +
+

An ElectionState object for a Limited election.

+
+
+ +
+ Source code in src/votekit/elections/election_types.py +
380
+381
+382
+383
+384
+385
+386
+387
+388
+389
+390
+391
+392
+393
+394
+395
def run_step(self) -> ElectionState:
+    """
+    Conducts a Limited election to elect m-candidates.
+
+    Returns:
+       An ElectionState object for a Limited election.
+    """
+    limited_equivalent = Limited(
+        profile=self.state.profile,
+        seats=self.seats,
+        k=self.seats,
+        tiebreak=self.tiebreak,
+    )
+    outcome = limited_equivalent.run_election()
+    self.state = outcome
+    return outcome
+
+
+
+ +
+ + + +
+ +
+ + +
+ +
+ + + +

+ Borda + + +

+ + +
+

+ Bases: Election

+ + +

Positional voting system that assigns a decreasing number of points to +candidates based on order and a score vector. The conventional score +vector is \((n, n-1, \dots, 1)\), where \(n\) is the number of candidates. +If a ballot is incomplete, the remaining points of the score vector +are evenly distributed to the unlisted candidates (see borda_scores function in utils).

+

Attributes

+

profile +: PreferenceProfile to run election on.

+

seats +: number of seats to be elected.

+

score_vector +: (optional) weights assigned to candidate ranking, should be a list of Fractions. + Defaults to \((n,n-1,\dots,1)\).

+

ballot_ties +: (optional) resolves input ballot ties if True, else assumes ballots have no ties. + Defaults to True.

+

tiebreak +: (optional) resolves procedural and final ties by specified tiebreak. + Can either be a custom tiebreak function or a string. Supported strings are + given in tie_broken_ranking documentation. The custom function must take as + input two named parameters; ranking, a list-of-sets ranking of candidates and + profile, the original PreferenceProfile. It must return a list-of-sets + ranking of candidates with no ties. Defaults to random tiebreak.

+

Methods

+ +
+ Source code in src/votekit/elections/election_types.py +
 910
+ 911
+ 912
+ 913
+ 914
+ 915
+ 916
+ 917
+ 918
+ 919
+ 920
+ 921
+ 922
+ 923
+ 924
+ 925
+ 926
+ 927
+ 928
+ 929
+ 930
+ 931
+ 932
+ 933
+ 934
+ 935
+ 936
+ 937
+ 938
+ 939
+ 940
+ 941
+ 942
+ 943
+ 944
+ 945
+ 946
+ 947
+ 948
+ 949
+ 950
+ 951
+ 952
+ 953
+ 954
+ 955
+ 956
+ 957
+ 958
+ 959
+ 960
+ 961
+ 962
+ 963
+ 964
+ 965
+ 966
+ 967
+ 968
+ 969
+ 970
+ 971
+ 972
+ 973
+ 974
+ 975
+ 976
+ 977
+ 978
+ 979
+ 980
+ 981
+ 982
+ 983
+ 984
+ 985
+ 986
+ 987
+ 988
+ 989
+ 990
+ 991
+ 992
+ 993
+ 994
+ 995
+ 996
+ 997
+ 998
+ 999
+1000
+1001
+1002
+1003
+1004
class Borda(Election):
+    """
+    Positional voting system that assigns a decreasing number of points to
+    candidates based on order and a score vector. The conventional score
+    vector is $(n, n-1, \dots, 1)$, where $n$ is the number of candidates.
+    If a ballot is incomplete, the remaining points of the score vector
+    are evenly distributed to the unlisted candidates (see `borda_scores` function in `utils`).
+
+    **Attributes**
+
+    `profile`
+    :   PreferenceProfile to run election on.
+
+    `seats`
+    :   number of seats to be elected.
+
+    `score_vector`
+    :   (optional) weights assigned to candidate ranking, should be a list of `Fractions`.
+                    Defaults to $(n,n-1,\dots,1)$.
+
+    `ballot_ties`
+    :   (optional) resolves input ballot ties if True, else assumes ballots have no ties.
+                    Defaults to True.
+
+    `tiebreak`
+    :   (optional) resolves procedural and final ties by specified tiebreak.
+                    Can either be a custom tiebreak function or a string. Supported strings are
+                    given in `tie_broken_ranking` documentation. The custom function must take as
+                    input two named parameters; `ranking`, a list-of-sets ranking of candidates and
+                    `profile`, the original `PreferenceProfile`. It must return a list-of-sets
+                    ranking of candidates with no ties. Defaults to random tiebreak.
+
+    **Methods**
+    """
+
+    def __init__(
+        self,
+        profile: PreferenceProfile,
+        seats: int,
+        score_vector: Optional[list[Fraction]] = None,
+        ballot_ties: bool = True,
+        tiebreak: Union[Callable, str] = "random",
+    ):
+        super().__init__(profile, ballot_ties)
+        self.seats = seats
+        self.tiebreak = tiebreak
+        self.score_vector = score_vector
+
+    def run_step(self) -> ElectionState:
+        """
+        Simulates a complete Borda contest as Borda is not a round-by-round
+        system.
+
+        Returns:
+            An ElectionState object for a complete election.
+        """
+        borda_dict = borda_scores(
+            profile=self.state.profile, score_vector=self.score_vector
+        )
+
+        ranking = scores_into_set_list(borda_dict)
+
+        if isinstance(self.tiebreak, str):
+            ranking = tie_broken_ranking(
+                ranking=ranking, profile=self.state.profile, tiebreak=self.tiebreak
+            )
+        else:
+            ranking = self.tiebreak(ranking=ranking, profile=self.state.profile)
+
+        elected, eliminated = elect_cands_from_set_ranking(
+            ranking=ranking, seats=self.seats
+        )
+
+        new_state = ElectionState(
+            curr_round=self.state.curr_round + 1,
+            elected=elected,
+            eliminated_cands=eliminated,
+            remaining=list(),
+            scores=borda_dict,
+            profile=PreferenceProfile(),
+            previous=self.state,
+        )
+        self.state = new_state
+        return new_state
+
+    @lru_cache
+    def run_election(self) -> ElectionState:
+        """
+        Simulates a complete Borda contest.
+
+        Returns:
+            An ElectionState object for a complete election.
+        """
+        self.run_step()
+        return self.state
+
+
+ + + +
+ + + + + + + + + + +
+ + + +

+ run_election() + + + cached + + +

+ + +
+ +

Simulates a complete Borda contest.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ ElectionState + +
+

An ElectionState object for a complete election.

+
+
+ +
+ Source code in src/votekit/elections/election_types.py +
 995
+ 996
+ 997
+ 998
+ 999
+1000
+1001
+1002
+1003
+1004
@lru_cache
+def run_election(self) -> ElectionState:
+    """
+    Simulates a complete Borda contest.
+
+    Returns:
+        An ElectionState object for a complete election.
+    """
+    self.run_step()
+    return self.state
+
+
+
+ +
+ + +
+ + + +

+ run_step() + +

+ + +
+ +

Simulates a complete Borda contest as Borda is not a round-by-round +system.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ ElectionState + +
+

An ElectionState object for a complete election.

+
+
+ +
+ Source code in src/votekit/elections/election_types.py +
958
+959
+960
+961
+962
+963
+964
+965
+966
+967
+968
+969
+970
+971
+972
+973
+974
+975
+976
+977
+978
+979
+980
+981
+982
+983
+984
+985
+986
+987
+988
+989
+990
+991
+992
+993
def run_step(self) -> ElectionState:
+    """
+    Simulates a complete Borda contest as Borda is not a round-by-round
+    system.
+
+    Returns:
+        An ElectionState object for a complete election.
+    """
+    borda_dict = borda_scores(
+        profile=self.state.profile, score_vector=self.score_vector
+    )
+
+    ranking = scores_into_set_list(borda_dict)
+
+    if isinstance(self.tiebreak, str):
+        ranking = tie_broken_ranking(
+            ranking=ranking, profile=self.state.profile, tiebreak=self.tiebreak
+        )
+    else:
+        ranking = self.tiebreak(ranking=ranking, profile=self.state.profile)
+
+    elected, eliminated = elect_cands_from_set_ranking(
+        ranking=ranking, seats=self.seats
+    )
+
+    new_state = ElectionState(
+        curr_round=self.state.curr_round + 1,
+        elected=elected,
+        eliminated_cands=eliminated,
+        remaining=list(),
+        scores=borda_dict,
+        profile=PreferenceProfile(),
+        previous=self.state,
+    )
+    self.state = new_state
+    return new_state
+
+
+
+ +
+ + + +
+ +
+ + +
+ +
+ + + +

+ CondoBorda + + +

+ + +
+

+ Bases: Election

+ + +

Elects candidates ordered by dominating set, but breaks ties +between candidates with Borda.

+

Attributes

+

profile +: PreferenceProfile to run election on.

+

seats +: number of seats to be elected.

+

ballot_ties +: (optional) resolves input ballot ties if True, else assumes ballots have no ties. + Defaults to True.

+

tiebreak +: (optional) resolves procedural and final ties by specified tiebreak. + Can either be a custom tiebreak function or a string. Supported strings are + given in tie_broken_ranking documentation. The custom function must take as + input two named parameters; ranking, a list-of-sets ranking of candidates and + profile, the original PreferenceProfile. It must return a list-of-sets + ranking of candidates with no ties. Defaults to random tiebreak.

+

Methods

+ +
+ Source code in src/votekit/elections/election_types.py +
733
+734
+735
+736
+737
+738
+739
+740
+741
+742
+743
+744
+745
+746
+747
+748
+749
+750
+751
+752
+753
+754
+755
+756
+757
+758
+759
+760
+761
+762
+763
+764
+765
+766
+767
+768
+769
+770
+771
+772
+773
+774
+775
+776
+777
+778
+779
+780
+781
+782
+783
+784
+785
+786
+787
+788
+789
+790
+791
+792
+793
+794
+795
+796
+797
+798
+799
+800
+801
+802
+803
+804
+805
+806
+807
+808
+809
+810
+811
+812
+813
+814
+815
+816
+817
class CondoBorda(Election):
+    """
+    Elects candidates ordered by dominating set, but breaks ties
+    between candidates with Borda.
+
+    **Attributes**
+
+    `profile`
+    :   PreferenceProfile to run election on.
+
+    `seats`
+    :   number of seats to be elected.
+
+    `ballot_ties`
+    :   (optional) resolves input ballot ties if True, else assumes ballots have no ties.
+                Defaults to True.
+
+     `tiebreak`
+    :   (optional) resolves procedural and final ties by specified tiebreak.
+                    Can either be a custom tiebreak function or a string. Supported strings are
+                    given in `tie_broken_ranking` documentation. The custom function must take as
+                    input two named parameters; `ranking`, a list-of-sets ranking of candidates and
+                    `profile`, the original `PreferenceProfile`. It must return a list-of-sets
+                    ranking of candidates with no ties. Defaults to random tiebreak.
+
+    **Methods**
+    """
+
+    def __init__(
+        self,
+        profile: PreferenceProfile,
+        seats: int,
+        ballot_ties: bool = True,
+        tiebreak: Union[Callable, str] = "random",
+    ):
+        super().__init__(profile, ballot_ties)
+        self.seats = seats
+        self.tiebreak = tiebreak
+
+    def run_step(self) -> ElectionState:
+        """
+        Conducts a complete Conda-Borda election as it is not a round-by-round
+        system.
+
+        Returns:
+            An `ElectionState` object for a complete election.
+        """
+        pwc_graph = PairwiseComparisonGraph(self.state.profile)
+        dominating_tiers = pwc_graph.dominating_tiers()
+
+        if isinstance(self.tiebreak, str):
+            ranking = tie_broken_ranking(
+                ranking=dominating_tiers, profile=self.state.profile, tiebreak="borda"
+            )
+        else:
+            ranking = self.tiebreak(
+                ranking=dominating_tiers, profile=self.state.profile
+            )
+
+        elected, eliminated = elect_cands_from_set_ranking(
+            ranking=ranking, seats=self.seats
+        )
+
+        new_state = ElectionState(
+            curr_round=self.state.curr_round + 1,
+            elected=elected,
+            eliminated_cands=eliminated,
+            remaining=list(),
+            scores=pwc_graph.pairwise_dict,
+            profile=PreferenceProfile(),
+            previous=self.state,
+        )
+        self.state = new_state
+        return new_state
+
+    @lru_cache
+    def run_election(self) -> ElectionState:
+        """
+        Simulates a complete Conda-Borda election.
+
+        Returns:
+            An ElectionState object for a complete election.
+        """
+        self.run_step()
+        return self.state
+
+
+ + + +
+ + + + + + + + + + +
+ + + +

+ run_election() + + + cached + + +

+ + +
+ +

Simulates a complete Conda-Borda election.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ ElectionState + +
+

An ElectionState object for a complete election.

+
+
+ +
+ Source code in src/votekit/elections/election_types.py +
808
+809
+810
+811
+812
+813
+814
+815
+816
+817
@lru_cache
+def run_election(self) -> ElectionState:
+    """
+    Simulates a complete Conda-Borda election.
+
+    Returns:
+        An ElectionState object for a complete election.
+    """
+    self.run_step()
+    return self.state
+
+
+
+ +
+ + +
+ + + +

+ run_step() + +

+ + +
+ +

Conducts a complete Conda-Borda election as it is not a round-by-round +system.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ ElectionState + +
+

An ElectionState object for a complete election.

+
+
+ +
+ Source code in src/votekit/elections/election_types.py +
772
+773
+774
+775
+776
+777
+778
+779
+780
+781
+782
+783
+784
+785
+786
+787
+788
+789
+790
+791
+792
+793
+794
+795
+796
+797
+798
+799
+800
+801
+802
+803
+804
+805
+806
def run_step(self) -> ElectionState:
+    """
+    Conducts a complete Conda-Borda election as it is not a round-by-round
+    system.
+
+    Returns:
+        An `ElectionState` object for a complete election.
+    """
+    pwc_graph = PairwiseComparisonGraph(self.state.profile)
+    dominating_tiers = pwc_graph.dominating_tiers()
+
+    if isinstance(self.tiebreak, str):
+        ranking = tie_broken_ranking(
+            ranking=dominating_tiers, profile=self.state.profile, tiebreak="borda"
+        )
+    else:
+        ranking = self.tiebreak(
+            ranking=dominating_tiers, profile=self.state.profile
+        )
+
+    elected, eliminated = elect_cands_from_set_ranking(
+        ranking=ranking, seats=self.seats
+    )
+
+    new_state = ElectionState(
+        curr_round=self.state.curr_round + 1,
+        elected=elected,
+        eliminated_cands=eliminated,
+        remaining=list(),
+        scores=pwc_graph.pairwise_dict,
+        profile=PreferenceProfile(),
+        previous=self.state,
+    )
+    self.state = new_state
+    return new_state
+
+
+
+ +
+ + + +
+ +
+ + +
+ +
+ + + +

+ Cumulative + + +

+ + +
+

+ Bases: HighestScore

+ + +

Voting system where voters are allowed to vote for candidates with multiplicity. +Each ranking position should have one candidate, and every candidate ranked will receive +one point, i.e., the score vector is \((1,\dots,1)\). +Attributes

+

profile +: PreferenceProfile to run election on.

+

seats +: number of seats to be elected.

+

ballot_ties +: (optional) resolves input ballot ties if True, else assumes ballots have no ties. + Defaults to True.

+

tiebreak +: (optional) resolves procedural and final ties by specified tiebreak. + Can either be a custom tiebreak function or a string. Supported strings are + given in tie_broken_ranking documentation. The custom function must take as + input two named parameters; ranking, a list-of-sets ranking of candidates and + profile, the original PreferenceProfile. It must return a list-of-sets + ranking of candidates with no ties. Defaults to random tiebreak.

+

Methods

+ +
+ Source code in src/votekit/elections/election_types.py +
1154
+1155
+1156
+1157
+1158
+1159
+1160
+1161
+1162
+1163
+1164
+1165
+1166
+1167
+1168
+1169
+1170
+1171
+1172
+1173
+1174
+1175
+1176
+1177
+1178
+1179
+1180
+1181
+1182
+1183
+1184
+1185
+1186
+1187
+1188
+1189
+1190
+1191
+1192
+1193
+1194
+1195
+1196
+1197
+1198
+1199
+1200
+1201
class Cumulative(HighestScore):
+    """
+    Voting system where voters are allowed to vote for candidates with multiplicity.
+    Each ranking position should have one candidate, and every candidate ranked will receive
+    one point, i.e., the score vector is $(1,\dots,1)$.
+    **Attributes**
+
+    `profile`
+    :   PreferenceProfile to run election on.
+
+    `seats`
+    :   number of seats to be elected.
+
+    `ballot_ties`
+    :   (optional) resolves input ballot ties if True, else assumes ballots have no ties.
+                    Defaults to True.
+
+    `tiebreak`
+    :   (optional) resolves procedural and final ties by specified tiebreak.
+                    Can either be a custom tiebreak function or a string. Supported strings are
+                    given in `tie_broken_ranking` documentation. The custom function must take as
+                    input two named parameters; `ranking`, a list-of-sets ranking of candidates and
+                    `profile`, the original `PreferenceProfile`. It must return a list-of-sets
+                    ranking of candidates with no ties. Defaults to random tiebreak.
+
+    **Methods**
+    """
+
+    def __init__(
+        self,
+        profile: PreferenceProfile,
+        seats: int,
+        ballot_ties: bool = True,
+        tiebreak: Union[str, Callable] = "random",
+    ):
+        longest_ballot = 0
+        for ballot in profile.ballots:
+            if len(ballot.ranking) > longest_ballot:
+                longest_ballot = len(ballot.ranking)
+
+        score_vector = [1.0 for _ in range(longest_ballot)]
+        super().__init__(
+            profile=profile,
+            ballot_ties=ballot_ties,
+            score_vector=score_vector,
+            seats=seats,
+            tiebreak=tiebreak,
+        )
+
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+ +
+ + + +

+ DominatingSets + + +

+ + +
+

+ Bases: Election

+ + +

Finds tiers of candidates by dominating set, which is a set of candidates +such that every candidate in the set wins head to head comparisons against +candidates outside of it.

+

Attributes

+

profile +: PreferenceProfile to run election on.

+

ballot_ties +: (optional) resolves input ballot ties if True, else assumes ballots have no ties. + Defaults to True.

+

Methods

+ +
+ Source code in src/votekit/elections/election_types.py +
666
+667
+668
+669
+670
+671
+672
+673
+674
+675
+676
+677
+678
+679
+680
+681
+682
+683
+684
+685
+686
+687
+688
+689
+690
+691
+692
+693
+694
+695
+696
+697
+698
+699
+700
+701
+702
+703
+704
+705
+706
+707
+708
+709
+710
+711
+712
+713
+714
+715
+716
+717
+718
+719
+720
+721
+722
+723
+724
+725
+726
+727
+728
+729
+730
class DominatingSets(Election):
+    """
+    Finds tiers of candidates by dominating set, which is a set of candidates
+    such that every candidate in the set wins head to head comparisons against
+    candidates outside of it.
+
+    **Attributes**
+
+    `profile`
+    :   PreferenceProfile to run election on.
+
+    `ballot_ties`
+    :   (optional) resolves input ballot ties if True, else assumes ballots have no ties.
+                    Defaults to True.
+
+
+    **Methods**
+    """
+
+    def __init__(self, profile: PreferenceProfile, ballot_ties: bool = True):
+        super().__init__(profile, ballot_ties)
+
+    def run_step(self) -> ElectionState:
+        """
+        Conducts a complete DominatingSets election as it is not a round-by-round
+        system.
+
+        Returns:
+            An ElectionState object for a complete election.
+        """
+        pwc_graph = PairwiseComparisonGraph(self.state.profile)
+        dominating_tiers = pwc_graph.dominating_tiers()
+        if len(dominating_tiers) == 1:
+            new_state = ElectionState(
+                curr_round=self.state.curr_round + 1,
+                elected=list(),
+                eliminated_cands=dominating_tiers,
+                remaining=list(),
+                scores=pwc_graph.pairwise_dict,
+                profile=PreferenceProfile(),
+                previous=self.state,
+            )
+        else:
+            new_state = ElectionState(
+                curr_round=self.state.curr_round + 1,
+                elected=[set(dominating_tiers[0])],
+                eliminated_cands=dominating_tiers[1:],
+                remaining=list(),
+                scores=pwc_graph.pairwise_dict,
+                profile=PreferenceProfile(),
+                previous=self.state,
+            )
+        self.state = new_state
+        return new_state
+
+    @lru_cache
+    def run_election(self) -> ElectionState:
+        """
+        Simulates a complete DominatingSets election.
+
+        Returns:
+            An ElectionState object for a complete election.
+        """
+        self.run_step()
+        return self.state
+
+
+ + + +
+ + + + + + + + + + +
+ + + +

+ run_election() + + + cached + + +

+ + +
+ +

Simulates a complete DominatingSets election.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ ElectionState + +
+

An ElectionState object for a complete election.

+
+
+ +
+ Source code in src/votekit/elections/election_types.py +
721
+722
+723
+724
+725
+726
+727
+728
+729
+730
@lru_cache
+def run_election(self) -> ElectionState:
+    """
+    Simulates a complete DominatingSets election.
+
+    Returns:
+        An ElectionState object for a complete election.
+    """
+    self.run_step()
+    return self.state
+
+
+
+ +
+ + +
+ + + +

+ run_step() + +

+ + +
+ +

Conducts a complete DominatingSets election as it is not a round-by-round +system.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ ElectionState + +
+

An ElectionState object for a complete election.

+
+
+ +
+ Source code in src/votekit/elections/election_types.py +
688
+689
+690
+691
+692
+693
+694
+695
+696
+697
+698
+699
+700
+701
+702
+703
+704
+705
+706
+707
+708
+709
+710
+711
+712
+713
+714
+715
+716
+717
+718
+719
def run_step(self) -> ElectionState:
+    """
+    Conducts a complete DominatingSets election as it is not a round-by-round
+    system.
+
+    Returns:
+        An ElectionState object for a complete election.
+    """
+    pwc_graph = PairwiseComparisonGraph(self.state.profile)
+    dominating_tiers = pwc_graph.dominating_tiers()
+    if len(dominating_tiers) == 1:
+        new_state = ElectionState(
+            curr_round=self.state.curr_round + 1,
+            elected=list(),
+            eliminated_cands=dominating_tiers,
+            remaining=list(),
+            scores=pwc_graph.pairwise_dict,
+            profile=PreferenceProfile(),
+            previous=self.state,
+        )
+    else:
+        new_state = ElectionState(
+            curr_round=self.state.curr_round + 1,
+            elected=[set(dominating_tiers[0])],
+            eliminated_cands=dominating_tiers[1:],
+            remaining=list(),
+            scores=pwc_graph.pairwise_dict,
+            profile=PreferenceProfile(),
+            previous=self.state,
+        )
+    self.state = new_state
+    return new_state
+
+
+
+ +
+ + + +
+ +
+ + +
+ +
+ + + +

+ HighestScore + + +

+ + +
+

+ Bases: Election

+ + +

Conducts an election based on points from score vector. +Chooses the m candidates with highest scores. +Ties are broken by randomly permuting the tied candidates.

+

Attributes

+

profile +: PreferenceProfile to run election on.

+

seats +: number of seats to be elected

+

score_vector +: list of floats where ith entry denotes the number of points given to candidates + ranked in position i.

+

tiebreak +: (optional) resolves procedural and final ties by specified tiebreak. + Can either be a custom tiebreak function or a string. Supported strings are + given in tie_broken_ranking documentation. The custom function must take as + input two named parameters; ranking, a list-of-sets ranking of candidates and + profile, the original PreferenceProfile. It must return a list-of-sets + ranking of candidates with no ties. Defaults to random tiebreak.

+

ballot_ties (optional) +: resolves ties in ballots. Should only be set to True if you want ballots + to have full linear rankings.

+ +
+ Source code in src/votekit/elections/election_types.py +
1069
+1070
+1071
+1072
+1073
+1074
+1075
+1076
+1077
+1078
+1079
+1080
+1081
+1082
+1083
+1084
+1085
+1086
+1087
+1088
+1089
+1090
+1091
+1092
+1093
+1094
+1095
+1096
+1097
+1098
+1099
+1100
+1101
+1102
+1103
+1104
+1105
+1106
+1107
+1108
+1109
+1110
+1111
+1112
+1113
+1114
+1115
+1116
+1117
+1118
+1119
+1120
+1121
+1122
+1123
+1124
+1125
+1126
+1127
+1128
+1129
+1130
+1131
+1132
+1133
+1134
+1135
+1136
+1137
+1138
+1139
+1140
+1141
+1142
+1143
+1144
+1145
+1146
+1147
+1148
+1149
+1150
+1151
class HighestScore(Election):
+    """
+    Conducts an election based on points from score vector.
+    Chooses the m candidates with highest scores.
+    Ties are broken by randomly permuting the tied candidates.
+
+    **Attributes**
+
+    `profile`
+    :   PreferenceProfile to run election on.
+
+    `seats`
+    :   number of seats to be elected
+
+    `score_vector`
+    : list of floats where ith entry denotes the number of points given to candidates
+        ranked in position i.
+
+    `tiebreak`
+    :   (optional) resolves procedural and final ties by specified tiebreak.
+                    Can either be a custom tiebreak function or a string. Supported strings are
+                    given in `tie_broken_ranking` documentation. The custom function must take as
+                    input two named parameters; `ranking`, a list-of-sets ranking of candidates and
+                    `profile`, the original `PreferenceProfile`. It must return a list-of-sets
+                    ranking of candidates with no ties. Defaults to random tiebreak.
+
+    `ballot_ties` (optional)
+    : resolves ties in ballots. Should only be set to True if you want ballots
+        to have full linear rankings.
+
+
+    """
+
+    def __init__(
+        self,
+        profile: PreferenceProfile,
+        seats: int,
+        score_vector: list[float],
+        tiebreak: Union[Callable, str] = "random",
+        ballot_ties: bool = False,
+    ):
+        super().__init__(profile, ballot_ties)
+        # check for valid score vector
+        validate_score_vector(score_vector)
+
+        self.seats = seats
+        self.score_vector = score_vector
+        self.tiebreak = tiebreak
+
+    def run_step(self):
+        # a dictionary whose keys are candidates and values are scores
+        vote_tallies = compute_scores_from_vector(
+            profile=self.state.profile, score_vector=self.score_vector
+        )
+
+        # translate scores into ranking of candidates, tie break
+        ranking = scores_into_set_list(score_dict=vote_tallies)
+
+        if isinstance(self.tiebreak, str):
+            untied_ranking = tie_broken_ranking(
+                ranking=ranking, profile=self.state.profile, tiebreak=self.tiebreak
+            )
+        else:
+            untied_ranking = self.tiebreak(ranking=ranking, profile=self.state.profile)
+
+        elected, eliminated = elect_cands_from_set_ranking(
+            ranking=untied_ranking, seats=self.seats
+        )
+
+        self.state = ElectionState(
+            curr_round=1,
+            elected=elected,
+            eliminated_cands=eliminated,
+            remaining=[],
+            profile=self.state.profile,
+            previous=self.state,
+        )
+        return self.state
+
+    @lru_cache
+    def run_election(self):
+        self.run_step()
+        return self.state
+
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+ +
+ + + +

+ IRV + + +

+ + +
+

+ Bases: STV

+ + +

A class for conducting IRV elections, which are mathematically equivalent to STV for one seat.

+

Attributes

+

profile +: PreferenceProfile to run election on.

+

quota +: formula to calculate quota (defaults to droop).

+

ballot_ties +: (optional) resolves input ballot ties if True, else assumes ballots have no ties. + Defaults to True.

+

tiebreak +: (optional) resolves procedural and final ties by specified tiebreak. + Can either be a custom tiebreak function or a string. Supported strings are + given in tie_broken_ranking documentation. The custom function must take as + input two named parameters; ranking, a list-of-sets ranking of candidates and + profile, the original PreferenceProfile. It must return a list-of-sets + ranking of candidates with no ties. Defaults to random tiebreak.

+ +
+ Source code in src/votekit/elections/election_types.py +
1025
+1026
+1027
+1028
+1029
+1030
+1031
+1032
+1033
+1034
+1035
+1036
+1037
+1038
+1039
+1040
+1041
+1042
+1043
+1044
+1045
+1046
+1047
+1048
+1049
+1050
+1051
+1052
+1053
+1054
+1055
+1056
+1057
+1058
+1059
+1060
+1061
+1062
+1063
+1064
+1065
+1066
class IRV(STV):
+    """
+    A class for conducting IRV elections, which are mathematically equivalent to STV for one seat.
+
+    **Attributes**
+
+    `profile`
+    :   PreferenceProfile to run election on.
+
+
+    `quota`
+    :   formula to calculate quota (defaults to droop).
+
+    `ballot_ties`
+    :   (optional) resolves input ballot ties if True, else assumes ballots have no ties.
+                    Defaults to True.
+
+    `tiebreak`
+    :   (optional) resolves procedural and final ties by specified tiebreak.
+                    Can either be a custom tiebreak function or a string. Supported strings are
+                    given in `tie_broken_ranking` documentation. The custom function must take as
+                    input two named parameters; `ranking`, a list-of-sets ranking of candidates and
+                    `profile`, the original `PreferenceProfile`. It must return a list-of-sets
+                    ranking of candidates with no ties. Defaults to random tiebreak.
+    """
+
+    def __init__(
+        self,
+        profile: PreferenceProfile,
+        quota: str = "droop",
+        ballot_ties: bool = True,
+        tiebreak: Union[Callable, str] = "random",
+    ):
+        # let parent class handle the construction
+        super().__init__(
+            profile=profile,
+            ballot_ties=ballot_ties,
+            seats=1,
+            tiebreak=tiebreak,
+            quota=quota,
+            transfer=fractional_transfer,
+        )
+
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+ +
+ + + +

+ Limited + + +

+ + +
+

+ Bases: Election

+ + +

Elects m candidates with the highest k-approval scores. +The k-approval score of a candidate is equal to the number of voters who +rank this candidate among their k top ranked candidates.

+

Attributes

+

profile +: PreferenceProfile to run election on.

+

k +: value of an approval score.

+

seats +: number of seats to be elected.

+

ballot_ties +: (optional) resolves input ballot ties if True, else assumes ballots have no ties. + Defaults to True.

+

tiebreak +: (optional) resolves procedural and final ties by specified tiebreak. + Can either be a custom tiebreak function or a string. Supported strings are + given in tie_broken_ranking documentation. The custom function must take as + input two named parameters; ranking, a list-of-sets ranking of candidates and + profile, the original PreferenceProfile. It must return a list-of-sets + ranking of candidates with no ties. Defaults to random tiebreak.

+

Methods

+ +
+ Source code in src/votekit/elections/election_types.py +
220
+221
+222
+223
+224
+225
+226
+227
+228
+229
+230
+231
+232
+233
+234
+235
+236
+237
+238
+239
+240
+241
+242
+243
+244
+245
+246
+247
+248
+249
+250
+251
+252
+253
+254
+255
+256
+257
+258
+259
+260
+261
+262
+263
+264
+265
+266
+267
+268
+269
+270
+271
+272
+273
+274
+275
+276
+277
+278
+279
+280
+281
+282
+283
+284
+285
+286
+287
+288
+289
+290
+291
+292
+293
+294
+295
+296
+297
+298
+299
+300
+301
+302
+303
+304
+305
+306
+307
+308
+309
+310
+311
+312
+313
+314
+315
+316
+317
+318
+319
+320
+321
+322
+323
+324
+325
+326
+327
+328
+329
+330
+331
+332
+333
+334
+335
+336
+337
class Limited(Election):
+    """
+    Elects m candidates with the highest k-approval scores.
+    The k-approval score of a candidate is equal to the number of voters who
+    rank this candidate among their k top ranked candidates.
+
+    **Attributes**
+
+    `profile`
+    :   PreferenceProfile to run election on.
+
+    `k`
+    :   value of an approval score.
+
+    `seats`
+    :   number of seats to be elected.
+
+    `ballot_ties`
+    :   (optional) resolves input ballot ties if True, else assumes ballots have no ties.
+                    Defaults to True.
+
+     `tiebreak`
+    :   (optional) resolves procedural and final ties by specified tiebreak.
+                    Can either be a custom tiebreak function or a string. Supported strings are
+                    given in `tie_broken_ranking` documentation. The custom function must take as
+                    input two named parameters; `ranking`, a list-of-sets ranking of candidates and
+                    `profile`, the original `PreferenceProfile`. It must return a list-of-sets
+                    ranking of candidates with no ties. Defaults to random tiebreak.
+
+    **Methods**
+    """
+
+    def __init__(
+        self,
+        profile: PreferenceProfile,
+        seats: int,
+        k: int,
+        ballot_ties: bool = True,
+        tiebreak: Union[Callable, str] = "random",
+    ):
+        super().__init__(profile, ballot_ties)
+        self.seats = seats
+        self.k = k
+        self.tiebreak = tiebreak
+
+    def run_step(self) -> ElectionState:
+        """
+        Conducts Limited election in which m candidates are elected based
+        on approval scores.
+
+        Returns:
+           An ElectionState object for a Limited election.
+        """
+        profile = self.state.profile
+        candidates = profile.get_candidates()
+        candidate_approvals = {c: Fraction(0) for c in candidates}
+
+        for ballot in profile.get_ballots():
+            # First we have to determine which candidates are approved
+            # i.e. in first k ranks on a ballot
+            approvals = []
+            for i, cand_set in enumerate(ballot.ranking):
+                # If list of total candidates before and including current set
+                # are less than seat count, all candidates are approved
+                if len(list(it.chain(*ballot.ranking[: i + 1]))) < self.k:
+                    approvals.extend(list(cand_set))
+                # If list of total candidates before current set
+                # are greater than seat count, no candidates are approved
+                elif len(list(it.chain(*ballot.ranking[:i]))) > self.k:
+                    approvals.extend([])
+                # Else we know the cutoff is in the set, we compute and randomly
+                # select the number of candidates we can select
+                else:
+                    accepted = len(list(it.chain(*ballot.ranking[:i])))
+                    num_to_allow = self.k - accepted
+                    approvals.extend(
+                        np.random.choice(list(cand_set), num_to_allow, replace=False)
+                    )
+
+            # Add approval votes equal to ballot weight (i.e. number of voters with this ballot)
+            for cand in approvals:
+                candidate_approvals[cand] += ballot.weight
+
+        # Order candidates by number of approval votes received
+        ranking = scores_into_set_list(candidate_approvals)
+
+        if isinstance(self.tiebreak, str):
+            ranking = tie_broken_ranking(
+                ranking=ranking, profile=self.state.profile, tiebreak=self.tiebreak
+            )
+        else:
+            ranking = self.tiebreak(ranking=ranking, profile=self.state.profile)
+
+        elected, eliminated = elect_cands_from_set_ranking(
+            ranking=ranking, seats=self.seats
+        )
+        new_state = ElectionState(
+            curr_round=self.state.curr_round + 1,
+            elected=elected,
+            eliminated_cands=eliminated,
+            remaining=list(),
+            scores=candidate_approvals,
+            profile=PreferenceProfile(),
+            previous=self.state,
+        )
+        self.state = new_state
+        return self.state
+
+    @lru_cache
+    def run_election(self) -> ElectionState:
+        """
+        Simulates a complete Limited election.
+
+        Returns:
+            An ElectionState object with results for a complete election.
+        """
+        self.run_step()
+        return self.state
+
+
+ + + +
+ + + + + + + + + + +
+ + + +

+ run_election() + + + cached + + +

+ + +
+ +

Simulates a complete Limited election.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ ElectionState + +
+

An ElectionState object with results for a complete election.

+
+
+ +
+ Source code in src/votekit/elections/election_types.py +
328
+329
+330
+331
+332
+333
+334
+335
+336
+337
@lru_cache
+def run_election(self) -> ElectionState:
+    """
+    Simulates a complete Limited election.
+
+    Returns:
+        An ElectionState object with results for a complete election.
+    """
+    self.run_step()
+    return self.state
+
+
+
+ +
+ + +
+ + + +

+ run_step() + +

+ + +
+ +

Conducts Limited election in which m candidates are elected based +on approval scores.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ ElectionState + +
+

An ElectionState object for a Limited election.

+
+
+ +
+ Source code in src/votekit/elections/election_types.py +
265
+266
+267
+268
+269
+270
+271
+272
+273
+274
+275
+276
+277
+278
+279
+280
+281
+282
+283
+284
+285
+286
+287
+288
+289
+290
+291
+292
+293
+294
+295
+296
+297
+298
+299
+300
+301
+302
+303
+304
+305
+306
+307
+308
+309
+310
+311
+312
+313
+314
+315
+316
+317
+318
+319
+320
+321
+322
+323
+324
+325
+326
def run_step(self) -> ElectionState:
+    """
+    Conducts Limited election in which m candidates are elected based
+    on approval scores.
+
+    Returns:
+       An ElectionState object for a Limited election.
+    """
+    profile = self.state.profile
+    candidates = profile.get_candidates()
+    candidate_approvals = {c: Fraction(0) for c in candidates}
+
+    for ballot in profile.get_ballots():
+        # First we have to determine which candidates are approved
+        # i.e. in first k ranks on a ballot
+        approvals = []
+        for i, cand_set in enumerate(ballot.ranking):
+            # If list of total candidates before and including current set
+            # are less than seat count, all candidates are approved
+            if len(list(it.chain(*ballot.ranking[: i + 1]))) < self.k:
+                approvals.extend(list(cand_set))
+            # If list of total candidates before current set
+            # are greater than seat count, no candidates are approved
+            elif len(list(it.chain(*ballot.ranking[:i]))) > self.k:
+                approvals.extend([])
+            # Else we know the cutoff is in the set, we compute and randomly
+            # select the number of candidates we can select
+            else:
+                accepted = len(list(it.chain(*ballot.ranking[:i])))
+                num_to_allow = self.k - accepted
+                approvals.extend(
+                    np.random.choice(list(cand_set), num_to_allow, replace=False)
+                )
+
+        # Add approval votes equal to ballot weight (i.e. number of voters with this ballot)
+        for cand in approvals:
+            candidate_approvals[cand] += ballot.weight
+
+    # Order candidates by number of approval votes received
+    ranking = scores_into_set_list(candidate_approvals)
+
+    if isinstance(self.tiebreak, str):
+        ranking = tie_broken_ranking(
+            ranking=ranking, profile=self.state.profile, tiebreak=self.tiebreak
+        )
+    else:
+        ranking = self.tiebreak(ranking=ranking, profile=self.state.profile)
+
+    elected, eliminated = elect_cands_from_set_ranking(
+        ranking=ranking, seats=self.seats
+    )
+    new_state = ElectionState(
+        curr_round=self.state.curr_round + 1,
+        elected=elected,
+        eliminated_cands=eliminated,
+        remaining=list(),
+        scores=candidate_approvals,
+        profile=PreferenceProfile(),
+        previous=self.state,
+    )
+    self.state = new_state
+    return self.state
+
+
+
+ +
+ + + +
+ +
+ + +
+ +
+ + + +

+ Plurality + + +

+ + +
+

+ Bases: SNTV

+ + +

Simulates a single or multi-winner plurality election. Inherits +methods from SNTV to run election.

+ +
+ Source code in src/votekit/elections/election_types.py +
1007
+1008
+1009
+1010
+1011
+1012
+1013
+1014
+1015
+1016
+1017
+1018
+1019
+1020
+1021
+1022
class Plurality(SNTV):
+    """
+    Simulates a single or multi-winner plurality election. Inherits
+    methods from `SNTV` to run election.
+    """
+
+    def __init__(
+        self,
+        profile: PreferenceProfile,
+        seats: int,
+        ballot_ties: bool = True,
+        tiebreak: Union[Callable, str] = "random",
+    ):
+        super().__init__(profile, ballot_ties)
+        self.seats = seats
+        self.tiebreak = tiebreak
+
+
+ + + +
+ + + + + + + + + + + +
+ +
+ + +
+ +
+ + + +

+ SNTV + + +

+ + +
+

+ Bases: Election

+ + +

Single nontransferable vote (SNTV): Elects k candidates with the highest +Plurality scores.

+

Attributes

+

profile +: PreferenceProfile to run election on.

+

seats +: number of seats to be elected.

+

ballot_ties +: (optional) resolves input ballot ties if True, else assumes ballots have no ties. + Defaults to True.

+

tiebreak +: (optional) resolves procedural and final ties by specified tiebreak. + Can either be a custom tiebreak function or a string. Supported strings are + given in tie_broken_ranking documentation. The custom function must take as + input two named parameters; ranking, a list-of-sets ranking of candidates and + profile, the original PreferenceProfile. It must return a list-of-sets + ranking of candidates with no ties. Defaults to random tiebreak.

+

Methods

+ +
+ Source code in src/votekit/elections/election_types.py +
409
+410
+411
+412
+413
+414
+415
+416
+417
+418
+419
+420
+421
+422
+423
+424
+425
+426
+427
+428
+429
+430
+431
+432
+433
+434
+435
+436
+437
+438
+439
+440
+441
+442
+443
+444
+445
+446
+447
+448
+449
+450
+451
+452
+453
+454
+455
+456
+457
+458
+459
+460
+461
+462
+463
+464
+465
+466
+467
+468
+469
+470
+471
class SNTV(Election):
+    """
+    Single nontransferable vote (SNTV): Elects k candidates with the highest
+    Plurality scores.
+
+    **Attributes**
+
+    `profile`
+    :   PreferenceProfile to run election on.
+
+    `seats`
+    :   number of seats to be elected.
+
+    `ballot_ties`
+    :   (optional) resolves input ballot ties if True, else assumes ballots have no ties.
+                    Defaults to True.
+
+     `tiebreak`
+    :   (optional) resolves procedural and final ties by specified tiebreak.
+                    Can either be a custom tiebreak function or a string. Supported strings are
+                    given in `tie_broken_ranking` documentation. The custom function must take as
+                    input two named parameters; `ranking`, a list-of-sets ranking of candidates and
+                    `profile`, the original `PreferenceProfile`. It must return a list-of-sets
+                    ranking of candidates with no ties. Defaults to random tiebreak.
+
+    **Methods**
+    """
+
+    def __init__(
+        self,
+        profile: PreferenceProfile,
+        seats: int,
+        ballot_ties: bool = True,
+        tiebreak: Union[Callable, str] = "random",
+    ):
+        super().__init__(profile, ballot_ties)
+        self.seats = seats
+        self.tiebreak = tiebreak
+
+    def run_step(self) -> ElectionState:
+        """
+        Conducts an SNTV election to elect candidates.
+
+        Returns:
+           An ElectionState object for a SNTV election.
+        """
+        limited_equivalent = Limited(
+            profile=self.state.profile, seats=self.seats, k=1, tiebreak=self.tiebreak
+        )
+        outcome = limited_equivalent.run_election()
+        self.state = outcome
+        return outcome
+
+    @lru_cache
+    def run_election(self) -> ElectionState:
+        """
+        Runs complete SNTV election.
+
+        Returns:
+            An ElectionState object with results for a complete election.
+        """
+        self.run_step()
+        return self.state
+
+
+ + + +
+ + + + + + + + + + +
+ + + +

+ run_election() + + + cached + + +

+ + +
+ +

Runs complete SNTV election.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ ElectionState + +
+

An ElectionState object with results for a complete election.

+
+
+ +
+ Source code in src/votekit/elections/election_types.py +
462
+463
+464
+465
+466
+467
+468
+469
+470
+471
@lru_cache
+def run_election(self) -> ElectionState:
+    """
+    Runs complete SNTV election.
+
+    Returns:
+        An ElectionState object with results for a complete election.
+    """
+    self.run_step()
+    return self.state
+
+
+
+ +
+ + +
+ + + +

+ run_step() + +

+ + +
+ +

Conducts an SNTV election to elect candidates.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ ElectionState + +
+

An ElectionState object for a SNTV election.

+
+
+ +
+ Source code in src/votekit/elections/election_types.py +
448
+449
+450
+451
+452
+453
+454
+455
+456
+457
+458
+459
+460
def run_step(self) -> ElectionState:
+    """
+    Conducts an SNTV election to elect candidates.
+
+    Returns:
+       An ElectionState object for a SNTV election.
+    """
+    limited_equivalent = Limited(
+        profile=self.state.profile, seats=self.seats, k=1, tiebreak=self.tiebreak
+    )
+    outcome = limited_equivalent.run_election()
+    self.state = outcome
+    return outcome
+
+
+
+ +
+ + + +
+ +
+ + +
+ +
+ + + +

+ SNTV_STV_Hybrid + + +

+ + +
+

+ Bases: Election

+ + +

Election method that first runs SNTV to a cutoff, then runs STV to +pick a committee with a given number of seats.

+

Attributes

+

profile +: PreferenceProfile to run election on.

+

transfer +: transfer method (e.g. fractional transfer).

+

r1_cutoff +: first-round cutoff value.

+

seats +: number of seats to be elected.

+

ballot_ties +: (optional) resolves input ballot ties if True, else assumes ballots have no ties. + Defaults to True.

+

tiebreak +: (optional) resolves procedural and final ties by specified tiebreak. + Can either be a custom tiebreak function or a string. Supported strings are + given in tie_broken_ranking documentation. The custom function must take as + input two named parameters; ranking, a list-of-sets ranking of candidates and + profile, the original PreferenceProfile. It must return a list-of-sets + ranking of candidates with no ties. Defaults to random tiebreak.

+

Methods

+ +
+ Source code in src/votekit/elections/election_types.py +
474
+475
+476
+477
+478
+479
+480
+481
+482
+483
+484
+485
+486
+487
+488
+489
+490
+491
+492
+493
+494
+495
+496
+497
+498
+499
+500
+501
+502
+503
+504
+505
+506
+507
+508
+509
+510
+511
+512
+513
+514
+515
+516
+517
+518
+519
+520
+521
+522
+523
+524
+525
+526
+527
+528
+529
+530
+531
+532
+533
+534
+535
+536
+537
+538
+539
+540
+541
+542
+543
+544
+545
+546
+547
+548
+549
+550
+551
+552
+553
+554
+555
+556
+557
+558
+559
+560
+561
+562
+563
+564
+565
+566
+567
+568
+569
+570
+571
+572
+573
+574
+575
+576
+577
+578
+579
+580
+581
+582
+583
+584
+585
+586
+587
+588
+589
+590
+591
+592
+593
+594
+595
+596
class SNTV_STV_Hybrid(Election):
+    """
+    Election method that first runs SNTV to a cutoff, then runs STV to
+    pick a committee with a given number of seats.
+
+    **Attributes**
+
+    `profile`
+    :   PreferenceProfile to run election on.
+
+    `transfer`
+    :   transfer method (e.g. fractional transfer).
+
+    `r1_cutoff`
+    :   first-round cutoff value.
+
+    `seats`
+    :   number of seats to be elected.
+
+    `ballot_ties`
+    :   (optional) resolves input ballot ties if True, else assumes ballots have no ties.
+                    Defaults to True.
+
+     `tiebreak`
+    :   (optional) resolves procedural and final ties by specified tiebreak.
+                    Can either be a custom tiebreak function or a string. Supported strings are
+                    given in `tie_broken_ranking` documentation. The custom function must take as
+                    input two named parameters; `ranking`, a list-of-sets ranking of candidates and
+                    `profile`, the original `PreferenceProfile`. It must return a list-of-sets
+                    ranking of candidates with no ties. Defaults to random tiebreak.
+
+    **Methods**
+    """
+
+    def __init__(
+        self,
+        profile: PreferenceProfile,
+        transfer: Callable,
+        r1_cutoff: int,
+        seats: int,
+        ballot_ties: bool = True,
+        tiebreak: Union[Callable, str] = "random",
+    ):
+        super().__init__(profile, ballot_ties)
+        self.transfer = transfer
+        self.r1_cutoff = r1_cutoff
+        self.seats = seats
+        self.tiebreak = tiebreak
+        self.stage = "SNTV"  # SNTV, switches to STV, then Complete
+
+    def run_step(self, stage: str) -> ElectionState:
+        """
+        Simulates one round an SNTV_STV election.
+
+        Args:
+            stage: Stage of the hybrid election, can be SNTV or STV.
+
+        Returns:
+           An ElectionState object for a given round.
+        """
+        profile = self.state.profile
+
+        new_state = None
+        if stage == "SNTV":
+            round_state = SNTV(
+                profile=profile, seats=self.r1_cutoff, tiebreak=self.tiebreak
+            ).run_election()
+
+            # The STV election will be run on the new election state
+            # Therefore we should not add any winners, but rather
+            # set the SNTV winners as remaining candidates and update pref profiles
+            new_profile = PreferenceProfile(
+                ballots=remove_cand(
+                    set().union(*round_state.eliminated_cands), profile.get_ballots()
+                )
+            )
+            new_state = ElectionState(
+                curr_round=self.state.curr_round + 1,
+                elected=list(),
+                eliminated_cands=round_state.eliminated_cands,
+                remaining=[set(new_profile.get_candidates())],
+                profile=new_profile,
+                scores=round_state.get_scores(round_state.curr_round),
+                previous=self.state,
+            )
+        elif stage == "STV":
+            round_state = STV(
+                profile=profile,
+                transfer=self.transfer,
+                seats=self.seats,
+                tiebreak=self.tiebreak,
+            ).run_election()
+
+            new_state = ElectionState(
+                curr_round=self.state.curr_round + 1,
+                elected=round_state.winners(),
+                eliminated_cands=round_state.eliminated(),
+                remaining=round_state.remaining,
+                scores=round_state.get_scores(round_state.curr_round),
+                profile=round_state.profile,
+                previous=self.state,
+            )
+
+        # Update election stage to cue next run step
+        if stage == "SNTV":
+            self.stage = "STV"
+        elif stage == "STV":
+            self.stage = "Complete"
+
+        self.state = new_state  # type: ignore
+        return new_state  # type: ignore
+
+    @lru_cache
+    def run_election(self) -> ElectionState:
+        """
+        Runs complete SNTV_STV election.
+
+        Returns:
+            An ElectionState object with results for a complete election.
+        """
+        while self.stage != "Complete":
+            self.run_step(self.stage)
+        return self.state  # type: ignore
+
+
+ + + +
+ + + + + + + + + + +
+ + + +

+ run_election() + + + cached + + +

+ + +
+ +

Runs complete SNTV_STV election.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ ElectionState + +
+

An ElectionState object with results for a complete election.

+
+
+ +
+ Source code in src/votekit/elections/election_types.py +
586
+587
+588
+589
+590
+591
+592
+593
+594
+595
+596
@lru_cache
+def run_election(self) -> ElectionState:
+    """
+    Runs complete SNTV_STV election.
+
+    Returns:
+        An ElectionState object with results for a complete election.
+    """
+    while self.stage != "Complete":
+        self.run_step(self.stage)
+    return self.state  # type: ignore
+
+
+
+ +
+ + +
+ + + +

+ run_step(stage) + +

+ + +
+ +

Simulates one round an SNTV_STV election.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
stage + str + +
+

Stage of the hybrid election, can be SNTV or STV.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ ElectionState + +
+

An ElectionState object for a given round.

+
+
+ +
+ Source code in src/votekit/elections/election_types.py +
524
+525
+526
+527
+528
+529
+530
+531
+532
+533
+534
+535
+536
+537
+538
+539
+540
+541
+542
+543
+544
+545
+546
+547
+548
+549
+550
+551
+552
+553
+554
+555
+556
+557
+558
+559
+560
+561
+562
+563
+564
+565
+566
+567
+568
+569
+570
+571
+572
+573
+574
+575
+576
+577
+578
+579
+580
+581
+582
+583
+584
def run_step(self, stage: str) -> ElectionState:
+    """
+    Simulates one round an SNTV_STV election.
+
+    Args:
+        stage: Stage of the hybrid election, can be SNTV or STV.
+
+    Returns:
+       An ElectionState object for a given round.
+    """
+    profile = self.state.profile
+
+    new_state = None
+    if stage == "SNTV":
+        round_state = SNTV(
+            profile=profile, seats=self.r1_cutoff, tiebreak=self.tiebreak
+        ).run_election()
+
+        # The STV election will be run on the new election state
+        # Therefore we should not add any winners, but rather
+        # set the SNTV winners as remaining candidates and update pref profiles
+        new_profile = PreferenceProfile(
+            ballots=remove_cand(
+                set().union(*round_state.eliminated_cands), profile.get_ballots()
+            )
+        )
+        new_state = ElectionState(
+            curr_round=self.state.curr_round + 1,
+            elected=list(),
+            eliminated_cands=round_state.eliminated_cands,
+            remaining=[set(new_profile.get_candidates())],
+            profile=new_profile,
+            scores=round_state.get_scores(round_state.curr_round),
+            previous=self.state,
+        )
+    elif stage == "STV":
+        round_state = STV(
+            profile=profile,
+            transfer=self.transfer,
+            seats=self.seats,
+            tiebreak=self.tiebreak,
+        ).run_election()
+
+        new_state = ElectionState(
+            curr_round=self.state.curr_round + 1,
+            elected=round_state.winners(),
+            eliminated_cands=round_state.eliminated(),
+            remaining=round_state.remaining,
+            scores=round_state.get_scores(round_state.curr_round),
+            profile=round_state.profile,
+            previous=self.state,
+        )
+
+    # Update election stage to cue next run step
+    if stage == "SNTV":
+        self.stage = "STV"
+    elif stage == "STV":
+        self.stage = "Complete"
+
+    self.state = new_state  # type: ignore
+    return new_state  # type: ignore
+
+
+
+ +
+ + + +
+ +
+ + +
+ +
+ + + +

+ STV + + +

+ + +
+

+ Bases: Election

+ + +

Class for single-winner IRV and multi-winner STV elections.

+

Attributes

+

profile +: PreferenceProfile to run election on.

+

transfer +: transfer method (e.g. fractional transfer).

+

seats +: number of seats to be elected.

+

quota +: formula to calculate quota (defaults to droop).

+

ballot_ties +: (optional) resolves input ballot ties if True, else assumes ballots have no ties. + Defaults to True.

+

tiebreak +: (optional) resolves procedural and final ties by specified tiebreak. + Can either be a custom tiebreak function or a string. Supported strings are + given in tie_broken_ranking documentation. The custom function must take as + input two named parameters; ranking, a list-of-sets ranking of candidates and + profile, the original PreferenceProfile. It must return a list-of-sets + ranking of candidates with no ties. Defaults to random tiebreak.

+

Methods

+ +
+ Source code in src/votekit/elections/election_types.py +
 26
+ 27
+ 28
+ 29
+ 30
+ 31
+ 32
+ 33
+ 34
+ 35
+ 36
+ 37
+ 38
+ 39
+ 40
+ 41
+ 42
+ 43
+ 44
+ 45
+ 46
+ 47
+ 48
+ 49
+ 50
+ 51
+ 52
+ 53
+ 54
+ 55
+ 56
+ 57
+ 58
+ 59
+ 60
+ 61
+ 62
+ 63
+ 64
+ 65
+ 66
+ 67
+ 68
+ 69
+ 70
+ 71
+ 72
+ 73
+ 74
+ 75
+ 76
+ 77
+ 78
+ 79
+ 80
+ 81
+ 82
+ 83
+ 84
+ 85
+ 86
+ 87
+ 88
+ 89
+ 90
+ 91
+ 92
+ 93
+ 94
+ 95
+ 96
+ 97
+ 98
+ 99
+100
+101
+102
+103
+104
+105
+106
+107
+108
+109
+110
+111
+112
+113
+114
+115
+116
+117
+118
+119
+120
+121
+122
+123
+124
+125
+126
+127
+128
+129
+130
+131
+132
+133
+134
+135
+136
+137
+138
+139
+140
+141
+142
+143
+144
+145
+146
+147
+148
+149
+150
+151
+152
+153
+154
+155
+156
+157
+158
+159
+160
+161
+162
+163
+164
+165
+166
+167
+168
+169
+170
+171
+172
+173
+174
+175
+176
+177
+178
+179
+180
+181
+182
+183
+184
+185
+186
+187
+188
+189
+190
+191
+192
+193
+194
+195
+196
+197
+198
+199
+200
+201
+202
+203
+204
+205
+206
+207
+208
+209
+210
+211
+212
+213
+214
+215
+216
+217
class STV(Election):
+    """
+    Class for single-winner IRV and multi-winner STV elections.
+
+     **Attributes**
+
+    `profile`
+    :   PreferenceProfile to run election on.
+
+    `transfer`
+    :   transfer method (e.g. fractional transfer).
+
+    `seats`
+    :   number of seats to be elected.
+
+    `quota`
+    :   formula to calculate quota (defaults to droop).
+
+    `ballot_ties`
+    :   (optional) resolves input ballot ties if True, else assumes ballots have no ties.
+                    Defaults to True.
+
+    `tiebreak`
+    :   (optional) resolves procedural and final ties by specified tiebreak.
+                    Can either be a custom tiebreak function or a string. Supported strings are
+                    given in `tie_broken_ranking` documentation. The custom function must take as
+                    input two named parameters; `ranking`, a list-of-sets ranking of candidates and
+                    `profile`, the original `PreferenceProfile`. It must return a list-of-sets
+                    ranking of candidates with no ties. Defaults to random tiebreak.
+
+    **Methods**
+    """
+
+    def __init__(
+        self,
+        profile: PreferenceProfile,
+        transfer: Callable,
+        seats: int,
+        quota: str = "droop",
+        ballot_ties: bool = True,
+        tiebreak: Union[str, Callable] = "random",
+    ):
+        # let parent class handle the og profile and election state
+        super().__init__(profile, ballot_ties)
+
+        self.transfer = transfer
+        self.seats = seats
+        self.tiebreak = tiebreak
+        self.quota = quota.lower()
+        self.threshold = self.get_threshold()
+
+    # can cache since it will not change throughout rounds
+    def get_threshold(self) -> int:
+        """
+        Calculates threshold required for election.
+
+        Returns:
+            Value of the threshold.
+        """
+        quota = self.quota
+        if quota == "droop":
+            return int(self._profile.num_ballots() / (self.seats + 1) + 1)
+        elif quota == "hare":
+            return int(self._profile.num_ballots() / self.seats)
+        else:
+            raise ValueError("Misspelled or unknown quota type")
+
+    def next_round(self) -> bool:
+        """
+        Determines if the number of seats has been met to call an election.
+
+        Returns:
+            True if number of seats has not been met, False otherwise.
+        """
+        cands_elected = 0
+        for s in self.state.winners():
+            cands_elected += len(s)
+        return cands_elected < self.seats
+
+    def run_step(self) -> ElectionState:
+        """
+        Simulates one round an STV election.
+
+        Returns:
+           An ElectionState object for a given round.
+        """
+        remaining = self.state.profile.get_candidates()
+        ballots = self.state.profile.get_ballots()
+        round_votes, plurality_score = compute_votes(remaining, ballots)
+
+        elected = []
+        eliminated = []
+
+        # if number of remaining candidates equals number of remaining seats,
+        # everyone is elected
+        if len(remaining) == self.seats - len(
+            [c for s in self.state.winners() for c in s]
+        ):
+            elected = [{cand} for cand, _ in round_votes]
+            remaining = []
+            ballots = []
+
+        # elect all candidates who crossed threshold
+        elif round_votes[0].votes >= self.threshold:
+            # partition ballots by first place candidate
+            cand_to_ballot = ballots_by_first_cand(remaining, ballots)
+            new_ballots = []
+            for candidate, votes in round_votes:
+                if votes >= self.threshold:
+                    elected.append({candidate})
+                    remaining.remove(candidate)
+                    # only transfer on ballots where winner is first
+                    new_ballots += self.transfer(
+                        candidate,
+                        cand_to_ballot[candidate],
+                        plurality_score,
+                        self.threshold,
+                    )
+
+            # add in remaining ballots where non-winners are first
+            for cand in remaining:
+                new_ballots += cand_to_ballot[cand]
+
+            # remove winners from all ballots
+            ballots = remove_cand([c for s in elected for c in s], new_ballots)
+
+        # since no one has crossed threshold, eliminate one of the people
+        # with least first place votes
+        else:
+            lp_candidates = [
+                candidate
+                for candidate, votes in round_votes
+                if votes == round_votes[-1].votes
+            ]
+
+            if isinstance(self.tiebreak, str):
+                lp_cand = tie_broken_ranking(
+                    ranking=[set(lp_candidates)],
+                    profile=self.state.profile,
+                    tiebreak=self.tiebreak,
+                )[-1]
+            else:
+                lp_cand = self.tiebreak(
+                    ranking=[set(lp_candidates)], profile=self.state.profile
+                )[-1]
+
+            eliminated.append(lp_cand)
+            ballots = remove_cand(lp_cand, ballots)
+            remaining.remove(next(iter(lp_cand)))
+
+        # sorts remaining based on their current first place votes
+        _, score_dict = compute_votes(remaining, ballots)
+        remaining = scores_into_set_list(score_dict, remaining)
+
+        # sort candidates by vote share if multiple are elected
+        if len(elected) >= 1:
+            elected = scores_into_set_list(
+                plurality_score, [c for s in elected for c in s]
+            )
+
+        # Make sure list-of-sets have non-empty elements
+        elected = [s for s in elected if s != set()]
+        eliminated = [s for s in eliminated if s != set()]
+
+        self.state = ElectionState(
+            curr_round=self.state.curr_round + 1,
+            elected=elected,
+            eliminated_cands=eliminated,
+            remaining=remaining,
+            scores=score_dict,
+            profile=PreferenceProfile(ballots=ballots),
+            previous=self.state,
+        )
+        return self.state
+
+    @lru_cache
+    def run_election(self) -> ElectionState:
+        """
+        Runs complete STV election.
+
+        Returns:
+            An ElectionState object with results for a complete election.
+        """
+        if not self.next_round():
+            raise ValueError(
+                f"Length of elected set equal to number of seats ({self.seats})"
+            )
+
+        while self.next_round():
+            self.run_step()
+
+        return self.state
+
+
+ + + +
+ + + + + + + + + + +
+ + + +

+ get_threshold() + +

+ + +
+ +

Calculates threshold required for election.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ int + +
+

Value of the threshold.

+
+
+ +
+ Source code in src/votekit/elections/election_types.py +
78
+79
+80
+81
+82
+83
+84
+85
+86
+87
+88
+89
+90
+91
def get_threshold(self) -> int:
+    """
+    Calculates threshold required for election.
+
+    Returns:
+        Value of the threshold.
+    """
+    quota = self.quota
+    if quota == "droop":
+        return int(self._profile.num_ballots() / (self.seats + 1) + 1)
+    elif quota == "hare":
+        return int(self._profile.num_ballots() / self.seats)
+    else:
+        raise ValueError("Misspelled or unknown quota type")
+
+
+
+ +
+ + +
+ + + +

+ next_round() + +

+ + +
+ +

Determines if the number of seats has been met to call an election.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ bool + +
+

True if number of seats has not been met, False otherwise.

+
+
+ +
+ Source code in src/votekit/elections/election_types.py +
 93
+ 94
+ 95
+ 96
+ 97
+ 98
+ 99
+100
+101
+102
+103
def next_round(self) -> bool:
+    """
+    Determines if the number of seats has been met to call an election.
+
+    Returns:
+        True if number of seats has not been met, False otherwise.
+    """
+    cands_elected = 0
+    for s in self.state.winners():
+        cands_elected += len(s)
+    return cands_elected < self.seats
+
+
+
+ +
+ + +
+ + + +

+ run_election() + + + cached + + +

+ + +
+ +

Runs complete STV election.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ ElectionState + +
+

An ElectionState object with results for a complete election.

+
+
+ +
+ Source code in src/votekit/elections/election_types.py +
201
+202
+203
+204
+205
+206
+207
+208
+209
+210
+211
+212
+213
+214
+215
+216
+217
@lru_cache
+def run_election(self) -> ElectionState:
+    """
+    Runs complete STV election.
+
+    Returns:
+        An ElectionState object with results for a complete election.
+    """
+    if not self.next_round():
+        raise ValueError(
+            f"Length of elected set equal to number of seats ({self.seats})"
+        )
+
+    while self.next_round():
+        self.run_step()
+
+    return self.state
+
+
+
+ +
+ + +
+ + + +

+ run_step() + +

+ + +
+ +

Simulates one round an STV election.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ ElectionState + +
+

An ElectionState object for a given round.

+
+
+ +
+ Source code in src/votekit/elections/election_types.py +
105
+106
+107
+108
+109
+110
+111
+112
+113
+114
+115
+116
+117
+118
+119
+120
+121
+122
+123
+124
+125
+126
+127
+128
+129
+130
+131
+132
+133
+134
+135
+136
+137
+138
+139
+140
+141
+142
+143
+144
+145
+146
+147
+148
+149
+150
+151
+152
+153
+154
+155
+156
+157
+158
+159
+160
+161
+162
+163
+164
+165
+166
+167
+168
+169
+170
+171
+172
+173
+174
+175
+176
+177
+178
+179
+180
+181
+182
+183
+184
+185
+186
+187
+188
+189
+190
+191
+192
+193
+194
+195
+196
+197
+198
+199
def run_step(self) -> ElectionState:
+    """
+    Simulates one round an STV election.
+
+    Returns:
+       An ElectionState object for a given round.
+    """
+    remaining = self.state.profile.get_candidates()
+    ballots = self.state.profile.get_ballots()
+    round_votes, plurality_score = compute_votes(remaining, ballots)
+
+    elected = []
+    eliminated = []
+
+    # if number of remaining candidates equals number of remaining seats,
+    # everyone is elected
+    if len(remaining) == self.seats - len(
+        [c for s in self.state.winners() for c in s]
+    ):
+        elected = [{cand} for cand, _ in round_votes]
+        remaining = []
+        ballots = []
+
+    # elect all candidates who crossed threshold
+    elif round_votes[0].votes >= self.threshold:
+        # partition ballots by first place candidate
+        cand_to_ballot = ballots_by_first_cand(remaining, ballots)
+        new_ballots = []
+        for candidate, votes in round_votes:
+            if votes >= self.threshold:
+                elected.append({candidate})
+                remaining.remove(candidate)
+                # only transfer on ballots where winner is first
+                new_ballots += self.transfer(
+                    candidate,
+                    cand_to_ballot[candidate],
+                    plurality_score,
+                    self.threshold,
+                )
+
+        # add in remaining ballots where non-winners are first
+        for cand in remaining:
+            new_ballots += cand_to_ballot[cand]
+
+        # remove winners from all ballots
+        ballots = remove_cand([c for s in elected for c in s], new_ballots)
+
+    # since no one has crossed threshold, eliminate one of the people
+    # with least first place votes
+    else:
+        lp_candidates = [
+            candidate
+            for candidate, votes in round_votes
+            if votes == round_votes[-1].votes
+        ]
+
+        if isinstance(self.tiebreak, str):
+            lp_cand = tie_broken_ranking(
+                ranking=[set(lp_candidates)],
+                profile=self.state.profile,
+                tiebreak=self.tiebreak,
+            )[-1]
+        else:
+            lp_cand = self.tiebreak(
+                ranking=[set(lp_candidates)], profile=self.state.profile
+            )[-1]
+
+        eliminated.append(lp_cand)
+        ballots = remove_cand(lp_cand, ballots)
+        remaining.remove(next(iter(lp_cand)))
+
+    # sorts remaining based on their current first place votes
+    _, score_dict = compute_votes(remaining, ballots)
+    remaining = scores_into_set_list(score_dict, remaining)
+
+    # sort candidates by vote share if multiple are elected
+    if len(elected) >= 1:
+        elected = scores_into_set_list(
+            plurality_score, [c for s in elected for c in s]
+        )
+
+    # Make sure list-of-sets have non-empty elements
+    elected = [s for s in elected if s != set()]
+    eliminated = [s for s in eliminated if s != set()]
+
+    self.state = ElectionState(
+        curr_round=self.state.curr_round + 1,
+        elected=elected,
+        eliminated_cands=eliminated,
+        remaining=remaining,
+        scores=score_dict,
+        profile=PreferenceProfile(ballots=ballots),
+        previous=self.state,
+    )
+    return self.state
+
+
+
+ +
+ + + +
+ +
+ + +
+ +
+ + + +

+ SequentialRCV + + +

+ + +
+

+ Bases: Election

+ + +

Class to conduct Sequential RCV election, in which votes are not transferred +after a candidate has reached threshold, or been elected.

+

Attributes

+

profile +: PreferenceProfile to run election on.

+

seats +: number of seats to be elected.

+

ballot_ties +: (optional) resolves input ballot ties if True, else assumes ballots have no ties. + Defaults to True.

+

tiebreak +: (optional) resolves procedural and final ties by specified tiebreak. + Can either be a custom tiebreak function or a string. Supported strings are + given in tie_broken_ranking documentation. The custom function must take as + input two named parameters; ranking, a list-of-sets ranking of candidates and + profile, the original PreferenceProfile. It must return a list-of-sets + ranking of candidates with no ties. Defaults to random tiebreak.

+

Methods

+ +
+ Source code in src/votekit/elections/election_types.py +
820
+821
+822
+823
+824
+825
+826
+827
+828
+829
+830
+831
+832
+833
+834
+835
+836
+837
+838
+839
+840
+841
+842
+843
+844
+845
+846
+847
+848
+849
+850
+851
+852
+853
+854
+855
+856
+857
+858
+859
+860
+861
+862
+863
+864
+865
+866
+867
+868
+869
+870
+871
+872
+873
+874
+875
+876
+877
+878
+879
+880
+881
+882
+883
+884
+885
+886
+887
+888
+889
+890
+891
+892
+893
+894
+895
+896
+897
+898
+899
+900
+901
+902
+903
+904
+905
+906
+907
class SequentialRCV(Election):
+    """
+    Class to conduct Sequential RCV election, in which votes are not transferred
+    after a candidate has reached threshold, or been elected.
+
+    **Attributes**
+
+    `profile`
+    :   PreferenceProfile to run election on.
+
+    `seats`
+    :   number of seats to be elected.
+
+    `ballot_ties`
+    :   (optional) resolves input ballot ties if True, else assumes ballots have no ties.
+                Defaults to True.
+
+    `tiebreak`
+    :   (optional) resolves procedural and final ties by specified tiebreak.
+                    Can either be a custom tiebreak function or a string. Supported strings are
+                    given in `tie_broken_ranking` documentation. The custom function must take as
+                    input two named parameters; `ranking`, a list-of-sets ranking of candidates and
+                    `profile`, the original `PreferenceProfile`. It must return a list-of-sets
+                    ranking of candidates with no ties. Defaults to random tiebreak.
+
+    **Methods**
+    """
+
+    def __init__(
+        self,
+        profile: PreferenceProfile,
+        seats: int,
+        ballot_ties: bool = True,
+        tiebreak: Union[Callable, str] = "random",
+    ):
+        super().__init__(profile, ballot_ties)
+        self.seats = seats
+        self.tiebreak = tiebreak
+
+    def run_step(self, old_profile: PreferenceProfile) -> ElectionState:
+        """
+        Simulates a single step of the sequential RCV contest or a full
+        IRV election run on the current set of candidates.
+
+         Returns:
+           An ElectionState object for a given round.
+        """
+        old_election_state = self.state
+
+        IRVrun = STV(
+            old_profile, transfer=seqRCV_transfer, seats=1, tiebreak=self.tiebreak
+        )
+        old_election = IRVrun.run_election()
+        elected_cand = old_election.winners()[0]
+
+        # Removes elected candidate from Ballot List
+        updated_ballots = remove_cand(elected_cand, old_profile.get_ballots())
+
+        # Updates profile with removed candidates
+        updated_profile = PreferenceProfile(ballots=updated_ballots)
+
+        self.state = ElectionState(
+            curr_round=old_election_state.curr_round + 1,
+            elected=[elected_cand],
+            profile=updated_profile,
+            previous=old_election_state,
+            scores=first_place_votes(updated_profile),
+            remaining=old_election.remaining,
+        )
+        return self.state
+
+    @lru_cache
+    def run_election(self) -> ElectionState:
+        """
+        Simulates a complete sequential RCV contest.
+
+        Returns:
+            An ElectionState object for a complete election.
+        """
+        old_profile = self._profile
+        elected = []  # type: ignore
+        seqRCV_step = self.state
+
+        while len(elected) < self.seats:
+            seqRCV_step = self.run_step(old_profile)
+            elected.append(seqRCV_step.elected)
+            old_profile = seqRCV_step.profile
+        return seqRCV_step
+
+
+ + + +
+ + + + + + + + + + +
+ + + +

+ run_election() + + + cached + + +

+ + +
+ +

Simulates a complete sequential RCV contest.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ ElectionState + +
+

An ElectionState object for a complete election.

+
+
+ +
+ Source code in src/votekit/elections/election_types.py +
891
+892
+893
+894
+895
+896
+897
+898
+899
+900
+901
+902
+903
+904
+905
+906
+907
@lru_cache
+def run_election(self) -> ElectionState:
+    """
+    Simulates a complete sequential RCV contest.
+
+    Returns:
+        An ElectionState object for a complete election.
+    """
+    old_profile = self._profile
+    elected = []  # type: ignore
+    seqRCV_step = self.state
+
+    while len(elected) < self.seats:
+        seqRCV_step = self.run_step(old_profile)
+        elected.append(seqRCV_step.elected)
+        old_profile = seqRCV_step.profile
+    return seqRCV_step
+
+
+
+ +
+ + +
+ + + +

+ run_step(old_profile) + +

+ + +
+ +

Simulates a single step of the sequential RCV contest or a full +IRV election run on the current set of candidates.

+

Returns: + An ElectionState object for a given round.

+ +
+ Source code in src/votekit/elections/election_types.py +
859
+860
+861
+862
+863
+864
+865
+866
+867
+868
+869
+870
+871
+872
+873
+874
+875
+876
+877
+878
+879
+880
+881
+882
+883
+884
+885
+886
+887
+888
+889
def run_step(self, old_profile: PreferenceProfile) -> ElectionState:
+    """
+    Simulates a single step of the sequential RCV contest or a full
+    IRV election run on the current set of candidates.
+
+     Returns:
+       An ElectionState object for a given round.
+    """
+    old_election_state = self.state
+
+    IRVrun = STV(
+        old_profile, transfer=seqRCV_transfer, seats=1, tiebreak=self.tiebreak
+    )
+    old_election = IRVrun.run_election()
+    elected_cand = old_election.winners()[0]
+
+    # Removes elected candidate from Ballot List
+    updated_ballots = remove_cand(elected_cand, old_profile.get_ballots())
+
+    # Updates profile with removed candidates
+    updated_profile = PreferenceProfile(ballots=updated_ballots)
+
+    self.state = ElectionState(
+        curr_round=old_election_state.curr_round + 1,
+        elected=[elected_cand],
+        profile=updated_profile,
+        previous=old_election_state,
+        scores=first_place_votes(updated_profile),
+        remaining=old_election.remaining,
+    )
+    return self.state
+
+
+
+ +
+ + + +
+ +
+ + +
+ +
+ + + +

+ TopTwo + + +

+ + +
+

+ Bases: Election

+ + +

Eliminates all but the top two plurality vote getters, and then +conducts a runoff between them, reallocating other ballots.

+

Attributes

+

profile +: PreferenceProfile to run election on.

+

seats +: number of seats to be elected.

+

ballot_ties +: (optional) resolves input ballot ties if True, else assumes ballots have no ties. + Defaults to True.

+

tiebreak +: (optional) resolves procedural and final ties by specified tiebreak. + Can either be a custom tiebreak function or a string. Supported strings are + given in tie_broken_ranking documentation. The custom function must take as + input two named parameters; ranking, a list-of-sets ranking of candidates and + profile, the original PreferenceProfile. It must return a list-of-sets + ranking of candidates with no ties. Defaults to random tiebreak.

+

Methods

+ +
+ Source code in src/votekit/elections/election_types.py +
599
+600
+601
+602
+603
+604
+605
+606
+607
+608
+609
+610
+611
+612
+613
+614
+615
+616
+617
+618
+619
+620
+621
+622
+623
+624
+625
+626
+627
+628
+629
+630
+631
+632
+633
+634
+635
+636
+637
+638
+639
+640
+641
+642
+643
+644
+645
+646
+647
+648
+649
+650
+651
+652
+653
+654
+655
+656
+657
+658
+659
+660
+661
+662
+663
class TopTwo(Election):
+    """
+    Eliminates all but the top two plurality vote getters, and then
+    conducts a runoff between them, reallocating other ballots.
+
+    **Attributes**
+
+    `profile`
+    :   PreferenceProfile to run election on.
+
+    `seats`
+    :   number of seats to be elected.
+
+    `ballot_ties`
+    :   (optional) resolves input ballot ties if True, else assumes ballots have no ties.
+                    Defaults to True.
+
+     `tiebreak`
+    :   (optional) resolves procedural and final ties by specified tiebreak.
+                    Can either be a custom tiebreak function or a string. Supported strings are
+                    given in `tie_broken_ranking` documentation. The custom function must take as
+                    input two named parameters; `ranking`, a list-of-sets ranking of candidates and
+                    `profile`, the original `PreferenceProfile`. It must return a list-of-sets
+                    ranking of candidates with no ties. Defaults to random tiebreak.
+
+    **Methods**
+    """
+
+    def __init__(
+        self,
+        profile: PreferenceProfile,
+        ballot_ties: bool = True,
+        tiebreak: Union[str, Callable] = "random",
+    ):
+        super().__init__(profile, ballot_ties)
+        self.tiebreak = tiebreak
+
+    def run_step(self) -> ElectionState:
+        """
+        Conducts a TopTwo election for one seat with a cutoff of 2 for the runoff.
+
+        Returns:
+            An ElectionState object for the TopTwo election.
+        """
+        hybrid_equivalent = SNTV_STV_Hybrid(
+            profile=self.state.profile,
+            transfer=fractional_transfer,
+            r1_cutoff=2,
+            seats=1,
+            tiebreak=self.tiebreak,
+        )
+        outcome = hybrid_equivalent.run_election()
+        self.state = outcome
+        return outcome
+
+    @lru_cache
+    def run_election(self) -> ElectionState:
+        """
+        Simulates a complete TopTwo election.
+
+        Returns:
+            An ElectionState object for a complete election.
+        """
+        self.run_step()
+        return self.state
+
+
+ + + +
+ + + + + + + + + + +
+ + + +

+ run_election() + + + cached + + +

+ + +
+ +

Simulates a complete TopTwo election.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ ElectionState + +
+

An ElectionState object for a complete election.

+
+
+ +
+ Source code in src/votekit/elections/election_types.py +
654
+655
+656
+657
+658
+659
+660
+661
+662
+663
@lru_cache
+def run_election(self) -> ElectionState:
+    """
+    Simulates a complete TopTwo election.
+
+    Returns:
+        An ElectionState object for a complete election.
+    """
+    self.run_step()
+    return self.state
+
+
+
+ +
+ + +
+ + + +

+ run_step() + +

+ + +
+ +

Conducts a TopTwo election for one seat with a cutoff of 2 for the runoff.

+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ ElectionState + +
+

An ElectionState object for the TopTwo election.

+
+
+ +
+ Source code in src/votekit/elections/election_types.py +
636
+637
+638
+639
+640
+641
+642
+643
+644
+645
+646
+647
+648
+649
+650
+651
+652
def run_step(self) -> ElectionState:
+    """
+    Conducts a TopTwo election for one seat with a cutoff of 2 for the runoff.
+
+    Returns:
+        An ElectionState object for the TopTwo election.
+    """
+    hybrid_equivalent = SNTV_STV_Hybrid(
+        profile=self.state.profile,
+        transfer=fractional_transfer,
+        r1_cutoff=2,
+        seats=1,
+        tiebreak=self.tiebreak,
+    )
+    outcome = hybrid_equivalent.run_election()
+    self.state = outcome
+    return outcome
+
+
+
+ +
+ + + +
+ +
+ + +
+ + + + +
+ +
+ +

Cleaning

+ + +
+ + + + +
+ + + +
+ + + + + + + + + + +
+ + + +

+ clean_profile(pp, clean_ballot_func) + +

+ + +
+ +

Allows user-defined cleaning rules for PreferenceProfile. Input function +that applies modification or rule to a single ballot.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
pp + PreferenceProfile + +
+

A PreferenceProfile to clean.

+
+
+ required +
clean_ballot_func + Callable[[Ballot], Ballot] + +
+

Function that +takes a list of ballots and cleans each ballot.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ PreferenceProfile + +
+

A cleaned PreferenceProfile.

+
+
+ +
+ Source code in src/votekit/cleaning.py +
38
+39
+40
+41
+42
+43
+44
+45
+46
+47
+48
+49
+50
+51
+52
+53
+54
+55
+56
+57
+58
+59
+60
+61
+62
+63
+64
def clean_profile(
+    pp: PreferenceProfile, clean_ballot_func: Callable[[Ballot], Ballot]
+) -> PreferenceProfile:
+    """
+    Allows user-defined cleaning rules for PreferenceProfile. Input function
+    that applies modification or rule to a single ballot.
+
+    Args:
+        pp (PreferenceProfile): A PreferenceProfile to clean.
+        clean_ballot_func (Callable[[Ballot], Ballot]): Function that
+            takes a list of ballots and cleans each ballot.
+
+    Returns:
+        (PreferenceProfile): A cleaned PreferenceProfile.
+    """
+
+    # apply cleaning function to clean all ballots
+    if clean_ballot_func is not None:
+        cleaned = map(clean_ballot_func, pp.ballots)
+    # group ballots that have the same ranking after cleaning
+    grouped_ballots = [
+        list(result)
+        for key, result in groupby(cleaned, key=lambda ballot: ballot.ranking)
+    ]
+    # merge ballots in the same groups
+    new_ballots = [merge_ballots(b) for b in grouped_ballots]
+    return PreferenceProfile(ballots=new_ballots)
+
+
+
+ +
+ + +
+ + + +

+ deduplicate_profiles(pp) + +

+ + +
+ +

Given a PreferenceProfile, deduplicates its ballots.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
pp + PreferenceProfile + +
+

A PreferenceProfile to clean.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ PreferenceProfile + +
+

A cleaned PreferenceProfile without duplicates.

+
+
+ +
+ Source code in src/votekit/cleaning.py +
 87
+ 88
+ 89
+ 90
+ 91
+ 92
+ 93
+ 94
+ 95
+ 96
+ 97
+ 98
+ 99
+100
+101
+102
+103
+104
+105
+106
+107
+108
+109
+110
+111
+112
+113
+114
+115
+116
+117
+118
+119
+120
+121
+122
def deduplicate_profiles(pp: PreferenceProfile) -> PreferenceProfile:
+    """
+    Given a PreferenceProfile, deduplicates its ballots.
+
+    Args:
+        pp (PreferenceProfile): A PreferenceProfile to clean.
+
+    Returns:
+        (PreferenceProfile): A cleaned PreferenceProfile without duplicates.
+    """
+
+    def deduplicate_ballots(ballot: Ballot) -> Ballot:
+        """
+        Takes a ballot and deduplicates its rankings.
+
+        Args:
+            ballot (Ballot): a ballot with duplicates in its ranking.
+
+        Returns:
+            Ballot: a ballot without duplicates.
+        """
+        ranking = ballot.ranking
+        dedup_ranking = []
+        for cand in ranking:
+            if cand in ranking and cand not in dedup_ranking:
+                dedup_ranking.append(cand)
+        new_ballot = Ballot(
+            id=ballot.id,
+            weight=Fraction(ballot.weight),
+            ranking=tuple(dedup_ranking),
+            voter_set=ballot.voter_set,
+        )
+        return new_ballot
+
+    pp_clean = clean_profile(pp=pp, clean_ballot_func=deduplicate_ballots)
+    return pp_clean
+
+
+
+ +
+ + +
+ + + +

+ merge_ballots(ballots) + +

+ + +
+ +

Takes a list of ballots with the same ranking and merge them into one ballot.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
ballots + list[Ballot] + +
+

A list of ballots to deduplicate.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ Ballot + +
+

A ballot with the same ranking and aggregated weight and voters.

+
+
+ +
+ Source code in src/votekit/cleaning.py +
67
+68
+69
+70
+71
+72
+73
+74
+75
+76
+77
+78
+79
+80
+81
+82
+83
+84
def merge_ballots(ballots: list[Ballot]) -> Ballot:
+    """
+    Takes a list of ballots with the same ranking and merge them into one ballot.
+
+    Args:
+        ballots (list[Ballot]): A list of ballots to deduplicate.
+
+    Returns:
+        (Ballot): A ballot with the same ranking and aggregated weight and voters.
+    """
+    weight = sum(b.weight for b in ballots)
+    ranking = ballots[0].ranking
+    voters_to_merge = [b.voter_set for b in ballots if b.voter_set]
+    voter_set = None
+    if len(voters_to_merge) > 0:
+        voter_set = reduce(lambda b1, b2: b1.union(b2), voters_to_merge)
+        voter_set = set(voter_set)
+    return Ballot(ranking=ranking, voter_set=voter_set, weight=Fraction(weight))
+
+
+
+ +
+ + +
+ + + +

+ remove_empty_ballots(pp, keep_candidates=False) + +

+ + +
+ +

Removes empty ballots from a PreferenceProfile.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
pp + PreferenceProfile + +
+

A PreferenceProfile to clean.

+
+
+ required +
keep_candidates + bool + +
+

If True, keep all of the candidates +from the original PreferenceProfile in the returned PreferenceProfile, even if +they got no votes. Defaults to False.

+
+
+ False +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ PreferenceProfile + +
+

A cleaned PreferenceProfile.

+
+
+ +
+ Source code in src/votekit/cleaning.py +
11
+12
+13
+14
+15
+16
+17
+18
+19
+20
+21
+22
+23
+24
+25
+26
+27
+28
+29
+30
+31
+32
+33
+34
+35
def remove_empty_ballots(
+    pp: PreferenceProfile, keep_candidates: bool = False
+) -> PreferenceProfile:
+    """
+    Removes empty ballots from a PreferenceProfile.
+
+    Args:
+        pp (PreferenceProfile): A PreferenceProfile to clean.
+        keep_candidates (bool, optional): If True, keep all of the candidates
+            from the original PreferenceProfile in the returned PreferenceProfile, even if
+            they got no votes. Defaults to False.
+
+    Returns:
+        (PreferenceProfile): A cleaned PreferenceProfile.
+    """
+
+    ballots_nonempty = [
+        deepcopy(ballot) for ballot in pp.get_ballots() if ballot.ranking
+    ]
+    if keep_candidates:
+        old_cands = deepcopy(pp.get_candidates())
+        pp_clean = PreferenceProfile(ballots=ballots_nonempty, candidates=old_cands)
+    else:
+        pp_clean = PreferenceProfile(ballots=ballots_nonempty)
+    return pp_clean
+
+
+
+ +
+ + +
+ + + +

+ remove_noncands(profile, non_cands) + +

+ + +
+ +

Removes user-assigned non-candidates from ballots, deletes ballots +that are empty as a result of the removal.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
profile + PreferenceProfile + +
+

A PreferenceProfile to clean.

+
+
+ required +
non_cands + list[str] + +
+

A list of non-candidates to be removed.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ PreferenceProfile + +
+

A profile with non-candidates removed.

+
+
+ +
+ Source code in src/votekit/cleaning.py +
125
+126
+127
+128
+129
+130
+131
+132
+133
+134
+135
+136
+137
+138
+139
+140
+141
+142
+143
+144
+145
+146
+147
+148
+149
+150
+151
+152
+153
+154
+155
+156
+157
+158
+159
+160
+161
+162
+163
+164
+165
+166
+167
+168
+169
+170
+171
+172
+173
+174
+175
+176
+177
+178
+179
+180
+181
+182
+183
def remove_noncands(
+    profile: PreferenceProfile, non_cands: list[str]
+) -> PreferenceProfile:
+    """
+    Removes user-assigned non-candidates from ballots, deletes ballots
+    that are empty as a result of the removal.
+
+    Args:
+        profile (PreferenceProfile): A PreferenceProfile to clean.
+        non_cands (list[str]): A list of non-candidates to be removed.
+
+    Returns:
+        (PreferenceProfile): A profile with non-candidates removed.
+    """
+
+    def remove_from_ballots(ballot: Ballot, non_cands: list[str]) -> Ballot:
+        """
+        Removes non-candidiates from ballot objects.
+
+        Args:
+            ballot (Ballot): a ballot to be cleaned.
+            non_cands (list[str]): a list of candidates to remove.
+
+        Returns:
+            Ballot: returns a cleaned Ballot.
+        """
+        # TODO: adjust so string and list of strings are acceptable inputes
+
+        to_remove = []
+        for item in non_cands:
+            to_remove.append({item})
+
+        ranking = ballot.ranking
+        clean_ranking = []
+        for cand in ranking:
+            if cand not in to_remove and cand not in clean_ranking:
+                clean_ranking.append(cand)
+
+        clean_ballot = Ballot(
+            id=ballot.id,
+            ranking=tuple(clean_ranking),
+            weight=Fraction(ballot.weight),
+            voter_set=ballot.voter_set,
+        )
+
+        return clean_ballot
+
+    cleaned = [
+        remove_from_ballots(ballot, non_cands)
+        for ballot in profile.ballots
+        if remove_from_ballots(ballot, non_cands).ranking
+    ]
+    grouped_ballots = [
+        list(result)
+        for key, result in groupby(cleaned, key=lambda ballot: ballot.ranking)
+    ]
+    # merge ballots in the same groups
+    new_ballots = [merge_ballots(b) for b in grouped_ballots]
+    return PreferenceProfile(ballots=new_ballots)
+
+
+
+ +
+ + + +
+ +
+ +

Metrics

+ + +
+ + + + +
+ + + +
+ + + + + + + + + + +
+ + + +

+ borda_scores(profile, ballot_length=None, score_vector=None) + +

+ + +
+ +

Calculates Borda scores for a PreferenceProfile.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
profile + PreferenceProfile + +
+

Inputed PreferenceProfile of ballots.

+
+
+ required +
ballot_length + Optional[int] + +
+

Length of a ballot, if None length of longest ballot is +used.

+
+
+ None +
score_vector + Optional[list] + +
+

Borda weights, if None, vector is assigned \((n,n-1,\dots,1)\).

+
+
+ None +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ dict + +
+

Dictionary of candidates (keys) and Borda scores (values).

+
+
+ +
+ Source code in src/votekit/utils.py +
199
+200
+201
+202
+203
+204
+205
+206
+207
+208
+209
+210
+211
+212
+213
+214
+215
+216
+217
+218
+219
+220
+221
+222
+223
+224
+225
+226
+227
+228
+229
+230
+231
+232
+233
+234
+235
+236
+237
+238
+239
+240
+241
+242
+243
+244
+245
+246
+247
def borda_scores(
+    profile: PreferenceProfile,
+    ballot_length: Optional[int] = None,
+    score_vector: Optional[list] = None,
+) -> dict:
+    """
+    Calculates Borda scores for a PreferenceProfile.
+
+    Args:
+        profile: Inputed PreferenceProfile of ballots.
+        ballot_length: Length of a ballot, if None length of longest ballot is
+            used.
+        score_vector: Borda weights, if None, vector is assigned $(n,n-1,\dots,1)$.
+
+    Returns:
+        (dict): Dictionary of candidates (keys) and Borda scores (values).
+    """
+    candidates = profile.get_candidates()
+    if ballot_length is None:
+        ballot_length = max([len(ballot.ranking) for ballot in profile.ballots])
+    if score_vector is None:
+        score_vector = list(range(ballot_length, 0, -1))
+
+    candidate_borda = {c: Fraction(0) for c in candidates}
+    for ballot in profile.ballots:
+        current_ind = 0
+        candidates_covered = []
+        for s in ballot.ranking:
+            position_size = len(s)
+            local_score_vector = score_vector[current_ind : current_ind + position_size]
+            borda_allocation = sum(local_score_vector) / position_size
+            for c in s:
+                candidate_borda[c] += Fraction(borda_allocation) * ballot.weight
+            current_ind += position_size
+            candidates_covered += list(s)
+
+        # If ballot was incomplete, evenly allocation remaining points
+        if current_ind < len(score_vector):
+            remainder_cands = set(candidates).difference(set(candidates_covered))
+            remainder_score_vector = score_vector[current_ind:]
+            remainder_borda_allocation = sum(remainder_score_vector) / len(
+                remainder_cands
+            )
+            for c in remainder_cands:
+                candidate_borda[c] += (
+                    Fraction(remainder_borda_allocation) * ballot.weight
+                )
+
+    return candidate_borda
+
+
+
+ +
+ + +
+ + + +

+ first_place_votes(profile, to_float=False) + +

+ + +
+ +

Calculates first-place votes for a PreferenceProfile.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
profile + PreferenceProfile + +
+

Inputed PreferenceProfile of ballots.

+
+
+ required +
to_float + bool + +
+

If True, compute first place votes as floats instead of Fractions. Defaults to + False.

+
+
+ False +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ dict + +
+

Dictionary of candidates (keys) and first place vote totals (values).

+
+
+ +
+ Source code in src/votekit/utils.py +
146
+147
+148
+149
+150
+151
+152
+153
+154
+155
+156
+157
+158
+159
+160
+161
+162
+163
+164
+165
+166
+167
+168
def first_place_votes(profile: PreferenceProfile, to_float: bool = False) -> dict:
+    """
+    Calculates first-place votes for a PreferenceProfile.
+
+    Args:
+        profile: Inputed PreferenceProfile of ballots.
+
+        to_float: If True, compute first place votes as floats instead of Fractions. Defaults to
+                    False.
+
+    Returns:
+        Dictionary of candidates (keys) and first place vote totals (values).
+    """
+    cands = profile.get_candidates()
+    ballots = profile.get_ballots()
+
+    _, votes_dict = compute_votes(cands, ballots)
+
+    if to_float:
+        votes_dict = {k: float(v) for k, v in votes_dict.items()}
+        return votes_dict
+    else:
+        return votes_dict
+
+
+
+ +
+ + +
+ + + +

+ mentions(profile) + +

+ + +
+ +

Calculates total mentions for a PreferenceProfile.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
profile + PreferenceProfile + +
+

Inputed PreferenceProfile of ballots.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ dict + +
+

Dictionary of candidates (keys) and mention totals (values).

+
+
+ +
+ Source code in src/votekit/utils.py +
171
+172
+173
+174
+175
+176
+177
+178
+179
+180
+181
+182
+183
+184
+185
+186
+187
+188
+189
+190
+191
+192
+193
+194
+195
+196
def mentions(profile: PreferenceProfile) -> dict:
+    """
+    Calculates total mentions for a PreferenceProfile.
+
+    Args:
+        profile: Inputed PreferenceProfile of ballots.
+
+    Returns:
+        Dictionary of candidates (keys) and mention totals (values).
+    """
+    mentions: dict[str, float] = {}
+
+    ballots = profile.get_ballots()
+    for ballot in ballots:
+        for rank in ballot.ranking:
+            for cand in rank:
+                if cand not in mentions:
+                    mentions[cand] = 0
+                if len(rank) > 1:
+                    mentions[cand] += (1 / len(rank)) * int(
+                        ballot.weight
+                    )  # split mentions for candidates that are tied
+                else:
+                    mentions[cand] += float(ballot.weight)
+
+    return mentions
+
+
+
+ +
+ + + +
+ +
+ +
+ +
+ + + + +
+ + + +
+ + + + + + + + + + +
+ + + +

+ earth_mover_dist(pp1, pp2) + +

+ + +
+ +

Computes the earth mover distance between two elections. +Assumes both elections share the same candidates.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
pp1 + PreferenceProfile + +
+

PreferenceProfile for first election.

+
+
+ required +
pp2 + PreferenceProfile + +
+

PreferenceProfile for second election.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ int + +
+

Earth mover distance between inputted elections.

+
+
+ +
+ Source code in src/votekit/metrics/distances.py +
 9
+10
+11
+12
+13
+14
+15
+16
+17
+18
+19
+20
+21
+22
+23
+24
+25
+26
+27
+28
+29
+30
+31
+32
+33
+34
+35
+36
+37
+38
+39
+40
+41
def earth_mover_dist(pp1: PreferenceProfile, pp2: PreferenceProfile) -> int:
+    """
+    Computes the earth mover distance between two elections.
+    Assumes both elections share the same candidates.
+
+    Args:
+        pp1: PreferenceProfile for first election.
+        pp2: PreferenceProfile for second election.
+
+    Returns:
+        Earth mover distance between inputted elections.
+    """
+    # create ballot graph
+    ballot_graph = BallotGraph(source=pp2).graph
+    # ballot_graph = graph.from_profile(profile=pp2, complete=True)
+
+    # Solving Earth Mover Distance
+    electA_distr = np.array(em_array(pp=pp1))
+    electB_distr = np.array(em_array(pp=pp2))
+
+    # Floyd Warshall Shortest Distance alorithm. Returns a dictionary of shortest path for each node
+    fw_dist_dict = nx.floyd_warshall(ballot_graph)
+    keys_list = sorted(fw_dist_dict.keys())
+    cost_matrix = np.zeros((len(keys_list), len(keys_list)))
+    for i in range(len(keys_list)):
+        node_dict = fw_dist_dict[keys_list[i]]
+        cost_col = [value for key, value in sorted(node_dict.items())]
+        cost_matrix[i] = cost_col
+    earth_mover_matrix = ot.emd(electA_distr, electB_distr, cost_matrix)
+
+    # Hadamard Product = Earth mover dist between two matrices
+    earth_mover_dist = np.sum(np.multiply(cost_matrix, earth_mover_matrix))
+    return earth_mover_dist
+
+
+
+ +
+ + +
+ + + +

+ lp_dist(pp1, pp2, p_value=1) + +

+ + +
+ +

Computes the L_p distance between two election distributions. +Use 'inf' for infinity norm. +Assumes both elections share the same candidates.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
pp1 + PreferenceProfile + +
+

PreferenceProfile for first election.

+
+
+ required +
pp2 + PreferenceProfile + +
+

PreferenceProfile for second election.

+
+
+ required +
p_value + Optional[Union[int, str]] + +
+

Distance parameter, 1 for Manhattan, 2 for Euclidean +or 'inf' for Chebyshev distance.

+
+
+ 1 +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ int + +
+

Lp distance between two elections.

+
+
+ +
+ Source code in src/votekit/metrics/distances.py +
44
+45
+46
+47
+48
+49
+50
+51
+52
+53
+54
+55
+56
+57
+58
+59
+60
+61
+62
+63
+64
+65
+66
+67
+68
+69
+70
+71
+72
+73
+74
+75
+76
+77
+78
+79
+80
+81
def lp_dist(
+    pp1: PreferenceProfile,
+    pp2: PreferenceProfile,
+    p_value: Optional[Union[int, str]] = 1,
+) -> int:
+    """
+    Computes the L_p distance between two election distributions.
+    Use 'inf' for infinity norm.
+    Assumes both elections share the same candidates.
+
+    Args:
+        pp1: PreferenceProfile for first election.
+        pp2: PreferenceProfile for second election.
+        p_value: Distance parameter, 1 for Manhattan, 2 for Euclidean
+            or 'inf' for Chebyshev distance.
+
+    Returns:
+        Lp distance between two elections.
+    """
+    pp_list = [pp1, pp2]
+    pp_2arry = profiles_to_ndarrys(pp_list)
+    electA = pp_2arry[:, 0]
+    electB = pp_2arry[:, 1]
+
+    if isinstance(p_value, int):
+        sum = 0
+        for i in range(len(electA)):
+            diff = (abs(electA[i] - electB[i])) ** p_value
+            sum += diff
+        lp_dist = sum ** (1 / p_value)
+        return lp_dist
+
+    elif p_value == "inf":
+        diff = [abs(x - y) for x, y in zip(electA, electB)]
+        return max(diff)
+
+    else:
+        raise ValueError("Unsupported input type")
+
+
+
+ +
+ + +
+ + + +

+ em_array(pp) + +

+ + +
+ +

Converts a PreferenceProfile into a distribution using ballot graphs.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
pp + PreferenceProfile + +
+

PreferenceProfile for a given election.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ list + +
+

Distribution of ballots for an election.

+
+
+ +
+ Source code in src/votekit/metrics/distances.py +
123
+124
+125
+126
+127
+128
+129
+130
+131
+132
+133
+134
+135
+136
+137
+138
+139
+140
+141
+142
+143
+144
+145
+146
+147
+148
+149
+150
+151
+152
def em_array(pp: PreferenceProfile) -> list:
+    """
+    Converts a PreferenceProfile into a distribution using ballot graphs.
+
+    Args:
+        pp: PreferenceProfile for a given election.
+
+    Returns:
+        Distribution of ballots for an election.
+    """
+    ballot_graph = BallotGraph(source=pp)
+    node_cand_map = ballot_graph.label_cands(sorted(pp.get_candidates()))
+    pp_dict = pp.to_dict(True)
+
+    # invert node_cand_map to map to pp_dict
+    # split is used to remove the custom labeling from the ballotgraph
+    inverted = {v.split(":")[0]: k for k, v in node_cand_map.items()}
+    combined_dict = {k: 0 for k in node_cand_map}
+
+    # map nodes with weight of corresponding rank
+    # labels on ballotgraph are strings so need to convert key to string
+    node_pp_dict = {inverted[str(key)]: pp_dict[key] for key in pp_dict}
+
+    complete_election_dict = combined_dict | node_pp_dict
+    elect_distr = [
+        float(complete_election_dict[key])
+        for key in sorted(complete_election_dict.keys())
+    ]
+
+    return elect_distr
+
+
+
+ +
+ + + +
+ +
+ +
+ +
+ + + + +
+ + + +
+ + + + + + + + + + +
+ + + +

+ fractional_transfer(winner, ballots, votes, threshold) + +

+ + +
+ +

Calculates fractional transfer from winner, then removes winner +from the list of ballots.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
winner + str + +
+

Candidate to transfer votes from.

+
+
+ required +
ballots + list[Ballot] + +
+

List of Ballot objects.

+
+
+ required +
votes + dict + +
+

Contains candidates and their corresponding vote totals.

+
+
+ required +
threshold + int + +
+

Value required to be elected, used to calculate transfer value.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ list[Ballot] + +
+

Modified ballots with transfered weights and the winning candidate removed.

+
+
+ +
+ Source code in src/votekit/elections/transfers.py +
 8
+ 9
+10
+11
+12
+13
+14
+15
+16
+17
+18
+19
+20
+21
+22
+23
+24
+25
+26
+27
+28
+29
+30
+31
+32
+33
+34
+35
+36
+37
+38
+39
+40
+41
+42
+43
+44
+45
def fractional_transfer(
+    winner: str, ballots: list[Ballot], votes: dict, threshold: int
+) -> list[Ballot]:
+    """
+    Calculates fractional transfer from winner, then removes winner
+    from the list of ballots.
+
+    Args:
+        winner: Candidate to transfer votes from.
+        ballots: List of Ballot objects.
+        votes: Contains candidates and their corresponding vote totals.
+        threshold: Value required to be elected, used to calculate transfer value.
+
+    Returns:
+        Modified ballots with transfered weights and the winning candidate removed.
+    """
+    transfer_value = (votes[winner] - threshold) / votes[winner]
+
+    transfered_ballots = []
+    for ballot in ballots:
+        new_ranking = []
+        if ballot.ranking and ballot.ranking[0] == {winner}:
+            transfered_weight = ballot.weight * transfer_value
+            for cand in ballot.ranking:
+                if cand != {winner}:
+                    new_ranking.append(frozenset(cand))
+            transfered_ballots.append(
+                Ballot(
+                    ranking=tuple(new_ranking),
+                    weight=transfered_weight,
+                    voter_set=ballot.voter_set,
+                    id=ballot.id,
+                )
+            )
+        else:
+            transfered_ballots.append(ballot)
+
+    return remove_cand(winner, transfered_ballots)
+
+
+
+ +
+ + +
+ + + +

+ seqRCV_transfer(winner, ballots, votes, threshold) + +

+ + +
+ +

Transfer method for Sequential RCV elections.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
winner + str + +
+

Candidate to transfer votes from.

+
+
+ required +
ballots + list[Ballot] + +
+

List of Ballot objects.

+
+
+ required +
votes + dict + +
+

Contains candidates and their corresponding vote totals.

+
+
+ required +
threshold + int + +
+

Value required to be elected, used to calculate transfer value.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ list[Ballot] + +
+

Original list of ballots as Sequential RCV does not transfer votes.

+
+
+ +
+ Source code in src/votekit/elections/transfers.py +
 88
+ 89
+ 90
+ 91
+ 92
+ 93
+ 94
+ 95
+ 96
+ 97
+ 98
+ 99
+100
+101
+102
+103
def seqRCV_transfer(
+    winner: str, ballots: list[Ballot], votes: dict, threshold: int
+) -> list[Ballot]:
+    """
+    Transfer method for Sequential RCV elections.
+
+    Args:
+        winner: Candidate to transfer votes from.
+        ballots: List of Ballot objects.
+        votes: Contains candidates and their corresponding vote totals.
+        threshold: Value required to be elected, used to calculate transfer value.
+
+    Returns:
+        Original list of ballots as Sequential RCV does not transfer votes.
+    """
+    return ballots
+
+
+
+ +
+ + +
+ + + +

+ random_transfer(winner, ballots, votes, threshold) + +

+ + +
+ +

Cambridge-style transfer where transfer ballots are selected randomly.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
winner + str + +
+

Candidate to transfer votes from.

+
+
+ required +
ballots + list[Ballot] + +
+

List of Ballot objects.

+
+
+ required +
votes + dict + +
+

Contains candidates and their corresponding vote totals.

+
+
+ required +
threshold + int + +
+

Value required to be elected, used to calculate transfer value.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ list[Ballot] + +
+

Modified ballots with transferred weights and the winning candidate removed.

+
+
+ +
+ Source code in src/votekit/elections/transfers.py +
48
+49
+50
+51
+52
+53
+54
+55
+56
+57
+58
+59
+60
+61
+62
+63
+64
+65
+66
+67
+68
+69
+70
+71
+72
+73
+74
+75
+76
+77
+78
+79
+80
+81
+82
+83
+84
+85
def random_transfer(
+    winner: str, ballots: list[Ballot], votes: dict, threshold: int
+) -> list[Ballot]:
+    """
+    Cambridge-style transfer where transfer ballots are selected randomly.
+
+    Args:
+        winner: Candidate to transfer votes from.
+        ballots: List of Ballot objects.
+        votes: Contains candidates and their corresponding vote totals.
+        threshold: Value required to be elected, used to calculate transfer value.
+
+    Returns:
+        Modified ballots with transferred weights and the winning candidate removed.
+    """
+
+    # turn all of winner's ballots into (multiple) ballots of weight 1
+    weight_1_ballots = []
+    updated_ballots = []
+    for ballot in ballots:
+        if ballot.ranking and ballot.ranking[0] == {winner}:
+            # note: under random transfer, weights should always be integers
+            for _ in range(int(ballot.weight)):
+                weight_1_ballots.append(
+                    Ballot(
+                        id=ballot.id,
+                        ranking=ballot.ranking,
+                        weight=Fraction(1),
+                        voter_set=ballot.voter_set,
+                    )
+                )
+        else:
+            updated_ballots.append(ballot)
+
+    surplus_ballots = random.sample(weight_1_ballots, int(votes[winner]) - threshold)
+    updated_ballots += surplus_ballots
+
+    return remove_cand(winner, updated_ballots)
+
+
+
+ +
+ + + +
+ +
+ +

Plotting

+ + +
+ + + + +
+ + + +
+ + + + + + + + + + +
+ + + +

+ compute_MDS(data, distance, random_seed=47, *args, **kwargs) + +

+ + +
+ +

Computes the coordinates of an MDS plot. This is time intensive, so it is decoupled from +plot_mds to allow users to flexibly use the coordinates.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
data + Dict[str, list[PreferenceProfile]] + +
+

Dictionary with key being a string label and value being list of + PreferenceProfiles. ex: {'PL with alpha = 4': list[PreferenceProfile]}

+
+
+ required +
distance + Callable[..., int] + +
+

Distance function. See distance.py.

+
+
+ required +
random_seed + int + +
+

an integer seed to allow for reproducible MDS plots. Defaults to 47.

+
+
+ 47 +
+ + + +

Returns:

+ + + + + + + + + + + + + + + + + +
Name TypeDescription
coord_dict + dict + +
+

a dictionary whose keys match data and whose values are tuples of

+
+
+ +
+

numpy arrays (x_list, y_list) of coordinates for the MDS plot.

+
+
+ +
+ Source code in src/votekit/plots/mds.py +
34
+35
+36
+37
+38
+39
+40
+41
+42
+43
+44
+45
+46
+47
+48
+49
+50
+51
+52
+53
+54
+55
+56
+57
+58
+59
+60
+61
+62
+63
+64
+65
+66
+67
+68
+69
+70
+71
+72
+73
+74
+75
+76
+77
+78
+79
+80
+81
+82
def compute_MDS(
+    data: Dict[str, list[PreferenceProfile]],
+    distance: Callable[..., int],
+    random_seed: int = 47,
+    *args,
+    **kwargs
+):
+    """
+    Computes the coordinates of an MDS plot. This is time intensive, so it is decoupled from
+    `plot_mds` to allow users to flexibly use the coordinates.
+
+    Args:
+        data: Dictionary with key being a string label and value being list of
+                    PreferenceProfiles. ex: {'PL with alpha = 4': list[PreferenceProfile]}
+        distance: Distance function. See distance.py.
+        random_seed (int): an integer seed to allow for reproducible MDS plots. Defaults to 47.
+
+    Returns:
+        coord_dict (dict): a dictionary whose keys match `data` and whose values are tuples of
+        numpy arrays (x_list, y_list) of coordinates for the MDS plot.
+    """
+    # combine all lists to create distance matrix
+    combined_pp = []
+    for pp_list in data.values():
+        combined_pp.extend(pp_list)
+
+    # compute distance matrix
+    dist_matrix = distance_matrix(combined_pp, distance, *args, **kwargs)
+
+    mds = manifold.MDS(
+        n_components=2,
+        max_iter=3000,
+        eps=1e-9,
+        dissimilarity="precomputed",
+        n_jobs=1,
+        normalized_stress="auto",
+        random_state=random_seed,
+    )
+    pos = mds.fit(np.array(dist_matrix)).embedding_
+
+    coord_dict = {}
+    start_pos = 0
+    for key, value_list in data.items():
+        # color, label, marker = key
+        end_pos = start_pos + len(value_list)
+        coord_dict[key] = (pos[start_pos:end_pos, 0], pos[start_pos:end_pos, 1])
+        start_pos += len(value_list)
+
+    return coord_dict
+
+
+
+ +
+ + +
+ + + +

+ distance_matrix(pp_arr, distance, *args, **kwargs) + +

+ + +
+ +

Creates pairwise distance matrix between PreferenceProfile. The \((i,j)\) entry is the pairwise +distance between \(i\)th and the \(j\)th PreferenceProfile.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
pp_arr + list[PreferenceProfile] + +
+

List of PreferenceProfiles.

+
+
+ required +
distance + Callable[..., int] + +
+

Callable distance function type. See distances.py in the metrics module.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
Name TypeDescription
dist_matrix + ndarray + +
+

Distance matrix for an election.

+
+
+ +
+ Source code in src/votekit/plots/mds.py +
10
+11
+12
+13
+14
+15
+16
+17
+18
+19
+20
+21
+22
+23
+24
+25
+26
+27
+28
+29
+30
+31
def distance_matrix(
+    pp_arr: list[PreferenceProfile], distance: Callable[..., int], *args, **kwargs
+):
+    """
+    Creates pairwise distance matrix between PreferenceProfile. The $(i,j)$ entry is the pairwise
+    distance between $i$th and the $j$th PreferenceProfile.
+
+    Args:
+        pp_arr: List of PreferenceProfiles.
+        distance: Callable distance function type. See distances.py in the metrics module.
+
+    Returns:
+        dist_matrix (ndarray): Distance matrix for an election.
+    """
+    rows = len(pp_arr)
+    dist_matrix = np.zeros((rows, rows))
+
+    for i in range(rows):
+        for j in range(i + 1, rows):
+            dist_matrix[i][j] = distance(pp_arr[i], pp_arr[j], *args, **kwargs)
+            dist_matrix[j][i] = dist_matrix[i][j]
+    return dist_matrix
+
+
+
+ +
+ + +
+ + + +

+ plot_MDS(coord_dict, plot_kwarg_dict=None, legend=True, title=True) + +

+ + +
+ +

Creates an MDS plot from the output of compute_MDS with legend labels matching the keys +of coord_dict.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
coord_dict + dict + +
+

Dictionary with key being a string label and value being tuple

+
+
+ required +
plot_kwarg_dict + Optional[dict] + +
+

Dictionary with keys matching coord_dict and values are kwarg dictionaries +that will be passed to matplotlib scatter.

+
+
+ None +
legend + bool + +
+

boolean for plotting the legend. Defaults to True.

+
+
+ True +
title + bool + +
+

boolean for plotting the title. Defaults to True.

+
+
+ True +
+ + + +

Returns:

+ + + + + + + + + + + + + +
Name TypeDescription
fig + +
+

a matplotlib fig

+
+
+ +
+ Source code in src/votekit/plots/mds.py +
 85
+ 86
+ 87
+ 88
+ 89
+ 90
+ 91
+ 92
+ 93
+ 94
+ 95
+ 96
+ 97
+ 98
+ 99
+100
+101
+102
+103
+104
+105
+106
+107
+108
+109
+110
+111
+112
+113
+114
+115
+116
+117
+118
+119
+120
+121
+122
+123
+124
+125
+126
+127
+128
def plot_MDS(
+    coord_dict: dict,
+    plot_kwarg_dict: Optional[dict] = None,
+    legend: bool = True,
+    title: bool = True,
+):
+    """
+    Creates an MDS plot from the output of `compute_MDS` with legend labels matching the keys
+    of `coord_dict`.
+
+    Args:
+        coord_dict: Dictionary with key being a string label and value being tuple
+        (x_list, y_list), coordinates for the MDS plot.
+        Should be piped in from `compute_MDS`.
+
+        plot_kwarg_dict: Dictionary with keys matching coord_dict and values are kwarg dictionaries
+            that will be passed to matplotlib `scatter`.
+
+        legend: boolean for plotting the legend. Defaults to True.
+
+        title: boolean for plotting the title. Defaults to True.
+
+    Returns:
+        fig: a matplotlib fig
+    """
+
+    # Plot data
+    fig, ax = plt.subplots()
+
+    for key, value in coord_dict.items():
+        x, y = value
+        if plot_kwarg_dict and key in plot_kwarg_dict:
+            ax.scatter(x, y, label=key, **plot_kwarg_dict[key])
+        else:
+            ax.scatter(x, y, label=key)
+
+    if title:
+        ax.set_title("MDS Plot for Pairwise Election Distances")
+    if legend:
+        ax.legend()
+
+    ax.set_aspect("equal")
+
+    return fig
+
+
+
+ +
+ + + +
+ +
+ +
+ +
+ + + + +
+ + + +
+ + + + + + + + + + +
+ + + +

+ plot_summary_stats(profile, stat, multi_color=True, title='') + +

+ + +
+ +

Plots histogram of election summary statistics.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
profile + PreferenceProfile + +
+

A PreferenceProfile to visualize.

+
+
+ required +
stat + str + +
+

'first place votes', 'mentions', or 'borda'.

+
+
+ required +
multi_color + bool + +
+

If the bars should be multicolored. Defaults to True.

+
+
+ True +
title + str + +
+

Title for the figure. Defaults to None.

+
+
+ '' +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ Figure + +
+

A figure with the visualization.

+
+
+ +
+ Source code in src/votekit/plots/profile_plots.py +
 7
+ 8
+ 9
+10
+11
+12
+13
+14
+15
+16
+17
+18
+19
+20
+21
+22
+23
+24
+25
+26
+27
+28
+29
+30
+31
+32
+33
+34
+35
+36
+37
+38
+39
+40
+41
+42
+43
+44
+45
+46
+47
+48
def plot_summary_stats(
+    profile: PreferenceProfile, stat: str, multi_color: bool = True, title: str = ""
+) -> Figure:
+    """
+    Plots histogram of election summary statistics.
+
+    Args:
+        profile (PreferenceProfile): A PreferenceProfile to visualize.
+        stat (str): 'first place votes', 'mentions', or 'borda'.
+        multi_color (bool, optional): If the bars should be multicolored. Defaults to True.
+        title (str, optional): Title for the figure. Defaults to None.
+
+    Returns:
+        (Figure): A figure with the visualization.
+    """
+    stats = {
+        "first place votes": first_place_votes,
+        "mentions": mentions,
+        "borda": borda_scores,
+    }
+
+    stat_func = stats[stat]
+    data: dict = stat_func(profile)  # type: ignore
+
+    if multi_color:
+        colors = COLOR_LIST[: len(list(data.keys()))]
+    else:
+        colors = [COLOR_LIST[-1]]
+
+    fig, ax = plt.subplots()
+
+    candidates = profile.get_candidates(received_votes=False)
+    y_data = [data[c] for c in candidates]
+
+    ax.bar(candidates, y_data, color=colors, width=0.35)
+    ax.set_xlabel("Candidates")
+    ax.set_ylabel("Frequency")
+
+    if title:
+        ax.set_title(title)
+
+    return fig
+
+
+
+ +
+ + + +
+ +
+ +

Utils

+ + +
+ + + + +
+ + + +
+ + + + + + + + + + +
+ + + +

+ compute_votes(candidates, ballots) + +

+ + +
+ +

Computes first place votes for all candidates in a PreferenceProfile.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
candidates + list + +
+

List of all candidates in a PreferenceProfile.

+
+
+ required +
ballots + list[Ballot] + +
+

List of Ballot objects.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ tuple[list[CandidateVotes], dict] + +
+

A tuple (ordered, votes) where ordered is a list of tuples (cand, first place votes) +ordered by decreasing first place votes and votes is a dictionary whose keys are +candidates and values are first place votes.

+
+
+ +
+ Source code in src/votekit/utils.py +
57
+58
+59
+60
+61
+62
+63
+64
+65
+66
+67
+68
+69
+70
+71
+72
+73
+74
+75
+76
+77
+78
+79
+80
+81
+82
+83
+84
+85
+86
+87
+88
+89
+90
def compute_votes(
+    candidates: list,
+    ballots: list[Ballot],
+) -> tuple[list[CandidateVotes], dict]:
+    """
+    Computes first place votes for all candidates in a PreferenceProfile.
+
+    Args:
+        candidates: List of all candidates in a PreferenceProfile.
+        ballots: List of Ballot objects.
+
+    Returns:
+        A tuple (ordered, votes) where ordered is a list of tuples (cand, first place votes)
+            ordered by decreasing first place votes and votes is a dictionary whose keys are
+            candidates and values are first place votes.
+    """
+    votes = {cand: Fraction(0) for cand in candidates}
+
+    for ballot in ballots:
+        if not ballot.ranking:
+            continue
+        first_place_cand = unset(ballot.ranking[0])
+        if isinstance(first_place_cand, list):
+            for cand in first_place_cand:
+                votes[cand] += ballot.weight / len(first_place_cand)
+        else:
+            votes[first_place_cand] += ballot.weight
+
+    ordered = [
+        CandidateVotes(cand=key, votes=value)
+        for key, value in sorted(votes.items(), key=lambda x: x[1], reverse=True)
+    ]
+
+    return ordered, votes
+
+
+
+ +
+ + +
+ + + +

+ remove_cand(removed, ballots) + +

+ + +
+ +

Removes specified candidate(s) from ballots.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
removed + Union[str, Iterable] + +
+

Candidate or set of candidates to be removed.

+
+
+ required +
ballots + list[Ballot] + +
+

List of Ballots to remove candidate(s) from.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ list[Ballot] + +
+

Updated list of ballots with candidate(s) removed.

+
+
+ +
+ Source code in src/votekit/utils.py +
 93
+ 94
+ 95
+ 96
+ 97
+ 98
+ 99
+100
+101
+102
+103
+104
+105
+106
+107
+108
+109
+110
+111
+112
+113
+114
+115
+116
+117
+118
+119
+120
+121
+122
+123
+124
+125
+126
+127
+128
+129
+130
+131
+132
+133
+134
+135
+136
+137
+138
+139
+140
+141
+142
def remove_cand(removed: Union[str, Iterable], ballots: list[Ballot]) -> list[Ballot]:
+    """
+    Removes specified candidate(s) from ballots.
+
+    Args:
+        removed: Candidate or set of candidates to be removed.
+        ballots: List of Ballots to remove candidate(s) from.
+
+    Returns:
+        Updated list of ballots with candidate(s) removed.
+    """
+
+    if isinstance(removed, str):
+        remove_set = {removed}
+    elif isinstance(removed, Iterable):
+        remove_set = set(removed)
+
+    update = []
+    for ballot in ballots:
+        new_ranking = []
+        if len(remove_set) == 1 and remove_set in ballot.ranking:
+            for s in ballot.ranking:
+                new_s = s.difference(remove_set)
+                if new_s:
+                    new_ranking.append(new_s)
+            update.append(
+                Ballot(
+                    id=ballot.id,
+                    ranking=tuple(new_ranking),
+                    weight=ballot.weight,
+                    voter_set=ballot.voter_set,
+                )
+            )
+        elif len(remove_set) > 1:
+            for s in ballot.ranking:
+                new_s = s.difference(remove_set)
+                if new_s:
+                    new_ranking.append(new_s)
+            update.append(
+                Ballot(
+                    id=ballot.id,
+                    ranking=tuple(new_ranking),
+                    weight=ballot.weight,
+                    voter_set=ballot.voter_set,
+                )
+            )
+        else:
+            update.append(ballot)
+
+    return update
+
+
+
+ +
+ + +
+ + + +

+ fix_ties(ballot) + +

+ + +
+ +

Helper function for recursively_fix_ties. Resolves the first appearing +tied rank in the input ballot.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
ballot + Ballot + +
+

A Ballot.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ list + +
+

List of Ballots that are permutations of the tied ballot.

+
+
+ +
+ Source code in src/votekit/utils.py +
478
+479
+480
+481
+482
+483
+484
+485
+486
+487
+488
+489
+490
+491
+492
+493
+494
+495
+496
+497
+498
+499
+500
+501
+502
+503
+504
+505
+506
+507
+508
def fix_ties(ballot: Ballot) -> list[Ballot]:
+    """
+    Helper function for recursively_fix_ties. Resolves the first appearing
+    tied rank in the input ballot.
+
+    Args:
+        ballot: A Ballot.
+
+    Returns:
+        (list): List of Ballots that are permutations of the tied ballot.
+    """
+
+    ballots = []
+    for idx, rank in enumerate(ballot.ranking):
+        if len(rank) > 1:
+            for order in permutations(rank):
+                resolved = []
+                for cand in order:
+                    resolved.append(frozenset(cand))
+                ballots.append(
+                    Ballot(
+                        id=ballot.id,
+                        ranking=ballot.ranking[:idx]
+                        + tuple(resolved)
+                        + ballot.ranking[idx + 1 :],
+                        weight=ballot.weight / math.factorial(len(rank)),
+                        voter_set=ballot.voter_set,
+                    )
+                )
+
+    return ballots
+
+
+
+ +
+ + +
+ + + +

+ elect_cands_from_set_ranking(ranking, seats) + +

+ + +
+ +

Splits a ranking into elected and eliminated based on seats, +and if a tie set overlaps the desired number of seats raises a ValueError.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
ranking + list[set[str]] + +
+

A list-of-set ranking of candidates.

+
+
+ required +
seats + int + +
+

Number of seats to fill.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ tuple[list[set[str]], list[set[str]]] + +
+

A list-of-sets of elected candidates, a list-of-sets of eliminated candidates.

+
+
+ +
+ Source code in src/votekit/utils.py +
418
+419
+420
+421
+422
+423
+424
+425
+426
+427
+428
+429
+430
+431
+432
+433
+434
+435
+436
+437
+438
+439
+440
+441
+442
+443
+444
+445
+446
+447
+448
+449
def elect_cands_from_set_ranking(
+    ranking: list[set[str]], seats: int
+) -> tuple[list[set[str]], list[set[str]]]:
+    """
+    Splits a ranking into elected and eliminated based on seats,
+    and if a tie set overlaps the desired number of seats raises a ValueError.
+
+    Args:
+        ranking: A list-of-set ranking of candidates.
+        seats: Number of seats to fill.
+
+    Returns:
+        A list-of-sets of elected candidates, a list-of-sets of eliminated candidates.
+    """
+    cands_elected = 0
+    elected = []
+    eliminated = []
+
+    for i, s in enumerate(ranking):
+        if cands_elected + len(s) <= seats:
+            cands_elected += len(s)
+            elected.append(s)
+        else:
+            eliminated = ranking[i:]
+            break
+
+    if cands_elected != seats:
+        raise ValueError(
+            "Cannot elect correct number of candidates without breaking ties."
+        )
+
+    return elected, eliminated
+
+
+
+ +
+ + +
+ + + +

+ scores_into_set_list(score_dict, candidate_subset=None) + +

+ + +
+ +

Sorts candidates based on a scoring dictionary (i.e Borda, First-Place).

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
score_dict + dict + +
+

Dictionary between candidates (key) and their score (value).

+
+
+ required +
candidate_subset + Union[list[str], set[str], None] + +
+

Relevant candidates to sort.

+
+
+ None +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ list[set[str]] + +
+

Candidate rankings in a list-of-sets form.

+
+
+ +
+ Source code in src/votekit/utils.py +
335
+336
+337
+338
+339
+340
+341
+342
+343
+344
+345
+346
+347
+348
+349
+350
+351
+352
+353
+354
+355
+356
+357
+358
+359
+360
+361
+362
def scores_into_set_list(
+    score_dict: dict, candidate_subset: Union[list[str], set[str], None] = None
+) -> list[set[str]]:
+    """
+    Sorts candidates based on a scoring dictionary (i.e Borda, First-Place).
+
+    Args:
+        score_dict: Dictionary between candidates (key) and their score (value).
+        candidate_subset: Relevant candidates to sort.
+
+    Returns:
+        Candidate rankings in a list-of-sets form.
+    """
+    if isinstance(candidate_subset, list):
+        candidate_subset = set(candidate_subset)
+
+    tier_dict: dict = {}
+    for k, v in score_dict.items():
+        if v in tier_dict.keys():
+            tier_dict[v].add(k)
+        else:
+            tier_dict[v] = {k}
+    tier_list = [tier_dict[k] for k in sorted(tier_dict.keys(), reverse=True)]
+    if candidate_subset is not None:
+        tier_list = [
+            t & candidate_subset for t in tier_list if len(t & candidate_subset) > 0
+        ]
+    return tier_list
+
+
+
+ +
+ + +
+ + + +

+ tie_broken_ranking(ranking, profile, tiebreak='none') + +

+ + +
+ +

Breaks ties in a list-of-sets ranking according to a given scheme.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
ranking + list[set[str]] + +
+

A list-of-set ranking of candidates.

+
+
+ required +
profile + PreferenceProfile + +
+

PreferenceProfile.

+
+
+ required +
tiebreak + str + +
+

Method of tiebreak, currently supports 'none', 'random', 'borda', 'firstplace'.

+
+
+ 'none' +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ list[set[str]] + +
+

A list-of-set ranking of candidates (tie broken down to one candidate sets unless +tiebreak = 'none').

+
+
+ +
+ Source code in src/votekit/utils.py +
290
+291
+292
+293
+294
+295
+296
+297
+298
+299
+300
+301
+302
+303
+304
+305
+306
+307
+308
+309
+310
+311
+312
+313
+314
+315
+316
+317
+318
+319
+320
+321
+322
+323
+324
+325
+326
+327
+328
+329
+330
+331
+332
def tie_broken_ranking(
+    ranking: list[set[str]], profile: PreferenceProfile, tiebreak: str = "none"
+) -> list[set[str]]:
+    """
+    Breaks ties in a list-of-sets ranking according to a given scheme.
+
+    Args:
+        ranking: A list-of-set ranking of candidates.
+        profile: PreferenceProfile.
+        tiebreak: Method of tiebreak, currently supports 'none', 'random', 'borda', 'firstplace'.
+
+    Returns:
+        A list-of-set ranking of candidates (tie broken down to one candidate sets unless
+            tiebreak = 'none').
+    """
+
+    new_ranking = []
+    if tiebreak == "none":
+        new_ranking = ranking
+    elif tiebreak == "random":
+        for s in ranking:
+            shuffled_s = list(np.random.permutation(list(s)))
+            new_ranking += [{c} for c in shuffled_s]
+    elif tiebreak == "firstplace":
+        tiebreak_scores = first_place_votes(profile)
+        for s in ranking:
+            ordered_set = scores_into_set_list(tiebreak_scores, s)
+            new_ranking += ordered_set
+    elif tiebreak == "borda":
+        tiebreak_scores = borda_scores(profile)
+        for s in ranking:
+            ordered_set = scores_into_set_list(tiebreak_scores, s)
+            new_ranking += ordered_set
+    else:
+        raise ValueError("Invalid tiebreak code was provided")
+
+    if tiebreak != "none" and any(len(s) > 1 for s in new_ranking):
+        print("Initial tiebreak was unsuccessful, performing random tiebreak")
+        new_ranking = tie_broken_ranking(
+            ranking=new_ranking, profile=profile, tiebreak="random"
+        )
+
+    return new_ranking
+
+
+
+ +
+ + +
+ + + +

+ candidate_position_dict(ranking) + +

+ + +
+ +

Creates a dictionary with the integer ranking of candidates given a set ranking +i.e. A > B, C > D returns {A: 1, B: 2, C: 2, D: 4}.

+ + + +

Parameters:

+ + + + + + + + + + + + + + + + + +
NameTypeDescriptionDefault
ranking + list[set[str]] + +
+

A list-of-sets ranking of candidates.

+
+
+ required +
+ + + +

Returns:

+ + + + + + + + + + + + + +
TypeDescription
+ dict + +
+

Dictionary of candidates (keys) and integer rankings (values).

+
+
+ +
+ Source code in src/votekit/utils.py +
268
+269
+270
+271
+272
+273
+274
+275
+276
+277
+278
+279
+280
+281
+282
+283
+284
+285
+286
+287
def candidate_position_dict(ranking: list[set[str]]) -> dict:
+    """
+    Creates a dictionary with the integer ranking of candidates given a set ranking
+    i.e. A > B, C > D returns {A: 1, B: 2, C: 2, D: 4}.
+
+    Args:
+        ranking: A list-of-sets ranking of candidates.
+
+    Returns:
+        Dictionary of candidates (keys) and integer rankings (values).
+    """
+    candidate_positions = {}
+    position = 0
+
+    for tie_set in ranking:
+        for candidate in tie_set:
+            candidate_positions[candidate] = position
+        position += len(tie_set)
+
+    return candidate_positions
+
+
+
+ +
+ + + +
+ +
+ +
+ + + + + + + + + + + + + + + + + + +
+
+ + + + + +
+ +
+ + + +
+
+
+
+ + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/assets/_mkdocstrings.css b/assets/_mkdocstrings.css new file mode 100644 index 00000000..4b7d98b8 --- /dev/null +++ b/assets/_mkdocstrings.css @@ -0,0 +1,109 @@ + +/* Avoid breaking parameter names, etc. in table cells. */ +.doc-contents td code { + word-break: normal !important; +} + +/* No line break before first paragraph of descriptions. */ +.doc-md-description, +.doc-md-description>p:first-child { + display: inline; +} + +/* Max width for docstring sections tables. */ +.doc .md-typeset__table, +.doc .md-typeset__table table { + display: table !important; + width: 100%; +} + +.doc .md-typeset__table tr { + display: table-row; +} + +/* Defaults in Spacy table style. */ +.doc-param-default { + float: right; +} + +/* Symbols in Navigation and ToC. */ +:root, +[data-md-color-scheme="default"] { + --doc-symbol-attribute-fg-color: #953800; + --doc-symbol-function-fg-color: #8250df; + --doc-symbol-method-fg-color: #8250df; + --doc-symbol-class-fg-color: #0550ae; + --doc-symbol-module-fg-color: #5cad0f; + + --doc-symbol-attribute-bg-color: #9538001a; + --doc-symbol-function-bg-color: #8250df1a; + --doc-symbol-method-bg-color: #8250df1a; + --doc-symbol-class-bg-color: #0550ae1a; + --doc-symbol-module-bg-color: #5cad0f1a; +} + +[data-md-color-scheme="slate"] { + --doc-symbol-attribute-fg-color: #ffa657; + --doc-symbol-function-fg-color: #d2a8ff; + --doc-symbol-method-fg-color: #d2a8ff; + --doc-symbol-class-fg-color: #79c0ff; + --doc-symbol-module-fg-color: #baff79; + + --doc-symbol-attribute-bg-color: #ffa6571a; + --doc-symbol-function-bg-color: #d2a8ff1a; + --doc-symbol-method-bg-color: #d2a8ff1a; + --doc-symbol-class-bg-color: #79c0ff1a; + --doc-symbol-module-bg-color: #baff791a; +} + +code.doc-symbol { + border-radius: .1rem; + font-size: .85em; + padding: 0 .3em; + font-weight: bold; +} + +code.doc-symbol-attribute { + color: var(--doc-symbol-attribute-fg-color); + background-color: var(--doc-symbol-attribute-bg-color); +} + +code.doc-symbol-attribute::after { + content: "attr"; +} + +code.doc-symbol-function { + color: var(--doc-symbol-function-fg-color); + background-color: var(--doc-symbol-function-bg-color); +} + +code.doc-symbol-function::after { + content: "func"; +} + +code.doc-symbol-method { + color: var(--doc-symbol-method-fg-color); + background-color: var(--doc-symbol-method-bg-color); +} + +code.doc-symbol-method::after { + content: "meth"; +} + +code.doc-symbol-class { + color: var(--doc-symbol-class-fg-color); + background-color: var(--doc-symbol-class-bg-color); +} + +code.doc-symbol-class::after { + content: "class"; +} + +code.doc-symbol-module { + color: var(--doc-symbol-module-fg-color); + background-color: var(--doc-symbol-module-bg-color); +} + +code.doc-symbol-module::after { + content: "mod"; +} \ No newline at end of file diff --git a/assets/ballot_graph_12_0.png b/assets/ballot_graph_12_0.png new file mode 100644 index 00000000..a459f663 Binary files /dev/null and b/assets/ballot_graph_12_0.png differ diff --git a/assets/ballot_graph_15_0.png b/assets/ballot_graph_15_0.png new file mode 100644 index 00000000..378bd19f Binary files /dev/null and b/assets/ballot_graph_15_0.png differ diff --git a/assets/ballot_graph_17_0.png b/assets/ballot_graph_17_0.png new file mode 100644 index 00000000..bb4dfcdd Binary files /dev/null and b/assets/ballot_graph_17_0.png differ diff --git a/assets/ballot_graph_18_0.png b/assets/ballot_graph_18_0.png new file mode 100644 index 00000000..9447c249 Binary files /dev/null and b/assets/ballot_graph_18_0.png differ diff --git a/assets/ballot_graph_20_0.png b/assets/ballot_graph_20_0.png new file mode 100644 index 00000000..3ca087f0 Binary files /dev/null and b/assets/ballot_graph_20_0.png differ diff --git a/assets/ballot_graph_2_0.png b/assets/ballot_graph_2_0.png new file mode 100644 index 00000000..9a851cf0 Binary files /dev/null and b/assets/ballot_graph_2_0.png differ diff --git a/assets/ballot_graph_4_0.png b/assets/ballot_graph_4_0.png new file mode 100644 index 00000000..fe3755f7 Binary files /dev/null and b/assets/ballot_graph_4_0.png differ diff --git a/assets/ballot_graph_8_1.png b/assets/ballot_graph_8_1.png new file mode 100644 index 00000000..43cf9e16 Binary files /dev/null and b/assets/ballot_graph_8_1.png differ diff --git a/assets/ballot_graph_files/ballot_graph_12_0.png b/assets/ballot_graph_files/ballot_graph_12_0.png new file mode 100644 index 00000000..9734421d Binary files /dev/null and b/assets/ballot_graph_files/ballot_graph_12_0.png differ diff --git a/assets/ballot_graph_files/ballot_graph_15_0.png b/assets/ballot_graph_files/ballot_graph_15_0.png new file mode 100644 index 00000000..3def0250 Binary files /dev/null and b/assets/ballot_graph_files/ballot_graph_15_0.png differ diff --git a/assets/ballot_graph_files/ballot_graph_17_0.png b/assets/ballot_graph_files/ballot_graph_17_0.png new file mode 100644 index 00000000..c73f0968 Binary files /dev/null and b/assets/ballot_graph_files/ballot_graph_17_0.png differ diff --git a/assets/ballot_graph_files/ballot_graph_18_0.png b/assets/ballot_graph_files/ballot_graph_18_0.png new file mode 100644 index 00000000..d94cf547 Binary files /dev/null and b/assets/ballot_graph_files/ballot_graph_18_0.png differ diff --git a/assets/ballot_graph_files/ballot_graph_20_0.png b/assets/ballot_graph_files/ballot_graph_20_0.png new file mode 100644 index 00000000..c1024225 Binary files /dev/null and b/assets/ballot_graph_files/ballot_graph_20_0.png differ diff --git a/assets/ballot_graph_files/ballot_graph_2_0.png b/assets/ballot_graph_files/ballot_graph_2_0.png new file mode 100644 index 00000000..3948613e Binary files /dev/null and b/assets/ballot_graph_files/ballot_graph_2_0.png differ diff --git a/assets/ballot_graph_files/ballot_graph_4_0.png b/assets/ballot_graph_files/ballot_graph_4_0.png new file mode 100644 index 00000000..2bcf56cb Binary files /dev/null and b/assets/ballot_graph_files/ballot_graph_4_0.png differ diff --git a/assets/ballot_graph_files/ballot_graph_8_1.png b/assets/ballot_graph_files/ballot_graph_8_1.png new file mode 100644 index 00000000..cccc37f4 Binary files /dev/null and b/assets/ballot_graph_files/ballot_graph_8_1.png differ diff --git a/assets/ballot_simplex.png b/assets/ballot_simplex.png new file mode 100644 index 00000000..60c6ec06 Binary files /dev/null and b/assets/ballot_simplex.png differ diff --git a/assets/cambridge_distribution.png b/assets/cambridge_distribution.png new file mode 100644 index 00000000..e193d27e Binary files /dev/null and b/assets/cambridge_distribution.png differ diff --git a/assets/candidate_simplex.png b/assets/candidate_simplex.png new file mode 100644 index 00000000..487ff1c7 Binary files /dev/null and b/assets/candidate_simplex.png differ diff --git a/assets/cohesion_parameters.png b/assets/cohesion_parameters.png new file mode 100644 index 00000000..8b760445 Binary files /dev/null and b/assets/cohesion_parameters.png differ diff --git a/assets/dirichlet_distribution.png b/assets/dirichlet_distribution.png new file mode 100644 index 00000000..35d966ea Binary files /dev/null and b/assets/dirichlet_distribution.png differ diff --git a/assets/images/favicon.png b/assets/images/favicon.png new file mode 100644 index 00000000..1cf13b9f Binary files /dev/null and b/assets/images/favicon.png differ diff --git a/assets/javascripts/bundle.c8d2eff1.min.js b/assets/javascripts/bundle.c8d2eff1.min.js new file mode 100644 index 00000000..4b1b31f5 --- /dev/null +++ b/assets/javascripts/bundle.c8d2eff1.min.js @@ -0,0 +1,29 @@ +"use strict";(()=>{var _i=Object.create;var br=Object.defineProperty;var Ai=Object.getOwnPropertyDescriptor;var Ci=Object.getOwnPropertyNames,Ft=Object.getOwnPropertySymbols,ki=Object.getPrototypeOf,vr=Object.prototype.hasOwnProperty,eo=Object.prototype.propertyIsEnumerable;var Zr=(e,t,r)=>t in e?br(e,t,{enumerable:!0,configurable:!0,writable:!0,value:r}):e[t]=r,F=(e,t)=>{for(var r in t||(t={}))vr.call(t,r)&&Zr(e,r,t[r]);if(Ft)for(var r of Ft(t))eo.call(t,r)&&Zr(e,r,t[r]);return e};var to=(e,t)=>{var r={};for(var o in e)vr.call(e,o)&&t.indexOf(o)<0&&(r[o]=e[o]);if(e!=null&&Ft)for(var o of Ft(e))t.indexOf(o)<0&&eo.call(e,o)&&(r[o]=e[o]);return r};var gr=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports);var Hi=(e,t,r,o)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of Ci(t))!vr.call(e,n)&&n!==r&&br(e,n,{get:()=>t[n],enumerable:!(o=Ai(t,n))||o.enumerable});return e};var jt=(e,t,r)=>(r=e!=null?_i(ki(e)):{},Hi(t||!e||!e.__esModule?br(r,"default",{value:e,enumerable:!0}):r,e));var ro=(e,t,r)=>new Promise((o,n)=>{var i=c=>{try{a(r.next(c))}catch(p){n(p)}},s=c=>{try{a(r.throw(c))}catch(p){n(p)}},a=c=>c.done?o(c.value):Promise.resolve(c.value).then(i,s);a((r=r.apply(e,t)).next())});var no=gr((xr,oo)=>{(function(e,t){typeof xr=="object"&&typeof oo!="undefined"?t():typeof define=="function"&&define.amd?define(t):t()})(xr,function(){"use strict";function e(r){var o=!0,n=!1,i=null,s={text:!0,search:!0,url:!0,tel:!0,email:!0,password:!0,number:!0,date:!0,month:!0,week:!0,time:!0,datetime:!0,"datetime-local":!0};function a(C){return!!(C&&C!==document&&C.nodeName!=="HTML"&&C.nodeName!=="BODY"&&"classList"in C&&"contains"in C.classList)}function c(C){var ct=C.type,Ne=C.tagName;return!!(Ne==="INPUT"&&s[ct]&&!C.readOnly||Ne==="TEXTAREA"&&!C.readOnly||C.isContentEditable)}function p(C){C.classList.contains("focus-visible")||(C.classList.add("focus-visible"),C.setAttribute("data-focus-visible-added",""))}function l(C){C.hasAttribute("data-focus-visible-added")&&(C.classList.remove("focus-visible"),C.removeAttribute("data-focus-visible-added"))}function f(C){C.metaKey||C.altKey||C.ctrlKey||(a(r.activeElement)&&p(r.activeElement),o=!0)}function u(C){o=!1}function h(C){a(C.target)&&(o||c(C.target))&&p(C.target)}function w(C){a(C.target)&&(C.target.classList.contains("focus-visible")||C.target.hasAttribute("data-focus-visible-added"))&&(n=!0,window.clearTimeout(i),i=window.setTimeout(function(){n=!1},100),l(C.target))}function A(C){document.visibilityState==="hidden"&&(n&&(o=!0),Z())}function Z(){document.addEventListener("mousemove",J),document.addEventListener("mousedown",J),document.addEventListener("mouseup",J),document.addEventListener("pointermove",J),document.addEventListener("pointerdown",J),document.addEventListener("pointerup",J),document.addEventListener("touchmove",J),document.addEventListener("touchstart",J),document.addEventListener("touchend",J)}function te(){document.removeEventListener("mousemove",J),document.removeEventListener("mousedown",J),document.removeEventListener("mouseup",J),document.removeEventListener("pointermove",J),document.removeEventListener("pointerdown",J),document.removeEventListener("pointerup",J),document.removeEventListener("touchmove",J),document.removeEventListener("touchstart",J),document.removeEventListener("touchend",J)}function J(C){C.target.nodeName&&C.target.nodeName.toLowerCase()==="html"||(o=!1,te())}document.addEventListener("keydown",f,!0),document.addEventListener("mousedown",u,!0),document.addEventListener("pointerdown",u,!0),document.addEventListener("touchstart",u,!0),document.addEventListener("visibilitychange",A,!0),Z(),r.addEventListener("focus",h,!0),r.addEventListener("blur",w,!0),r.nodeType===Node.DOCUMENT_FRAGMENT_NODE&&r.host?r.host.setAttribute("data-js-focus-visible",""):r.nodeType===Node.DOCUMENT_NODE&&(document.documentElement.classList.add("js-focus-visible"),document.documentElement.setAttribute("data-js-focus-visible",""))}if(typeof window!="undefined"&&typeof document!="undefined"){window.applyFocusVisiblePolyfill=e;var t;try{t=new CustomEvent("focus-visible-polyfill-ready")}catch(r){t=document.createEvent("CustomEvent"),t.initCustomEvent("focus-visible-polyfill-ready",!1,!1,{})}window.dispatchEvent(t)}typeof document!="undefined"&&e(document)})});var zr=gr((kt,Vr)=>{/*! + * clipboard.js v2.0.11 + * https://clipboardjs.com/ + * + * Licensed MIT © Zeno Rocha + */(function(t,r){typeof kt=="object"&&typeof Vr=="object"?Vr.exports=r():typeof define=="function"&&define.amd?define([],r):typeof kt=="object"?kt.ClipboardJS=r():t.ClipboardJS=r()})(kt,function(){return function(){var e={686:function(o,n,i){"use strict";i.d(n,{default:function(){return Li}});var s=i(279),a=i.n(s),c=i(370),p=i.n(c),l=i(817),f=i.n(l);function u(D){try{return document.execCommand(D)}catch(M){return!1}}var h=function(M){var O=f()(M);return u("cut"),O},w=h;function A(D){var M=document.documentElement.getAttribute("dir")==="rtl",O=document.createElement("textarea");O.style.fontSize="12pt",O.style.border="0",O.style.padding="0",O.style.margin="0",O.style.position="absolute",O.style[M?"right":"left"]="-9999px";var I=window.pageYOffset||document.documentElement.scrollTop;return O.style.top="".concat(I,"px"),O.setAttribute("readonly",""),O.value=D,O}var Z=function(M,O){var I=A(M);O.container.appendChild(I);var W=f()(I);return u("copy"),I.remove(),W},te=function(M){var O=arguments.length>1&&arguments[1]!==void 0?arguments[1]:{container:document.body},I="";return typeof M=="string"?I=Z(M,O):M instanceof HTMLInputElement&&!["text","search","url","tel","password"].includes(M==null?void 0:M.type)?I=Z(M.value,O):(I=f()(M),u("copy")),I},J=te;function C(D){"@babel/helpers - typeof";return typeof Symbol=="function"&&typeof Symbol.iterator=="symbol"?C=function(O){return typeof O}:C=function(O){return O&&typeof Symbol=="function"&&O.constructor===Symbol&&O!==Symbol.prototype?"symbol":typeof O},C(D)}var ct=function(){var M=arguments.length>0&&arguments[0]!==void 0?arguments[0]:{},O=M.action,I=O===void 0?"copy":O,W=M.container,K=M.target,Ce=M.text;if(I!=="copy"&&I!=="cut")throw new Error('Invalid "action" value, use either "copy" or "cut"');if(K!==void 0)if(K&&C(K)==="object"&&K.nodeType===1){if(I==="copy"&&K.hasAttribute("disabled"))throw new Error('Invalid "target" attribute. Please use "readonly" instead of "disabled" attribute');if(I==="cut"&&(K.hasAttribute("readonly")||K.hasAttribute("disabled")))throw new Error(`Invalid "target" attribute. You can't cut text from elements with "readonly" or "disabled" attributes`)}else throw new Error('Invalid "target" value, use a valid Element');if(Ce)return J(Ce,{container:W});if(K)return I==="cut"?w(K):J(K,{container:W})},Ne=ct;function Pe(D){"@babel/helpers - typeof";return typeof Symbol=="function"&&typeof Symbol.iterator=="symbol"?Pe=function(O){return typeof O}:Pe=function(O){return O&&typeof Symbol=="function"&&O.constructor===Symbol&&O!==Symbol.prototype?"symbol":typeof O},Pe(D)}function xi(D,M){if(!(D instanceof M))throw new TypeError("Cannot call a class as a function")}function Xr(D,M){for(var O=0;O0&&arguments[0]!==void 0?arguments[0]:{};this.action=typeof W.action=="function"?W.action:this.defaultAction,this.target=typeof W.target=="function"?W.target:this.defaultTarget,this.text=typeof W.text=="function"?W.text:this.defaultText,this.container=Pe(W.container)==="object"?W.container:document.body}},{key:"listenClick",value:function(W){var K=this;this.listener=p()(W,"click",function(Ce){return K.onClick(Ce)})}},{key:"onClick",value:function(W){var K=W.delegateTarget||W.currentTarget,Ce=this.action(K)||"copy",It=Ne({action:Ce,container:this.container,target:this.target(K),text:this.text(K)});this.emit(It?"success":"error",{action:Ce,text:It,trigger:K,clearSelection:function(){K&&K.focus(),window.getSelection().removeAllRanges()}})}},{key:"defaultAction",value:function(W){return hr("action",W)}},{key:"defaultTarget",value:function(W){var K=hr("target",W);if(K)return document.querySelector(K)}},{key:"defaultText",value:function(W){return hr("text",W)}},{key:"destroy",value:function(){this.listener.destroy()}}],[{key:"copy",value:function(W){var K=arguments.length>1&&arguments[1]!==void 0?arguments[1]:{container:document.body};return J(W,K)}},{key:"cut",value:function(W){return w(W)}},{key:"isSupported",value:function(){var W=arguments.length>0&&arguments[0]!==void 0?arguments[0]:["copy","cut"],K=typeof W=="string"?[W]:W,Ce=!!document.queryCommandSupported;return K.forEach(function(It){Ce=Ce&&!!document.queryCommandSupported(It)}),Ce}}]),O}(a()),Li=Mi},828:function(o){var n=9;if(typeof Element!="undefined"&&!Element.prototype.matches){var i=Element.prototype;i.matches=i.matchesSelector||i.mozMatchesSelector||i.msMatchesSelector||i.oMatchesSelector||i.webkitMatchesSelector}function s(a,c){for(;a&&a.nodeType!==n;){if(typeof a.matches=="function"&&a.matches(c))return a;a=a.parentNode}}o.exports=s},438:function(o,n,i){var s=i(828);function a(l,f,u,h,w){var A=p.apply(this,arguments);return l.addEventListener(u,A,w),{destroy:function(){l.removeEventListener(u,A,w)}}}function c(l,f,u,h,w){return typeof l.addEventListener=="function"?a.apply(null,arguments):typeof u=="function"?a.bind(null,document).apply(null,arguments):(typeof l=="string"&&(l=document.querySelectorAll(l)),Array.prototype.map.call(l,function(A){return a(A,f,u,h,w)}))}function p(l,f,u,h){return function(w){w.delegateTarget=s(w.target,f),w.delegateTarget&&h.call(l,w)}}o.exports=c},879:function(o,n){n.node=function(i){return i!==void 0&&i instanceof HTMLElement&&i.nodeType===1},n.nodeList=function(i){var s=Object.prototype.toString.call(i);return i!==void 0&&(s==="[object NodeList]"||s==="[object HTMLCollection]")&&"length"in i&&(i.length===0||n.node(i[0]))},n.string=function(i){return typeof i=="string"||i instanceof String},n.fn=function(i){var s=Object.prototype.toString.call(i);return s==="[object Function]"}},370:function(o,n,i){var s=i(879),a=i(438);function c(u,h,w){if(!u&&!h&&!w)throw new Error("Missing required arguments");if(!s.string(h))throw new TypeError("Second argument must be a String");if(!s.fn(w))throw new TypeError("Third argument must be a Function");if(s.node(u))return p(u,h,w);if(s.nodeList(u))return l(u,h,w);if(s.string(u))return f(u,h,w);throw new TypeError("First argument must be a String, HTMLElement, HTMLCollection, or NodeList")}function p(u,h,w){return u.addEventListener(h,w),{destroy:function(){u.removeEventListener(h,w)}}}function l(u,h,w){return Array.prototype.forEach.call(u,function(A){A.addEventListener(h,w)}),{destroy:function(){Array.prototype.forEach.call(u,function(A){A.removeEventListener(h,w)})}}}function f(u,h,w){return a(document.body,u,h,w)}o.exports=c},817:function(o){function n(i){var s;if(i.nodeName==="SELECT")i.focus(),s=i.value;else if(i.nodeName==="INPUT"||i.nodeName==="TEXTAREA"){var a=i.hasAttribute("readonly");a||i.setAttribute("readonly",""),i.select(),i.setSelectionRange(0,i.value.length),a||i.removeAttribute("readonly"),s=i.value}else{i.hasAttribute("contenteditable")&&i.focus();var c=window.getSelection(),p=document.createRange();p.selectNodeContents(i),c.removeAllRanges(),c.addRange(p),s=c.toString()}return s}o.exports=n},279:function(o){function n(){}n.prototype={on:function(i,s,a){var c=this.e||(this.e={});return(c[i]||(c[i]=[])).push({fn:s,ctx:a}),this},once:function(i,s,a){var c=this;function p(){c.off(i,p),s.apply(a,arguments)}return p._=s,this.on(i,p,a)},emit:function(i){var s=[].slice.call(arguments,1),a=((this.e||(this.e={}))[i]||[]).slice(),c=0,p=a.length;for(c;c{"use strict";/*! + * escape-html + * Copyright(c) 2012-2013 TJ Holowaychuk + * Copyright(c) 2015 Andreas Lubbe + * Copyright(c) 2015 Tiancheng "Timothy" Gu + * MIT Licensed + */var Va=/["'&<>]/;qn.exports=za;function za(e){var t=""+e,r=Va.exec(t);if(!r)return t;var o,n="",i=0,s=0;for(i=r.index;i0&&i[i.length-1])&&(p[0]===6||p[0]===2)){r=0;continue}if(p[0]===3&&(!i||p[1]>i[0]&&p[1]=e.length&&(e=void 0),{value:e&&e[o++],done:!e}}};throw new TypeError(t?"Object is not iterable.":"Symbol.iterator is not defined.")}function V(e,t){var r=typeof Symbol=="function"&&e[Symbol.iterator];if(!r)return e;var o=r.call(e),n,i=[],s;try{for(;(t===void 0||t-- >0)&&!(n=o.next()).done;)i.push(n.value)}catch(a){s={error:a}}finally{try{n&&!n.done&&(r=o.return)&&r.call(o)}finally{if(s)throw s.error}}return i}function z(e,t,r){if(r||arguments.length===2)for(var o=0,n=t.length,i;o1||a(u,h)})})}function a(u,h){try{c(o[u](h))}catch(w){f(i[0][3],w)}}function c(u){u.value instanceof ot?Promise.resolve(u.value.v).then(p,l):f(i[0][2],u)}function p(u){a("next",u)}function l(u){a("throw",u)}function f(u,h){u(h),i.shift(),i.length&&a(i[0][0],i[0][1])}}function so(e){if(!Symbol.asyncIterator)throw new TypeError("Symbol.asyncIterator is not defined.");var t=e[Symbol.asyncIterator],r;return t?t.call(e):(e=typeof ue=="function"?ue(e):e[Symbol.iterator](),r={},o("next"),o("throw"),o("return"),r[Symbol.asyncIterator]=function(){return this},r);function o(i){r[i]=e[i]&&function(s){return new Promise(function(a,c){s=e[i](s),n(a,c,s.done,s.value)})}}function n(i,s,a,c){Promise.resolve(c).then(function(p){i({value:p,done:a})},s)}}function k(e){return typeof e=="function"}function pt(e){var t=function(o){Error.call(o),o.stack=new Error().stack},r=e(t);return r.prototype=Object.create(Error.prototype),r.prototype.constructor=r,r}var Wt=pt(function(e){return function(r){e(this),this.message=r?r.length+` errors occurred during unsubscription: +`+r.map(function(o,n){return n+1+") "+o.toString()}).join(` + `):"",this.name="UnsubscriptionError",this.errors=r}});function Ve(e,t){if(e){var r=e.indexOf(t);0<=r&&e.splice(r,1)}}var Ie=function(){function e(t){this.initialTeardown=t,this.closed=!1,this._parentage=null,this._finalizers=null}return e.prototype.unsubscribe=function(){var t,r,o,n,i;if(!this.closed){this.closed=!0;var s=this._parentage;if(s)if(this._parentage=null,Array.isArray(s))try{for(var a=ue(s),c=a.next();!c.done;c=a.next()){var p=c.value;p.remove(this)}}catch(A){t={error:A}}finally{try{c&&!c.done&&(r=a.return)&&r.call(a)}finally{if(t)throw t.error}}else s.remove(this);var l=this.initialTeardown;if(k(l))try{l()}catch(A){i=A instanceof Wt?A.errors:[A]}var f=this._finalizers;if(f){this._finalizers=null;try{for(var u=ue(f),h=u.next();!h.done;h=u.next()){var w=h.value;try{co(w)}catch(A){i=i!=null?i:[],A instanceof Wt?i=z(z([],V(i)),V(A.errors)):i.push(A)}}}catch(A){o={error:A}}finally{try{h&&!h.done&&(n=u.return)&&n.call(u)}finally{if(o)throw o.error}}}if(i)throw new Wt(i)}},e.prototype.add=function(t){var r;if(t&&t!==this)if(this.closed)co(t);else{if(t instanceof e){if(t.closed||t._hasParent(this))return;t._addParent(this)}(this._finalizers=(r=this._finalizers)!==null&&r!==void 0?r:[]).push(t)}},e.prototype._hasParent=function(t){var r=this._parentage;return r===t||Array.isArray(r)&&r.includes(t)},e.prototype._addParent=function(t){var r=this._parentage;this._parentage=Array.isArray(r)?(r.push(t),r):r?[r,t]:t},e.prototype._removeParent=function(t){var r=this._parentage;r===t?this._parentage=null:Array.isArray(r)&&Ve(r,t)},e.prototype.remove=function(t){var r=this._finalizers;r&&Ve(r,t),t instanceof e&&t._removeParent(this)},e.EMPTY=function(){var t=new e;return t.closed=!0,t}(),e}();var Er=Ie.EMPTY;function Dt(e){return e instanceof Ie||e&&"closed"in e&&k(e.remove)&&k(e.add)&&k(e.unsubscribe)}function co(e){k(e)?e():e.unsubscribe()}var ke={onUnhandledError:null,onStoppedNotification:null,Promise:void 0,useDeprecatedSynchronousErrorHandling:!1,useDeprecatedNextContext:!1};var lt={setTimeout:function(e,t){for(var r=[],o=2;o0},enumerable:!1,configurable:!0}),t.prototype._trySubscribe=function(r){return this._throwIfClosed(),e.prototype._trySubscribe.call(this,r)},t.prototype._subscribe=function(r){return this._throwIfClosed(),this._checkFinalizedStatuses(r),this._innerSubscribe(r)},t.prototype._innerSubscribe=function(r){var o=this,n=this,i=n.hasError,s=n.isStopped,a=n.observers;return i||s?Er:(this.currentObservers=null,a.push(r),new Ie(function(){o.currentObservers=null,Ve(a,r)}))},t.prototype._checkFinalizedStatuses=function(r){var o=this,n=o.hasError,i=o.thrownError,s=o.isStopped;n?r.error(i):s&&r.complete()},t.prototype.asObservable=function(){var r=new j;return r.source=this,r},t.create=function(r,o){return new vo(r,o)},t}(j);var vo=function(e){se(t,e);function t(r,o){var n=e.call(this)||this;return n.destination=r,n.source=o,n}return t.prototype.next=function(r){var o,n;(n=(o=this.destination)===null||o===void 0?void 0:o.next)===null||n===void 0||n.call(o,r)},t.prototype.error=function(r){var o,n;(n=(o=this.destination)===null||o===void 0?void 0:o.error)===null||n===void 0||n.call(o,r)},t.prototype.complete=function(){var r,o;(o=(r=this.destination)===null||r===void 0?void 0:r.complete)===null||o===void 0||o.call(r)},t.prototype._subscribe=function(r){var o,n;return(n=(o=this.source)===null||o===void 0?void 0:o.subscribe(r))!==null&&n!==void 0?n:Er},t}(v);var St={now:function(){return(St.delegate||Date).now()},delegate:void 0};var Ot=function(e){se(t,e);function t(r,o,n){r===void 0&&(r=1/0),o===void 0&&(o=1/0),n===void 0&&(n=St);var i=e.call(this)||this;return i._bufferSize=r,i._windowTime=o,i._timestampProvider=n,i._buffer=[],i._infiniteTimeWindow=!0,i._infiniteTimeWindow=o===1/0,i._bufferSize=Math.max(1,r),i._windowTime=Math.max(1,o),i}return t.prototype.next=function(r){var o=this,n=o.isStopped,i=o._buffer,s=o._infiniteTimeWindow,a=o._timestampProvider,c=o._windowTime;n||(i.push(r),!s&&i.push(a.now()+c)),this._trimBuffer(),e.prototype.next.call(this,r)},t.prototype._subscribe=function(r){this._throwIfClosed(),this._trimBuffer();for(var o=this._innerSubscribe(r),n=this,i=n._infiniteTimeWindow,s=n._buffer,a=s.slice(),c=0;c0?e.prototype.requestAsyncId.call(this,r,o,n):(r.actions.push(this),r._scheduled||(r._scheduled=ut.requestAnimationFrame(function(){return r.flush(void 0)})))},t.prototype.recycleAsyncId=function(r,o,n){var i;if(n===void 0&&(n=0),n!=null?n>0:this.delay>0)return e.prototype.recycleAsyncId.call(this,r,o,n);var s=r.actions;o!=null&&((i=s[s.length-1])===null||i===void 0?void 0:i.id)!==o&&(ut.cancelAnimationFrame(o),r._scheduled=void 0)},t}(zt);var yo=function(e){se(t,e);function t(){return e!==null&&e.apply(this,arguments)||this}return t.prototype.flush=function(r){this._active=!0;var o=this._scheduled;this._scheduled=void 0;var n=this.actions,i;r=r||n.shift();do if(i=r.execute(r.state,r.delay))break;while((r=n[0])&&r.id===o&&n.shift());if(this._active=!1,i){for(;(r=n[0])&&r.id===o&&n.shift();)r.unsubscribe();throw i}},t}(qt);var de=new yo(xo);var L=new j(function(e){return e.complete()});function Kt(e){return e&&k(e.schedule)}function _r(e){return e[e.length-1]}function Je(e){return k(_r(e))?e.pop():void 0}function Ae(e){return Kt(_r(e))?e.pop():void 0}function Qt(e,t){return typeof _r(e)=="number"?e.pop():t}var dt=function(e){return e&&typeof e.length=="number"&&typeof e!="function"};function Yt(e){return k(e==null?void 0:e.then)}function Bt(e){return k(e[ft])}function Gt(e){return Symbol.asyncIterator&&k(e==null?void 0:e[Symbol.asyncIterator])}function Jt(e){return new TypeError("You provided "+(e!==null&&typeof e=="object"?"an invalid object":"'"+e+"'")+" where a stream was expected. You can provide an Observable, Promise, ReadableStream, Array, AsyncIterable, or Iterable.")}function Di(){return typeof Symbol!="function"||!Symbol.iterator?"@@iterator":Symbol.iterator}var Xt=Di();function Zt(e){return k(e==null?void 0:e[Xt])}function er(e){return ao(this,arguments,function(){var r,o,n,i;return Ut(this,function(s){switch(s.label){case 0:r=e.getReader(),s.label=1;case 1:s.trys.push([1,,9,10]),s.label=2;case 2:return[4,ot(r.read())];case 3:return o=s.sent(),n=o.value,i=o.done,i?[4,ot(void 0)]:[3,5];case 4:return[2,s.sent()];case 5:return[4,ot(n)];case 6:return[4,s.sent()];case 7:return s.sent(),[3,2];case 8:return[3,10];case 9:return r.releaseLock(),[7];case 10:return[2]}})})}function tr(e){return k(e==null?void 0:e.getReader)}function N(e){if(e instanceof j)return e;if(e!=null){if(Bt(e))return Ni(e);if(dt(e))return Vi(e);if(Yt(e))return zi(e);if(Gt(e))return Eo(e);if(Zt(e))return qi(e);if(tr(e))return Ki(e)}throw Jt(e)}function Ni(e){return new j(function(t){var r=e[ft]();if(k(r.subscribe))return r.subscribe(t);throw new TypeError("Provided object does not correctly implement Symbol.observable")})}function Vi(e){return new j(function(t){for(var r=0;r=2;return function(o){return o.pipe(e?g(function(n,i){return e(n,i,o)}):ce,ye(1),r?Qe(t):jo(function(){return new or}))}}function $r(e){return e<=0?function(){return L}:x(function(t,r){var o=[];t.subscribe(S(r,function(n){o.push(n),e=2,!0))}function le(e){e===void 0&&(e={});var t=e.connector,r=t===void 0?function(){return new v}:t,o=e.resetOnError,n=o===void 0?!0:o,i=e.resetOnComplete,s=i===void 0?!0:i,a=e.resetOnRefCountZero,c=a===void 0?!0:a;return function(p){var l,f,u,h=0,w=!1,A=!1,Z=function(){f==null||f.unsubscribe(),f=void 0},te=function(){Z(),l=u=void 0,w=A=!1},J=function(){var C=l;te(),C==null||C.unsubscribe()};return x(function(C,ct){h++,!A&&!w&&Z();var Ne=u=u!=null?u:r();ct.add(function(){h--,h===0&&!A&&!w&&(f=Pr(J,c))}),Ne.subscribe(ct),!l&&h>0&&(l=new it({next:function(Pe){return Ne.next(Pe)},error:function(Pe){A=!0,Z(),f=Pr(te,n,Pe),Ne.error(Pe)},complete:function(){w=!0,Z(),f=Pr(te,s),Ne.complete()}}),N(C).subscribe(l))})(p)}}function Pr(e,t){for(var r=[],o=2;oe.next(document)),e}function R(e,t=document){return Array.from(t.querySelectorAll(e))}function P(e,t=document){let r=me(e,t);if(typeof r=="undefined")throw new ReferenceError(`Missing element: expected "${e}" to be present`);return r}function me(e,t=document){return t.querySelector(e)||void 0}function Re(){var e,t,r,o;return(o=(r=(t=(e=document.activeElement)==null?void 0:e.shadowRoot)==null?void 0:t.activeElement)!=null?r:document.activeElement)!=null?o:void 0}var la=T(d(document.body,"focusin"),d(document.body,"focusout")).pipe(be(1),q(void 0),m(()=>Re()||document.body),B(1));function vt(e){return la.pipe(m(t=>e.contains(t)),Y())}function Vo(e,t){return T(d(e,"mouseenter").pipe(m(()=>!0)),d(e,"mouseleave").pipe(m(()=>!1))).pipe(t?be(t):ce,q(!1))}function Ue(e){return{x:e.offsetLeft,y:e.offsetTop}}function zo(e){return T(d(window,"load"),d(window,"resize")).pipe(Me(0,de),m(()=>Ue(e)),q(Ue(e)))}function ir(e){return{x:e.scrollLeft,y:e.scrollTop}}function et(e){return T(d(e,"scroll"),d(window,"resize")).pipe(Me(0,de),m(()=>ir(e)),q(ir(e)))}function qo(e,t){if(typeof t=="string"||typeof t=="number")e.innerHTML+=t.toString();else if(t instanceof Node)e.appendChild(t);else if(Array.isArray(t))for(let r of t)qo(e,r)}function E(e,t,...r){let o=document.createElement(e);if(t)for(let n of Object.keys(t))typeof t[n]!="undefined"&&(typeof t[n]!="boolean"?o.setAttribute(n,t[n]):o.setAttribute(n,""));for(let n of r)qo(o,n);return o}function ar(e){if(e>999){let t=+((e-950)%1e3>99);return`${((e+1e-6)/1e3).toFixed(t)}k`}else return e.toString()}function gt(e){let t=E("script",{src:e});return H(()=>(document.head.appendChild(t),T(d(t,"load"),d(t,"error").pipe(b(()=>Ar(()=>new ReferenceError(`Invalid script: ${e}`))))).pipe(m(()=>{}),_(()=>document.head.removeChild(t)),ye(1))))}var Ko=new v,ma=H(()=>typeof ResizeObserver=="undefined"?gt("https://unpkg.com/resize-observer-polyfill"):$(void 0)).pipe(m(()=>new ResizeObserver(e=>{for(let t of e)Ko.next(t)})),b(e=>T(qe,$(e)).pipe(_(()=>e.disconnect()))),B(1));function pe(e){return{width:e.offsetWidth,height:e.offsetHeight}}function Ee(e){return ma.pipe(y(t=>t.observe(e)),b(t=>Ko.pipe(g(({target:r})=>r===e),_(()=>t.unobserve(e)),m(()=>pe(e)))),q(pe(e)))}function xt(e){return{width:e.scrollWidth,height:e.scrollHeight}}function sr(e){let t=e.parentElement;for(;t&&(e.scrollWidth<=t.scrollWidth&&e.scrollHeight<=t.scrollHeight);)t=(e=t).parentElement;return t?e:void 0}var Qo=new v,fa=H(()=>$(new IntersectionObserver(e=>{for(let t of e)Qo.next(t)},{threshold:0}))).pipe(b(e=>T(qe,$(e)).pipe(_(()=>e.disconnect()))),B(1));function yt(e){return fa.pipe(y(t=>t.observe(e)),b(t=>Qo.pipe(g(({target:r})=>r===e),_(()=>t.unobserve(e)),m(({isIntersecting:r})=>r))))}function Yo(e,t=16){return et(e).pipe(m(({y:r})=>{let o=pe(e),n=xt(e);return r>=n.height-o.height-t}),Y())}var cr={drawer:P("[data-md-toggle=drawer]"),search:P("[data-md-toggle=search]")};function Bo(e){return cr[e].checked}function Be(e,t){cr[e].checked!==t&&cr[e].click()}function We(e){let t=cr[e];return d(t,"change").pipe(m(()=>t.checked),q(t.checked))}function ua(e,t){switch(e.constructor){case HTMLInputElement:return e.type==="radio"?/^Arrow/.test(t):!0;case HTMLSelectElement:case HTMLTextAreaElement:return!0;default:return e.isContentEditable}}function da(){return T(d(window,"compositionstart").pipe(m(()=>!0)),d(window,"compositionend").pipe(m(()=>!1))).pipe(q(!1))}function Go(){let e=d(window,"keydown").pipe(g(t=>!(t.metaKey||t.ctrlKey)),m(t=>({mode:Bo("search")?"search":"global",type:t.key,claim(){t.preventDefault(),t.stopPropagation()}})),g(({mode:t,type:r})=>{if(t==="global"){let o=Re();if(typeof o!="undefined")return!ua(o,r)}return!0}),le());return da().pipe(b(t=>t?L:e))}function ve(){return new URL(location.href)}function st(e,t=!1){if(G("navigation.instant")&&!t){let r=E("a",{href:e.href});document.body.appendChild(r),r.click(),r.remove()}else location.href=e.href}function Jo(){return new v}function Xo(){return location.hash.slice(1)}function Zo(e){let t=E("a",{href:e});t.addEventListener("click",r=>r.stopPropagation()),t.click()}function ha(e){return T(d(window,"hashchange"),e).pipe(m(Xo),q(Xo()),g(t=>t.length>0),B(1))}function en(e){return ha(e).pipe(m(t=>me(`[id="${t}"]`)),g(t=>typeof t!="undefined"))}function At(e){let t=matchMedia(e);return nr(r=>t.addListener(()=>r(t.matches))).pipe(q(t.matches))}function tn(){let e=matchMedia("print");return T(d(window,"beforeprint").pipe(m(()=>!0)),d(window,"afterprint").pipe(m(()=>!1))).pipe(q(e.matches))}function Ur(e,t){return e.pipe(b(r=>r?t():L))}function Wr(e,t){return new j(r=>{let o=new XMLHttpRequest;return o.open("GET",`${e}`),o.responseType="blob",o.addEventListener("load",()=>{o.status>=200&&o.status<300?(r.next(o.response),r.complete()):r.error(new Error(o.statusText))}),o.addEventListener("error",()=>{r.error(new Error("Network error"))}),o.addEventListener("abort",()=>{r.complete()}),typeof(t==null?void 0:t.progress$)!="undefined"&&(o.addEventListener("progress",n=>{var i;if(n.lengthComputable)t.progress$.next(n.loaded/n.total*100);else{let s=(i=o.getResponseHeader("Content-Length"))!=null?i:0;t.progress$.next(n.loaded/+s*100)}}),t.progress$.next(5)),o.send(),()=>o.abort()})}function De(e,t){return Wr(e,t).pipe(b(r=>r.text()),m(r=>JSON.parse(r)),B(1))}function rn(e,t){let r=new DOMParser;return Wr(e,t).pipe(b(o=>o.text()),m(o=>r.parseFromString(o,"text/html")),B(1))}function on(e,t){let r=new DOMParser;return Wr(e,t).pipe(b(o=>o.text()),m(o=>r.parseFromString(o,"text/xml")),B(1))}function nn(){return{x:Math.max(0,scrollX),y:Math.max(0,scrollY)}}function an(){return T(d(window,"scroll",{passive:!0}),d(window,"resize",{passive:!0})).pipe(m(nn),q(nn()))}function sn(){return{width:innerWidth,height:innerHeight}}function cn(){return d(window,"resize",{passive:!0}).pipe(m(sn),q(sn()))}function pn(){return Q([an(),cn()]).pipe(m(([e,t])=>({offset:e,size:t})),B(1))}function pr(e,{viewport$:t,header$:r}){let o=t.pipe(X("size")),n=Q([o,r]).pipe(m(()=>Ue(e)));return Q([r,t,n]).pipe(m(([{height:i},{offset:s,size:a},{x:c,y:p}])=>({offset:{x:s.x-c,y:s.y-p+i},size:a})))}function ba(e){return d(e,"message",t=>t.data)}function va(e){let t=new v;return t.subscribe(r=>e.postMessage(r)),t}function ln(e,t=new Worker(e)){let r=ba(t),o=va(t),n=new v;n.subscribe(o);let i=o.pipe(ee(),oe(!0));return n.pipe(ee(),$e(r.pipe(U(i))),le())}var ga=P("#__config"),Et=JSON.parse(ga.textContent);Et.base=`${new URL(Et.base,ve())}`;function we(){return Et}function G(e){return Et.features.includes(e)}function ge(e,t){return typeof t!="undefined"?Et.translations[e].replace("#",t.toString()):Et.translations[e]}function Te(e,t=document){return P(`[data-md-component=${e}]`,t)}function ne(e,t=document){return R(`[data-md-component=${e}]`,t)}function xa(e){let t=P(".md-typeset > :first-child",e);return d(t,"click",{once:!0}).pipe(m(()=>P(".md-typeset",e)),m(r=>({hash:__md_hash(r.innerHTML)})))}function mn(e){if(!G("announce.dismiss")||!e.childElementCount)return L;if(!e.hidden){let t=P(".md-typeset",e);__md_hash(t.innerHTML)===__md_get("__announce")&&(e.hidden=!0)}return H(()=>{let t=new v;return t.subscribe(({hash:r})=>{e.hidden=!0,__md_set("__announce",r)}),xa(e).pipe(y(r=>t.next(r)),_(()=>t.complete()),m(r=>F({ref:e},r)))})}function ya(e,{target$:t}){return t.pipe(m(r=>({hidden:r!==e})))}function fn(e,t){let r=new v;return r.subscribe(({hidden:o})=>{e.hidden=o}),ya(e,t).pipe(y(o=>r.next(o)),_(()=>r.complete()),m(o=>F({ref:e},o)))}function Ct(e,t){return t==="inline"?E("div",{class:"md-tooltip md-tooltip--inline",id:e,role:"tooltip"},E("div",{class:"md-tooltip__inner md-typeset"})):E("div",{class:"md-tooltip",id:e,role:"tooltip"},E("div",{class:"md-tooltip__inner md-typeset"}))}function un(e,t){if(t=t?`${t}_annotation_${e}`:void 0,t){let r=t?`#${t}`:void 0;return E("aside",{class:"md-annotation",tabIndex:0},Ct(t),E("a",{href:r,class:"md-annotation__index",tabIndex:-1},E("span",{"data-md-annotation-id":e})))}else return E("aside",{class:"md-annotation",tabIndex:0},Ct(t),E("span",{class:"md-annotation__index",tabIndex:-1},E("span",{"data-md-annotation-id":e})))}function dn(e){return E("button",{class:"md-clipboard md-icon",title:ge("clipboard.copy"),"data-clipboard-target":`#${e} > code`})}function Dr(e,t){let r=t&2,o=t&1,n=Object.keys(e.terms).filter(c=>!e.terms[c]).reduce((c,p)=>[...c,E("del",null,p)," "],[]).slice(0,-1),i=we(),s=new URL(e.location,i.base);G("search.highlight")&&s.searchParams.set("h",Object.entries(e.terms).filter(([,c])=>c).reduce((c,[p])=>`${c} ${p}`.trim(),""));let{tags:a}=we();return E("a",{href:`${s}`,class:"md-search-result__link",tabIndex:-1},E("article",{class:"md-search-result__article md-typeset","data-md-score":e.score.toFixed(2)},r>0&&E("div",{class:"md-search-result__icon md-icon"}),r>0&&E("h1",null,e.title),r<=0&&E("h2",null,e.title),o>0&&e.text.length>0&&e.text,e.tags&&e.tags.map(c=>{let p=a?c in a?`md-tag-icon md-tag--${a[c]}`:"md-tag-icon":"";return E("span",{class:`md-tag ${p}`},c)}),o>0&&n.length>0&&E("p",{class:"md-search-result__terms"},ge("search.result.term.missing"),": ",...n)))}function hn(e){let t=e[0].score,r=[...e],o=we(),n=r.findIndex(l=>!`${new URL(l.location,o.base)}`.includes("#")),[i]=r.splice(n,1),s=r.findIndex(l=>l.scoreDr(l,1)),...c.length?[E("details",{class:"md-search-result__more"},E("summary",{tabIndex:-1},E("div",null,c.length>0&&c.length===1?ge("search.result.more.one"):ge("search.result.more.other",c.length))),...c.map(l=>Dr(l,1)))]:[]];return E("li",{class:"md-search-result__item"},p)}function bn(e){return E("ul",{class:"md-source__facts"},Object.entries(e).map(([t,r])=>E("li",{class:`md-source__fact md-source__fact--${t}`},typeof r=="number"?ar(r):r)))}function Nr(e){let t=`tabbed-control tabbed-control--${e}`;return E("div",{class:t,hidden:!0},E("button",{class:"tabbed-button",tabIndex:-1,"aria-hidden":"true"}))}function vn(e){return E("div",{class:"md-typeset__scrollwrap"},E("div",{class:"md-typeset__table"},e))}function Ea(e){let t=we(),r=new URL(`../${e.version}/`,t.base);return E("li",{class:"md-version__item"},E("a",{href:`${r}`,class:"md-version__link"},e.title))}function gn(e,t){return E("div",{class:"md-version"},E("button",{class:"md-version__current","aria-label":ge("select.version")},t.title),E("ul",{class:"md-version__list"},e.map(Ea)))}var wa=0;function Ta(e,t){document.body.append(e);let{width:r}=pe(e);e.style.setProperty("--md-tooltip-width",`${r}px`),e.remove();let o=sr(t),n=typeof o!="undefined"?et(o):$({x:0,y:0}),i=T(vt(t),Vo(t)).pipe(Y());return Q([i,n]).pipe(m(([s,a])=>{let{x:c,y:p}=Ue(t),l=pe(t),f=t.closest("table");return f&&t.parentElement&&(c+=f.offsetLeft+t.parentElement.offsetLeft,p+=f.offsetTop+t.parentElement.offsetTop),{active:s,offset:{x:c-a.x+l.width/2-r/2,y:p-a.y+l.height+8}}}))}function Ge(e){let t=e.title;if(!t.length)return L;let r=`__tooltip_${wa++}`,o=Ct(r,"inline"),n=P(".md-typeset",o);return n.innerHTML=t,H(()=>{let i=new v;return i.subscribe({next({offset:s}){o.style.setProperty("--md-tooltip-x",`${s.x}px`),o.style.setProperty("--md-tooltip-y",`${s.y}px`)},complete(){o.style.removeProperty("--md-tooltip-x"),o.style.removeProperty("--md-tooltip-y")}}),T(i.pipe(g(({active:s})=>s)),i.pipe(be(250),g(({active:s})=>!s))).subscribe({next({active:s}){s?(e.insertAdjacentElement("afterend",o),e.setAttribute("aria-describedby",r),e.removeAttribute("title")):(o.remove(),e.removeAttribute("aria-describedby"),e.setAttribute("title",t))},complete(){o.remove(),e.removeAttribute("aria-describedby"),e.setAttribute("title",t)}}),i.pipe(Me(16,de)).subscribe(({active:s})=>{o.classList.toggle("md-tooltip--active",s)}),i.pipe(_t(125,de),g(()=>!!e.offsetParent),m(()=>e.offsetParent.getBoundingClientRect()),m(({x:s})=>s)).subscribe({next(s){s?o.style.setProperty("--md-tooltip-0",`${-s}px`):o.style.removeProperty("--md-tooltip-0")},complete(){o.style.removeProperty("--md-tooltip-0")}}),Ta(o,e).pipe(y(s=>i.next(s)),_(()=>i.complete()),m(s=>F({ref:e},s)))}).pipe(ze(ie))}function Sa(e,t){let r=H(()=>Q([zo(e),et(t)])).pipe(m(([{x:o,y:n},i])=>{let{width:s,height:a}=pe(e);return{x:o-i.x+s/2,y:n-i.y+a/2}}));return vt(e).pipe(b(o=>r.pipe(m(n=>({active:o,offset:n})),ye(+!o||1/0))))}function xn(e,t,{target$:r}){let[o,n]=Array.from(e.children);return H(()=>{let i=new v,s=i.pipe(ee(),oe(!0));return i.subscribe({next({offset:a}){e.style.setProperty("--md-tooltip-x",`${a.x}px`),e.style.setProperty("--md-tooltip-y",`${a.y}px`)},complete(){e.style.removeProperty("--md-tooltip-x"),e.style.removeProperty("--md-tooltip-y")}}),yt(e).pipe(U(s)).subscribe(a=>{e.toggleAttribute("data-md-visible",a)}),T(i.pipe(g(({active:a})=>a)),i.pipe(be(250),g(({active:a})=>!a))).subscribe({next({active:a}){a?e.prepend(o):o.remove()},complete(){e.prepend(o)}}),i.pipe(Me(16,de)).subscribe(({active:a})=>{o.classList.toggle("md-tooltip--active",a)}),i.pipe(_t(125,de),g(()=>!!e.offsetParent),m(()=>e.offsetParent.getBoundingClientRect()),m(({x:a})=>a)).subscribe({next(a){a?e.style.setProperty("--md-tooltip-0",`${-a}px`):e.style.removeProperty("--md-tooltip-0")},complete(){e.style.removeProperty("--md-tooltip-0")}}),d(n,"click").pipe(U(s),g(a=>!(a.metaKey||a.ctrlKey))).subscribe(a=>{a.stopPropagation(),a.preventDefault()}),d(n,"mousedown").pipe(U(s),ae(i)).subscribe(([a,{active:c}])=>{var p;if(a.button!==0||a.metaKey||a.ctrlKey)a.preventDefault();else if(c){a.preventDefault();let l=e.parentElement.closest(".md-annotation");l instanceof HTMLElement?l.focus():(p=Re())==null||p.blur()}}),r.pipe(U(s),g(a=>a===o),Ye(125)).subscribe(()=>e.focus()),Sa(e,t).pipe(y(a=>i.next(a)),_(()=>i.complete()),m(a=>F({ref:e},a)))})}function Oa(e){return e.tagName==="CODE"?R(".c, .c1, .cm",e):[e]}function Ma(e){let t=[];for(let r of Oa(e)){let o=[],n=document.createNodeIterator(r,NodeFilter.SHOW_TEXT);for(let i=n.nextNode();i;i=n.nextNode())o.push(i);for(let i of o){let s;for(;s=/(\(\d+\))(!)?/.exec(i.textContent);){let[,a,c]=s;if(typeof c=="undefined"){let p=i.splitText(s.index);i=p.splitText(a.length),t.push(p)}else{i.textContent=a,t.push(i);break}}}}return t}function yn(e,t){t.append(...Array.from(e.childNodes))}function lr(e,t,{target$:r,print$:o}){let n=t.closest("[id]"),i=n==null?void 0:n.id,s=new Map;for(let a of Ma(t)){let[,c]=a.textContent.match(/\((\d+)\)/);me(`:scope > li:nth-child(${c})`,e)&&(s.set(c,un(c,i)),a.replaceWith(s.get(c)))}return s.size===0?L:H(()=>{let a=new v,c=a.pipe(ee(),oe(!0)),p=[];for(let[l,f]of s)p.push([P(".md-typeset",f),P(`:scope > li:nth-child(${l})`,e)]);return o.pipe(U(c)).subscribe(l=>{e.hidden=!l,e.classList.toggle("md-annotation-list",l);for(let[f,u]of p)l?yn(f,u):yn(u,f)}),T(...[...s].map(([,l])=>xn(l,t,{target$:r}))).pipe(_(()=>a.complete()),le())})}function En(e){if(e.nextElementSibling){let t=e.nextElementSibling;if(t.tagName==="OL")return t;if(t.tagName==="P"&&!t.children.length)return En(t)}}function wn(e,t){return H(()=>{let r=En(e);return typeof r!="undefined"?lr(r,e,t):L})}var Tn=jt(zr());var La=0;function Sn(e){if(e.nextElementSibling){let t=e.nextElementSibling;if(t.tagName==="OL")return t;if(t.tagName==="P"&&!t.children.length)return Sn(t)}}function _a(e){return Ee(e).pipe(m(({width:t})=>({scrollable:xt(e).width>t})),X("scrollable"))}function On(e,t){let{matches:r}=matchMedia("(hover)"),o=H(()=>{let n=new v,i=n.pipe($r(1));n.subscribe(({scrollable:c})=>{c&&r?e.setAttribute("tabindex","0"):e.removeAttribute("tabindex")});let s=[];if(Tn.default.isSupported()&&(e.closest(".copy")||G("content.code.copy")&&!e.closest(".no-copy"))){let c=e.closest("pre");c.id=`__code_${La++}`;let p=dn(c.id);c.insertBefore(p,e),G("content.tooltips")&&s.push(Ge(p))}let a=e.closest(".highlight");if(a instanceof HTMLElement){let c=Sn(a);if(typeof c!="undefined"&&(a.classList.contains("annotate")||G("content.code.annotate"))){let p=lr(c,e,t);s.push(Ee(a).pipe(U(i),m(({width:l,height:f})=>l&&f),Y(),b(l=>l?p:L)))}}return _a(e).pipe(y(c=>n.next(c)),_(()=>n.complete()),m(c=>F({ref:e},c)),$e(...s))});return G("content.lazy")?yt(e).pipe(g(n=>n),ye(1),b(()=>o)):o}function Aa(e,{target$:t,print$:r}){let o=!0;return T(t.pipe(m(n=>n.closest("details:not([open])")),g(n=>e===n),m(()=>({action:"open",reveal:!0}))),r.pipe(g(n=>n||!o),y(()=>o=e.open),m(n=>({action:n?"open":"close"}))))}function Mn(e,t){return H(()=>{let r=new v;return r.subscribe(({action:o,reveal:n})=>{e.toggleAttribute("open",o==="open"),n&&e.scrollIntoView()}),Aa(e,t).pipe(y(o=>r.next(o)),_(()=>r.complete()),m(o=>F({ref:e},o)))})}var Ln=".node circle,.node ellipse,.node path,.node polygon,.node rect{fill:var(--md-mermaid-node-bg-color);stroke:var(--md-mermaid-node-fg-color)}marker{fill:var(--md-mermaid-edge-color)!important}.edgeLabel .label rect{fill:#0000}.label{color:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.label foreignObject{line-height:normal;overflow:visible}.label div .edgeLabel{color:var(--md-mermaid-label-fg-color)}.edgeLabel,.edgeLabel rect,.label div .edgeLabel{background-color:var(--md-mermaid-label-bg-color)}.edgeLabel,.edgeLabel rect{fill:var(--md-mermaid-label-bg-color);color:var(--md-mermaid-edge-color)}.edgePath .path,.flowchart-link{stroke:var(--md-mermaid-edge-color);stroke-width:.05rem}.edgePath .arrowheadPath{fill:var(--md-mermaid-edge-color);stroke:none}.cluster rect{fill:var(--md-default-fg-color--lightest);stroke:var(--md-default-fg-color--lighter)}.cluster span{color:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}g #flowchart-circleEnd,g #flowchart-circleStart,g #flowchart-crossEnd,g #flowchart-crossStart,g #flowchart-pointEnd,g #flowchart-pointStart{stroke:none}g.classGroup line,g.classGroup rect{fill:var(--md-mermaid-node-bg-color);stroke:var(--md-mermaid-node-fg-color)}g.classGroup text{fill:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.classLabel .box{fill:var(--md-mermaid-label-bg-color);background-color:var(--md-mermaid-label-bg-color);opacity:1}.classLabel .label{fill:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.node .divider{stroke:var(--md-mermaid-node-fg-color)}.relation{stroke:var(--md-mermaid-edge-color)}.cardinality{fill:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.cardinality text{fill:inherit!important}defs #classDiagram-compositionEnd,defs #classDiagram-compositionStart,defs #classDiagram-dependencyEnd,defs #classDiagram-dependencyStart,defs #classDiagram-extensionEnd,defs #classDiagram-extensionStart{fill:var(--md-mermaid-edge-color)!important;stroke:var(--md-mermaid-edge-color)!important}defs #classDiagram-aggregationEnd,defs #classDiagram-aggregationStart{fill:var(--md-mermaid-label-bg-color)!important;stroke:var(--md-mermaid-edge-color)!important}g.stateGroup rect{fill:var(--md-mermaid-node-bg-color);stroke:var(--md-mermaid-node-fg-color)}g.stateGroup .state-title{fill:var(--md-mermaid-label-fg-color)!important;font-family:var(--md-mermaid-font-family)}g.stateGroup .composit{fill:var(--md-mermaid-label-bg-color)}.nodeLabel,.nodeLabel p{color:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.node circle.state-end,.node circle.state-start,.start-state{fill:var(--md-mermaid-edge-color);stroke:none}.end-state-inner,.end-state-outer{fill:var(--md-mermaid-edge-color)}.end-state-inner,.node circle.state-end{stroke:var(--md-mermaid-label-bg-color)}.transition{stroke:var(--md-mermaid-edge-color)}[id^=state-fork] rect,[id^=state-join] rect{fill:var(--md-mermaid-edge-color)!important;stroke:none!important}.statediagram-cluster.statediagram-cluster .inner{fill:var(--md-default-bg-color)}.statediagram-cluster rect{fill:var(--md-mermaid-node-bg-color);stroke:var(--md-mermaid-node-fg-color)}.statediagram-state rect.divider{fill:var(--md-default-fg-color--lightest);stroke:var(--md-default-fg-color--lighter)}defs #statediagram-barbEnd{stroke:var(--md-mermaid-edge-color)}.attributeBoxEven,.attributeBoxOdd{fill:var(--md-mermaid-node-bg-color);stroke:var(--md-mermaid-node-fg-color)}.entityBox{fill:var(--md-mermaid-label-bg-color);stroke:var(--md-mermaid-node-fg-color)}.entityLabel{fill:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.relationshipLabelBox{fill:var(--md-mermaid-label-bg-color);fill-opacity:1;background-color:var(--md-mermaid-label-bg-color);opacity:1}.relationshipLabel{fill:var(--md-mermaid-label-fg-color)}.relationshipLine{stroke:var(--md-mermaid-edge-color)}defs #ONE_OR_MORE_END *,defs #ONE_OR_MORE_START *,defs #ONLY_ONE_END *,defs #ONLY_ONE_START *,defs #ZERO_OR_MORE_END *,defs #ZERO_OR_MORE_START *,defs #ZERO_OR_ONE_END *,defs #ZERO_OR_ONE_START *{stroke:var(--md-mermaid-edge-color)!important}defs #ZERO_OR_MORE_END circle,defs #ZERO_OR_MORE_START circle{fill:var(--md-mermaid-label-bg-color)}.actor{fill:var(--md-mermaid-sequence-actor-bg-color);stroke:var(--md-mermaid-sequence-actor-border-color)}text.actor>tspan{fill:var(--md-mermaid-sequence-actor-fg-color);font-family:var(--md-mermaid-font-family)}line{stroke:var(--md-mermaid-sequence-actor-line-color)}.actor-man circle,.actor-man line{fill:var(--md-mermaid-sequence-actorman-bg-color);stroke:var(--md-mermaid-sequence-actorman-line-color)}.messageLine0,.messageLine1{stroke:var(--md-mermaid-sequence-message-line-color)}.note{fill:var(--md-mermaid-sequence-note-bg-color);stroke:var(--md-mermaid-sequence-note-border-color)}.loopText,.loopText>tspan,.messageText,.noteText>tspan{stroke:none;font-family:var(--md-mermaid-font-family)!important}.messageText{fill:var(--md-mermaid-sequence-message-fg-color)}.loopText,.loopText>tspan{fill:var(--md-mermaid-sequence-loop-fg-color)}.noteText>tspan{fill:var(--md-mermaid-sequence-note-fg-color)}#arrowhead path{fill:var(--md-mermaid-sequence-message-line-color);stroke:none}.loopLine{fill:var(--md-mermaid-sequence-loop-bg-color);stroke:var(--md-mermaid-sequence-loop-border-color)}.labelBox{fill:var(--md-mermaid-sequence-label-bg-color);stroke:none}.labelText,.labelText>span{fill:var(--md-mermaid-sequence-label-fg-color);font-family:var(--md-mermaid-font-family)}.sequenceNumber{fill:var(--md-mermaid-sequence-number-fg-color)}rect.rect{fill:var(--md-mermaid-sequence-box-bg-color);stroke:none}rect.rect+text.text{fill:var(--md-mermaid-sequence-box-fg-color)}defs #sequencenumber{fill:var(--md-mermaid-sequence-number-bg-color)!important}";var qr,ka=0;function Ha(){return typeof mermaid=="undefined"||mermaid instanceof Element?gt("https://unpkg.com/mermaid@10.7.0/dist/mermaid.min.js"):$(void 0)}function _n(e){return e.classList.remove("mermaid"),qr||(qr=Ha().pipe(y(()=>mermaid.initialize({startOnLoad:!1,themeCSS:Ln,sequence:{actorFontSize:"16px",messageFontSize:"16px",noteFontSize:"16px"}})),m(()=>{}),B(1))),qr.subscribe(()=>ro(this,null,function*(){e.classList.add("mermaid");let t=`__mermaid_${ka++}`,r=E("div",{class:"mermaid"}),o=e.textContent,{svg:n,fn:i}=yield mermaid.render(t,o),s=r.attachShadow({mode:"closed"});s.innerHTML=n,e.replaceWith(r),i==null||i(s)})),qr.pipe(m(()=>({ref:e})))}var An=E("table");function Cn(e){return e.replaceWith(An),An.replaceWith(vn(e)),$({ref:e})}function $a(e){let t=e.find(r=>r.checked)||e[0];return T(...e.map(r=>d(r,"change").pipe(m(()=>P(`label[for="${r.id}"]`))))).pipe(q(P(`label[for="${t.id}"]`)),m(r=>({active:r})))}function kn(e,{viewport$:t,target$:r}){let o=P(".tabbed-labels",e),n=R(":scope > input",e),i=Nr("prev");e.append(i);let s=Nr("next");return e.append(s),H(()=>{let a=new v,c=a.pipe(ee(),oe(!0));Q([a,Ee(e)]).pipe(U(c),Me(1,de)).subscribe({next([{active:p},l]){let f=Ue(p),{width:u}=pe(p);e.style.setProperty("--md-indicator-x",`${f.x}px`),e.style.setProperty("--md-indicator-width",`${u}px`);let h=ir(o);(f.xh.x+l.width)&&o.scrollTo({left:Math.max(0,f.x-16),behavior:"smooth"})},complete(){e.style.removeProperty("--md-indicator-x"),e.style.removeProperty("--md-indicator-width")}}),Q([et(o),Ee(o)]).pipe(U(c)).subscribe(([p,l])=>{let f=xt(o);i.hidden=p.x<16,s.hidden=p.x>f.width-l.width-16}),T(d(i,"click").pipe(m(()=>-1)),d(s,"click").pipe(m(()=>1))).pipe(U(c)).subscribe(p=>{let{width:l}=pe(o);o.scrollBy({left:l*p,behavior:"smooth"})}),r.pipe(U(c),g(p=>n.includes(p))).subscribe(p=>p.click()),o.classList.add("tabbed-labels--linked");for(let p of n){let l=P(`label[for="${p.id}"]`);l.replaceChildren(E("a",{href:`#${l.htmlFor}`,tabIndex:-1},...Array.from(l.childNodes))),d(l.firstElementChild,"click").pipe(U(c),g(f=>!(f.metaKey||f.ctrlKey)),y(f=>{f.preventDefault(),f.stopPropagation()})).subscribe(()=>{history.replaceState({},"",`#${l.htmlFor}`),l.click()})}return G("content.tabs.link")&&a.pipe(Le(1),ae(t)).subscribe(([{active:p},{offset:l}])=>{let f=p.innerText.trim();if(p.hasAttribute("data-md-switching"))p.removeAttribute("data-md-switching");else{let u=e.offsetTop-l.y;for(let w of R("[data-tabs]"))for(let A of R(":scope > input",w)){let Z=P(`label[for="${A.id}"]`);if(Z!==p&&Z.innerText.trim()===f){Z.setAttribute("data-md-switching",""),A.click();break}}window.scrollTo({top:e.offsetTop-u});let h=__md_get("__tabs")||[];__md_set("__tabs",[...new Set([f,...h])])}}),a.pipe(U(c)).subscribe(()=>{for(let p of R("audio, video",e))p.pause()}),$a(n).pipe(y(p=>a.next(p)),_(()=>a.complete()),m(p=>F({ref:e},p)))}).pipe(ze(ie))}function Hn(e,{viewport$:t,target$:r,print$:o}){return T(...R(".annotate:not(.highlight)",e).map(n=>wn(n,{target$:r,print$:o})),...R("pre:not(.mermaid) > code",e).map(n=>On(n,{target$:r,print$:o})),...R("pre.mermaid",e).map(n=>_n(n)),...R("table:not([class])",e).map(n=>Cn(n)),...R("details",e).map(n=>Mn(n,{target$:r,print$:o})),...R("[data-tabs]",e).map(n=>kn(n,{viewport$:t,target$:r})),...R("[title]",e).filter(()=>G("content.tooltips")).map(n=>Ge(n)))}function Ra(e,{alert$:t}){return t.pipe(b(r=>T($(!0),$(!1).pipe(Ye(2e3))).pipe(m(o=>({message:r,active:o})))))}function $n(e,t){let r=P(".md-typeset",e);return H(()=>{let o=new v;return o.subscribe(({message:n,active:i})=>{e.classList.toggle("md-dialog--active",i),r.textContent=n}),Ra(e,t).pipe(y(n=>o.next(n)),_(()=>o.complete()),m(n=>F({ref:e},n)))})}function Pa({viewport$:e}){if(!G("header.autohide"))return $(!1);let t=e.pipe(m(({offset:{y:n}})=>n),Ke(2,1),m(([n,i])=>[nMath.abs(i-n.y)>100),m(([,[n]])=>n),Y()),o=We("search");return Q([e,o]).pipe(m(([{offset:n},i])=>n.y>400&&!i),Y(),b(n=>n?r:$(!1)),q(!1))}function Rn(e,t){return H(()=>Q([Ee(e),Pa(t)])).pipe(m(([{height:r},o])=>({height:r,hidden:o})),Y((r,o)=>r.height===o.height&&r.hidden===o.hidden),B(1))}function Pn(e,{header$:t,main$:r}){return H(()=>{let o=new v,n=o.pipe(ee(),oe(!0));o.pipe(X("active"),je(t)).subscribe(([{active:s},{hidden:a}])=>{e.classList.toggle("md-header--shadow",s&&!a),e.hidden=a});let i=fe(R("[title]",e)).pipe(g(()=>G("content.tooltips")),re(s=>Ge(s)));return r.subscribe(o),t.pipe(U(n),m(s=>F({ref:e},s)),$e(i.pipe(U(n))))})}function Ia(e,{viewport$:t,header$:r}){return pr(e,{viewport$:t,header$:r}).pipe(m(({offset:{y:o}})=>{let{height:n}=pe(e);return{active:o>=n}}),X("active"))}function In(e,t){return H(()=>{let r=new v;r.subscribe({next({active:n}){e.classList.toggle("md-header__title--active",n)},complete(){e.classList.remove("md-header__title--active")}});let o=me(".md-content h1");return typeof o=="undefined"?L:Ia(o,t).pipe(y(n=>r.next(n)),_(()=>r.complete()),m(n=>F({ref:e},n)))})}function Fn(e,{viewport$:t,header$:r}){let o=r.pipe(m(({height:i})=>i),Y()),n=o.pipe(b(()=>Ee(e).pipe(m(({height:i})=>({top:e.offsetTop,bottom:e.offsetTop+i})),X("bottom"))));return Q([o,n,t]).pipe(m(([i,{top:s,bottom:a},{offset:{y:c},size:{height:p}}])=>(p=Math.max(0,p-Math.max(0,s-c,i)-Math.max(0,p+c-a)),{offset:s-i,height:p,active:s-i<=c})),Y((i,s)=>i.offset===s.offset&&i.height===s.height&&i.active===s.active))}function Fa(e){let t=__md_get("__palette")||{index:e.findIndex(o=>matchMedia(o.getAttribute("data-md-color-media")).matches)},r=Math.max(0,Math.min(t.index,e.length-1));return $(...e).pipe(re(o=>d(o,"change").pipe(m(()=>o))),q(e[r]),m(o=>({index:e.indexOf(o),color:{media:o.getAttribute("data-md-color-media"),scheme:o.getAttribute("data-md-color-scheme"),primary:o.getAttribute("data-md-color-primary"),accent:o.getAttribute("data-md-color-accent")}})),B(1))}function jn(e){let t=R("input",e),r=E("meta",{name:"theme-color"});document.head.appendChild(r);let o=E("meta",{name:"color-scheme"});document.head.appendChild(o);let n=At("(prefers-color-scheme: light)");return H(()=>{let i=new v;return i.subscribe(s=>{if(document.body.setAttribute("data-md-color-switching",""),s.color.media==="(prefers-color-scheme)"){let a=matchMedia("(prefers-color-scheme: light)"),c=document.querySelector(a.matches?"[data-md-color-media='(prefers-color-scheme: light)']":"[data-md-color-media='(prefers-color-scheme: dark)']");s.color.scheme=c.getAttribute("data-md-color-scheme"),s.color.primary=c.getAttribute("data-md-color-primary"),s.color.accent=c.getAttribute("data-md-color-accent")}for(let[a,c]of Object.entries(s.color))document.body.setAttribute(`data-md-color-${a}`,c);for(let a=0;a{let s=Te("header"),a=window.getComputedStyle(s);return o.content=a.colorScheme,a.backgroundColor.match(/\d+/g).map(c=>(+c).toString(16).padStart(2,"0")).join("")})).subscribe(s=>r.content=`#${s}`),i.pipe(Oe(ie)).subscribe(()=>{document.body.removeAttribute("data-md-color-switching")}),Fa(t).pipe(U(n.pipe(Le(1))),at(),y(s=>i.next(s)),_(()=>i.complete()),m(s=>F({ref:e},s)))})}function Un(e,{progress$:t}){return H(()=>{let r=new v;return r.subscribe(({value:o})=>{e.style.setProperty("--md-progress-value",`${o}`)}),t.pipe(y(o=>r.next({value:o})),_(()=>r.complete()),m(o=>({ref:e,value:o})))})}var Kr=jt(zr());function ja(e){e.setAttribute("data-md-copying","");let t=e.closest("[data-copy]"),r=t?t.getAttribute("data-copy"):e.innerText;return e.removeAttribute("data-md-copying"),r.trimEnd()}function Wn({alert$:e}){Kr.default.isSupported()&&new j(t=>{new Kr.default("[data-clipboard-target], [data-clipboard-text]",{text:r=>r.getAttribute("data-clipboard-text")||ja(P(r.getAttribute("data-clipboard-target")))}).on("success",r=>t.next(r))}).pipe(y(t=>{t.trigger.focus()}),m(()=>ge("clipboard.copied"))).subscribe(e)}function Dn(e,t){return e.protocol=t.protocol,e.hostname=t.hostname,e}function Ua(e,t){let r=new Map;for(let o of R("url",e)){let n=P("loc",o),i=[Dn(new URL(n.textContent),t)];r.set(`${i[0]}`,i);for(let s of R("[rel=alternate]",o)){let a=s.getAttribute("href");a!=null&&i.push(Dn(new URL(a),t))}}return r}function mr(e){return on(new URL("sitemap.xml",e)).pipe(m(t=>Ua(t,new URL(e))),he(()=>$(new Map)))}function Wa(e,t){if(!(e.target instanceof Element))return L;let r=e.target.closest("a");if(r===null)return L;if(r.target||e.metaKey||e.ctrlKey)return L;let o=new URL(r.href);return o.search=o.hash="",t.has(`${o}`)?(e.preventDefault(),$(new URL(r.href))):L}function Nn(e){let t=new Map;for(let r of R(":scope > *",e.head))t.set(r.outerHTML,r);return t}function Vn(e){for(let t of R("[href], [src]",e))for(let r of["href","src"]){let o=t.getAttribute(r);if(o&&!/^(?:[a-z]+:)?\/\//i.test(o)){t[r]=t[r];break}}return $(e)}function Da(e){for(let o of["[data-md-component=announce]","[data-md-component=container]","[data-md-component=header-topic]","[data-md-component=outdated]","[data-md-component=logo]","[data-md-component=skip]",...G("navigation.tabs.sticky")?["[data-md-component=tabs]"]:[]]){let n=me(o),i=me(o,e);typeof n!="undefined"&&typeof i!="undefined"&&n.replaceWith(i)}let t=Nn(document);for(let[o,n]of Nn(e))t.has(o)?t.delete(o):document.head.appendChild(n);for(let o of t.values()){let n=o.getAttribute("name");n!=="theme-color"&&n!=="color-scheme"&&o.remove()}let r=Te("container");return Fe(R("script",r)).pipe(b(o=>{let n=e.createElement("script");if(o.src){for(let i of o.getAttributeNames())n.setAttribute(i,o.getAttribute(i));return o.replaceWith(n),new j(i=>{n.onload=()=>i.complete()})}else return n.textContent=o.textContent,o.replaceWith(n),L}),ee(),oe(document))}function zn({location$:e,viewport$:t,progress$:r}){let o=we();if(location.protocol==="file:")return L;let n=mr(o.base);$(document).subscribe(Vn);let i=d(document.body,"click").pipe(je(n),b(([c,p])=>Wa(c,p)),le()),s=d(window,"popstate").pipe(m(ve),le());i.pipe(ae(t)).subscribe(([c,{offset:p}])=>{history.replaceState(p,""),history.pushState(null,"",c)}),T(i,s).subscribe(e);let a=e.pipe(X("pathname"),b(c=>rn(c,{progress$:r}).pipe(he(()=>(st(c,!0),L)))),b(Vn),b(Da),le());return T(a.pipe(ae(e,(c,p)=>p)),e.pipe(X("pathname"),b(()=>e),X("hash")),e.pipe(Y((c,p)=>c.pathname===p.pathname&&c.hash===p.hash),b(()=>i),y(()=>history.back()))).subscribe(c=>{var p,l;history.state!==null||!c.hash?window.scrollTo(0,(l=(p=history.state)==null?void 0:p.y)!=null?l:0):(history.scrollRestoration="auto",Zo(c.hash),history.scrollRestoration="manual")}),e.subscribe(()=>{history.scrollRestoration="manual"}),d(window,"beforeunload").subscribe(()=>{history.scrollRestoration="auto"}),t.pipe(X("offset"),be(100)).subscribe(({offset:c})=>{history.replaceState(c,"")}),a}var Qn=jt(Kn());function Yn(e){let t=e.separator.split("|").map(n=>n.replace(/(\(\?[!=<][^)]+\))/g,"").length===0?"\uFFFD":n).join("|"),r=new RegExp(t,"img"),o=(n,i,s)=>`${i}${s}`;return n=>{n=n.replace(/[\s*+\-:~^]+/g," ").trim();let i=new RegExp(`(^|${e.separator}|)(${n.replace(/[|\\{}()[\]^$+*?.-]/g,"\\$&").replace(r,"|")})`,"img");return s=>(0,Qn.default)(s).replace(i,o).replace(/<\/mark>(\s+)]*>/img,"$1")}}function Ht(e){return e.type===1}function fr(e){return e.type===3}function Bn(e,t){let r=ln(e);return T($(location.protocol!=="file:"),We("search")).pipe(He(o=>o),b(()=>t)).subscribe(({config:o,docs:n})=>r.next({type:0,data:{config:o,docs:n,options:{suggest:G("search.suggest")}}})),r}function Gn({document$:e}){let t=we(),r=De(new URL("../versions.json",t.base)).pipe(he(()=>L)),o=r.pipe(m(n=>{let[,i]=t.base.match(/([^/]+)\/?$/);return n.find(({version:s,aliases:a})=>s===i||a.includes(i))||n[0]}));r.pipe(m(n=>new Map(n.map(i=>[`${new URL(`../${i.version}/`,t.base)}`,i]))),b(n=>d(document.body,"click").pipe(g(i=>!i.metaKey&&!i.ctrlKey),ae(o),b(([i,s])=>{if(i.target instanceof Element){let a=i.target.closest("a");if(a&&!a.target&&n.has(a.href)){let c=a.href;return!i.target.closest(".md-version")&&n.get(c)===s?L:(i.preventDefault(),$(c))}}return L}),b(i=>{let{version:s}=n.get(i);return mr(new URL(i)).pipe(m(a=>{let p=ve().href.replace(t.base,"");return a.has(p.split("#")[0])?new URL(`../${s}/${p}`,t.base):new URL(i)}))})))).subscribe(n=>st(n,!0)),Q([r,o]).subscribe(([n,i])=>{P(".md-header__topic").appendChild(gn(n,i))}),e.pipe(b(()=>o)).subscribe(n=>{var s;let i=__md_get("__outdated",sessionStorage);if(i===null){i=!0;let a=((s=t.version)==null?void 0:s.default)||"latest";Array.isArray(a)||(a=[a]);e:for(let c of a)for(let p of n.aliases.concat(n.version))if(new RegExp(c,"i").test(p)){i=!1;break e}__md_set("__outdated",i,sessionStorage)}if(i)for(let a of ne("outdated"))a.hidden=!1})}function Ka(e,{worker$:t}){let{searchParams:r}=ve();r.has("q")&&(Be("search",!0),e.value=r.get("q"),e.focus(),We("search").pipe(He(i=>!i)).subscribe(()=>{let i=ve();i.searchParams.delete("q"),history.replaceState({},"",`${i}`)}));let o=vt(e),n=T(t.pipe(He(Ht)),d(e,"keyup"),o).pipe(m(()=>e.value),Y());return Q([n,o]).pipe(m(([i,s])=>({value:i,focus:s})),B(1))}function Jn(e,{worker$:t}){let r=new v,o=r.pipe(ee(),oe(!0));Q([t.pipe(He(Ht)),r],(i,s)=>s).pipe(X("value")).subscribe(({value:i})=>t.next({type:2,data:i})),r.pipe(X("focus")).subscribe(({focus:i})=>{i&&Be("search",i)}),d(e.form,"reset").pipe(U(o)).subscribe(()=>e.focus());let n=P("header [for=__search]");return d(n,"click").subscribe(()=>e.focus()),Ka(e,{worker$:t}).pipe(y(i=>r.next(i)),_(()=>r.complete()),m(i=>F({ref:e},i)),B(1))}function Xn(e,{worker$:t,query$:r}){let o=new v,n=Yo(e.parentElement).pipe(g(Boolean)),i=e.parentElement,s=P(":scope > :first-child",e),a=P(":scope > :last-child",e);We("search").subscribe(l=>a.setAttribute("role",l?"list":"presentation")),o.pipe(ae(r),Ir(t.pipe(He(Ht)))).subscribe(([{items:l},{value:f}])=>{switch(l.length){case 0:s.textContent=f.length?ge("search.result.none"):ge("search.result.placeholder");break;case 1:s.textContent=ge("search.result.one");break;default:let u=ar(l.length);s.textContent=ge("search.result.other",u)}});let c=o.pipe(y(()=>a.innerHTML=""),b(({items:l})=>T($(...l.slice(0,10)),$(...l.slice(10)).pipe(Ke(4),jr(n),b(([f])=>f)))),m(hn),le());return c.subscribe(l=>a.appendChild(l)),c.pipe(re(l=>{let f=me("details",l);return typeof f=="undefined"?L:d(f,"toggle").pipe(U(o),m(()=>f))})).subscribe(l=>{l.open===!1&&l.offsetTop<=i.scrollTop&&i.scrollTo({top:l.offsetTop})}),t.pipe(g(fr),m(({data:l})=>l)).pipe(y(l=>o.next(l)),_(()=>o.complete()),m(l=>F({ref:e},l)))}function Qa(e,{query$:t}){return t.pipe(m(({value:r})=>{let o=ve();return o.hash="",r=r.replace(/\s+/g,"+").replace(/&/g,"%26").replace(/=/g,"%3D"),o.search=`q=${r}`,{url:o}}))}function Zn(e,t){let r=new v,o=r.pipe(ee(),oe(!0));return r.subscribe(({url:n})=>{e.setAttribute("data-clipboard-text",e.href),e.href=`${n}`}),d(e,"click").pipe(U(o)).subscribe(n=>n.preventDefault()),Qa(e,t).pipe(y(n=>r.next(n)),_(()=>r.complete()),m(n=>F({ref:e},n)))}function ei(e,{worker$:t,keyboard$:r}){let o=new v,n=Te("search-query"),i=T(d(n,"keydown"),d(n,"focus")).pipe(Oe(ie),m(()=>n.value),Y());return o.pipe(je(i),m(([{suggest:a},c])=>{let p=c.split(/([\s-]+)/);if(a!=null&&a.length&&p[p.length-1]){let l=a[a.length-1];l.startsWith(p[p.length-1])&&(p[p.length-1]=l)}else p.length=0;return p})).subscribe(a=>e.innerHTML=a.join("").replace(/\s/g," ")),r.pipe(g(({mode:a})=>a==="search")).subscribe(a=>{switch(a.type){case"ArrowRight":e.innerText.length&&n.selectionStart===n.value.length&&(n.value=e.innerText);break}}),t.pipe(g(fr),m(({data:a})=>a)).pipe(y(a=>o.next(a)),_(()=>o.complete()),m(()=>({ref:e})))}function ti(e,{index$:t,keyboard$:r}){let o=we();try{let n=Bn(o.search,t),i=Te("search-query",e),s=Te("search-result",e);d(e,"click").pipe(g(({target:c})=>c instanceof Element&&!!c.closest("a"))).subscribe(()=>Be("search",!1)),r.pipe(g(({mode:c})=>c==="search")).subscribe(c=>{let p=Re();switch(c.type){case"Enter":if(p===i){let l=new Map;for(let f of R(":first-child [href]",s)){let u=f.firstElementChild;l.set(f,parseFloat(u.getAttribute("data-md-score")))}if(l.size){let[[f]]=[...l].sort(([,u],[,h])=>h-u);f.click()}c.claim()}break;case"Escape":case"Tab":Be("search",!1),i.blur();break;case"ArrowUp":case"ArrowDown":if(typeof p=="undefined")i.focus();else{let l=[i,...R(":not(details) > [href], summary, details[open] [href]",s)],f=Math.max(0,(Math.max(0,l.indexOf(p))+l.length+(c.type==="ArrowUp"?-1:1))%l.length);l[f].focus()}c.claim();break;default:i!==Re()&&i.focus()}}),r.pipe(g(({mode:c})=>c==="global")).subscribe(c=>{switch(c.type){case"f":case"s":case"/":i.focus(),i.select(),c.claim();break}});let a=Jn(i,{worker$:n});return T(a,Xn(s,{worker$:n,query$:a})).pipe($e(...ne("search-share",e).map(c=>Zn(c,{query$:a})),...ne("search-suggest",e).map(c=>ei(c,{worker$:n,keyboard$:r}))))}catch(n){return e.hidden=!0,qe}}function ri(e,{index$:t,location$:r}){return Q([t,r.pipe(q(ve()),g(o=>!!o.searchParams.get("h")))]).pipe(m(([o,n])=>Yn(o.config)(n.searchParams.get("h"))),m(o=>{var s;let n=new Map,i=document.createNodeIterator(e,NodeFilter.SHOW_TEXT);for(let a=i.nextNode();a;a=i.nextNode())if((s=a.parentElement)!=null&&s.offsetHeight){let c=a.textContent,p=o(c);p.length>c.length&&n.set(a,p)}for(let[a,c]of n){let{childNodes:p}=E("span",null,c);a.replaceWith(...Array.from(p))}return{ref:e,nodes:n}}))}function Ya(e,{viewport$:t,main$:r}){let o=e.closest(".md-grid"),n=o.offsetTop-o.parentElement.offsetTop;return Q([r,t]).pipe(m(([{offset:i,height:s},{offset:{y:a}}])=>(s=s+Math.min(n,Math.max(0,a-i))-n,{height:s,locked:a>=i+n})),Y((i,s)=>i.height===s.height&&i.locked===s.locked))}function Qr(e,o){var n=o,{header$:t}=n,r=to(n,["header$"]);let i=P(".md-sidebar__scrollwrap",e),{y:s}=Ue(i);return H(()=>{let a=new v,c=a.pipe(ee(),oe(!0)),p=a.pipe(Me(0,de));return p.pipe(ae(t)).subscribe({next([{height:l},{height:f}]){i.style.height=`${l-2*s}px`,e.style.top=`${f}px`},complete(){i.style.height="",e.style.top=""}}),p.pipe(He()).subscribe(()=>{for(let l of R(".md-nav__link--active[href]",e)){if(!l.clientHeight)continue;let f=l.closest(".md-sidebar__scrollwrap");if(typeof f!="undefined"){let u=l.offsetTop-f.offsetTop,{height:h}=pe(f);f.scrollTo({top:u-h/2})}}}),fe(R("label[tabindex]",e)).pipe(re(l=>d(l,"click").pipe(Oe(ie),m(()=>l),U(c)))).subscribe(l=>{let f=P(`[id="${l.htmlFor}"]`);P(`[aria-labelledby="${l.id}"]`).setAttribute("aria-expanded",`${f.checked}`)}),Ya(e,r).pipe(y(l=>a.next(l)),_(()=>a.complete()),m(l=>F({ref:e},l)))})}function oi(e,t){if(typeof t!="undefined"){let r=`https://api.github.com/repos/${e}/${t}`;return Lt(De(`${r}/releases/latest`).pipe(he(()=>L),m(o=>({version:o.tag_name})),Qe({})),De(r).pipe(he(()=>L),m(o=>({stars:o.stargazers_count,forks:o.forks_count})),Qe({}))).pipe(m(([o,n])=>F(F({},o),n)))}else{let r=`https://api.github.com/users/${e}`;return De(r).pipe(m(o=>({repositories:o.public_repos})),Qe({}))}}function ni(e,t){let r=`https://${e}/api/v4/projects/${encodeURIComponent(t)}`;return De(r).pipe(he(()=>L),m(({star_count:o,forks_count:n})=>({stars:o,forks:n})),Qe({}))}function ii(e){let t=e.match(/^.+github\.com\/([^/]+)\/?([^/]+)?/i);if(t){let[,r,o]=t;return oi(r,o)}if(t=e.match(/^.+?([^/]*gitlab[^/]+)\/(.+?)\/?$/i),t){let[,r,o]=t;return ni(r,o)}return L}var Ba;function Ga(e){return Ba||(Ba=H(()=>{let t=__md_get("__source",sessionStorage);if(t)return $(t);if(ne("consent").length){let o=__md_get("__consent");if(!(o&&o.github))return L}return ii(e.href).pipe(y(o=>__md_set("__source",o,sessionStorage)))}).pipe(he(()=>L),g(t=>Object.keys(t).length>0),m(t=>({facts:t})),B(1)))}function ai(e){let t=P(":scope > :last-child",e);return H(()=>{let r=new v;return r.subscribe(({facts:o})=>{t.appendChild(bn(o)),t.classList.add("md-source__repository--active")}),Ga(e).pipe(y(o=>r.next(o)),_(()=>r.complete()),m(o=>F({ref:e},o)))})}function Ja(e,{viewport$:t,header$:r}){return Ee(document.body).pipe(b(()=>pr(e,{header$:r,viewport$:t})),m(({offset:{y:o}})=>({hidden:o>=10})),X("hidden"))}function si(e,t){return H(()=>{let r=new v;return r.subscribe({next({hidden:o}){e.hidden=o},complete(){e.hidden=!1}}),(G("navigation.tabs.sticky")?$({hidden:!1}):Ja(e,t)).pipe(y(o=>r.next(o)),_(()=>r.complete()),m(o=>F({ref:e},o)))})}function Xa(e,{viewport$:t,header$:r}){let o=new Map,n=R(".md-nav__link",e);for(let a of n){let c=decodeURIComponent(a.hash.substring(1)),p=me(`[id="${c}"]`);typeof p!="undefined"&&o.set(a,p)}let i=r.pipe(X("height"),m(({height:a})=>{let c=Te("main"),p=P(":scope > :first-child",c);return a+.8*(p.offsetTop-c.offsetTop)}),le());return Ee(document.body).pipe(X("height"),b(a=>H(()=>{let c=[];return $([...o].reduce((p,[l,f])=>{for(;c.length&&o.get(c[c.length-1]).tagName>=f.tagName;)c.pop();let u=f.offsetTop;for(;!u&&f.parentElement;)f=f.parentElement,u=f.offsetTop;let h=f.offsetParent;for(;h;h=h.offsetParent)u+=h.offsetTop;return p.set([...c=[...c,l]].reverse(),u)},new Map))}).pipe(m(c=>new Map([...c].sort(([,p],[,l])=>p-l))),je(i),b(([c,p])=>t.pipe(Rr(([l,f],{offset:{y:u},size:h})=>{let w=u+h.height>=Math.floor(a.height);for(;f.length;){let[,A]=f[0];if(A-p=u&&!w)f=[l.pop(),...f];else break}return[l,f]},[[],[...c]]),Y((l,f)=>l[0]===f[0]&&l[1]===f[1])))))).pipe(m(([a,c])=>({prev:a.map(([p])=>p),next:c.map(([p])=>p)})),q({prev:[],next:[]}),Ke(2,1),m(([a,c])=>a.prev.length{let i=new v,s=i.pipe(ee(),oe(!0));if(i.subscribe(({prev:a,next:c})=>{for(let[p]of c)p.classList.remove("md-nav__link--passed"),p.classList.remove("md-nav__link--active");for(let[p,[l]]of a.entries())l.classList.add("md-nav__link--passed"),l.classList.toggle("md-nav__link--active",p===a.length-1)}),G("toc.follow")){let a=T(t.pipe(be(1),m(()=>{})),t.pipe(be(250),m(()=>"smooth")));i.pipe(g(({prev:c})=>c.length>0),je(o.pipe(Oe(ie))),ae(a)).subscribe(([[{prev:c}],p])=>{let[l]=c[c.length-1];if(l.offsetHeight){let f=sr(l);if(typeof f!="undefined"){let u=l.offsetTop-f.offsetTop,{height:h}=pe(f);f.scrollTo({top:u-h/2,behavior:p})}}})}return G("navigation.tracking")&&t.pipe(U(s),X("offset"),be(250),Le(1),U(n.pipe(Le(1))),at({delay:250}),ae(i)).subscribe(([,{prev:a}])=>{let c=ve(),p=a[a.length-1];if(p&&p.length){let[l]=p,{hash:f}=new URL(l.href);c.hash!==f&&(c.hash=f,history.replaceState({},"",`${c}`))}else c.hash="",history.replaceState({},"",`${c}`)}),Xa(e,{viewport$:t,header$:r}).pipe(y(a=>i.next(a)),_(()=>i.complete()),m(a=>F({ref:e},a)))})}function Za(e,{viewport$:t,main$:r,target$:o}){let n=t.pipe(m(({offset:{y:s}})=>s),Ke(2,1),m(([s,a])=>s>a&&a>0),Y()),i=r.pipe(m(({active:s})=>s));return Q([i,n]).pipe(m(([s,a])=>!(s&&a)),Y(),U(o.pipe(Le(1))),oe(!0),at({delay:250}),m(s=>({hidden:s})))}function pi(e,{viewport$:t,header$:r,main$:o,target$:n}){let i=new v,s=i.pipe(ee(),oe(!0));return i.subscribe({next({hidden:a}){e.hidden=a,a?(e.setAttribute("tabindex","-1"),e.blur()):e.removeAttribute("tabindex")},complete(){e.style.top="",e.hidden=!0,e.removeAttribute("tabindex")}}),r.pipe(U(s),X("height")).subscribe(({height:a})=>{e.style.top=`${a+16}px`}),d(e,"click").subscribe(a=>{a.preventDefault(),window.scrollTo({top:0})}),Za(e,{viewport$:t,main$:o,target$:n}).pipe(y(a=>i.next(a)),_(()=>i.complete()),m(a=>F({ref:e},a)))}function li({document$:e}){e.pipe(b(()=>R(".md-ellipsis")),re(t=>yt(t).pipe(U(e.pipe(Le(1))),g(r=>r),m(()=>t),ye(1))),g(t=>t.offsetWidth{let r=t.innerText,o=t.closest("a")||t;return o.title=r,Ge(o).pipe(U(e.pipe(Le(1))),_(()=>o.removeAttribute("title")))})).subscribe(),e.pipe(b(()=>R(".md-status")),re(t=>Ge(t))).subscribe()}function mi({document$:e,tablet$:t}){e.pipe(b(()=>R(".md-toggle--indeterminate")),y(r=>{r.indeterminate=!0,r.checked=!1}),re(r=>d(r,"change").pipe(Fr(()=>r.classList.contains("md-toggle--indeterminate")),m(()=>r))),ae(t)).subscribe(([r,o])=>{r.classList.remove("md-toggle--indeterminate"),o&&(r.checked=!1)})}function es(){return/(iPad|iPhone|iPod)/.test(navigator.userAgent)}function fi({document$:e}){e.pipe(b(()=>R("[data-md-scrollfix]")),y(t=>t.removeAttribute("data-md-scrollfix")),g(es),re(t=>d(t,"touchstart").pipe(m(()=>t)))).subscribe(t=>{let r=t.scrollTop;r===0?t.scrollTop=1:r+t.offsetHeight===t.scrollHeight&&(t.scrollTop=r-1)})}function ui({viewport$:e,tablet$:t}){Q([We("search"),t]).pipe(m(([r,o])=>r&&!o),b(r=>$(r).pipe(Ye(r?400:100))),ae(e)).subscribe(([r,{offset:{y:o}}])=>{if(r)document.body.setAttribute("data-md-scrolllock",""),document.body.style.top=`-${o}px`;else{let n=-1*parseInt(document.body.style.top,10);document.body.removeAttribute("data-md-scrolllock"),document.body.style.top="",n&&window.scrollTo(0,n)}})}Object.entries||(Object.entries=function(e){let t=[];for(let r of Object.keys(e))t.push([r,e[r]]);return t});Object.values||(Object.values=function(e){let t=[];for(let r of Object.keys(e))t.push(e[r]);return t});typeof Element!="undefined"&&(Element.prototype.scrollTo||(Element.prototype.scrollTo=function(e,t){typeof e=="object"?(this.scrollLeft=e.left,this.scrollTop=e.top):(this.scrollLeft=e,this.scrollTop=t)}),Element.prototype.replaceWith||(Element.prototype.replaceWith=function(...e){let t=this.parentNode;if(t){e.length===0&&t.removeChild(this);for(let r=e.length-1;r>=0;r--){let o=e[r];typeof o=="string"?o=document.createTextNode(o):o.parentNode&&o.parentNode.removeChild(o),r?t.insertBefore(this.previousSibling,o):t.replaceChild(o,this)}}}));function ts(){return location.protocol==="file:"?gt(`${new URL("search/search_index.js",Yr.base)}`).pipe(m(()=>__index),B(1)):De(new URL("search/search_index.json",Yr.base))}document.documentElement.classList.remove("no-js");document.documentElement.classList.add("js");var rt=No(),Rt=Jo(),wt=en(Rt),Br=Go(),_e=pn(),ur=At("(min-width: 960px)"),hi=At("(min-width: 1220px)"),bi=tn(),Yr=we(),vi=document.forms.namedItem("search")?ts():qe,Gr=new v;Wn({alert$:Gr});var Jr=new v;G("navigation.instant")&&zn({location$:Rt,viewport$:_e,progress$:Jr}).subscribe(rt);var di;((di=Yr.version)==null?void 0:di.provider)==="mike"&&Gn({document$:rt});T(Rt,wt).pipe(Ye(125)).subscribe(()=>{Be("drawer",!1),Be("search",!1)});Br.pipe(g(({mode:e})=>e==="global")).subscribe(e=>{switch(e.type){case"p":case",":let t=me("link[rel=prev]");typeof t!="undefined"&&st(t);break;case"n":case".":let r=me("link[rel=next]");typeof r!="undefined"&&st(r);break;case"Enter":let o=Re();o instanceof HTMLLabelElement&&o.click()}});li({document$:rt});mi({document$:rt,tablet$:ur});fi({document$:rt});ui({viewport$:_e,tablet$:ur});var tt=Rn(Te("header"),{viewport$:_e}),$t=rt.pipe(m(()=>Te("main")),b(e=>Fn(e,{viewport$:_e,header$:tt})),B(1)),rs=T(...ne("consent").map(e=>fn(e,{target$:wt})),...ne("dialog").map(e=>$n(e,{alert$:Gr})),...ne("header").map(e=>Pn(e,{viewport$:_e,header$:tt,main$:$t})),...ne("palette").map(e=>jn(e)),...ne("progress").map(e=>Un(e,{progress$:Jr})),...ne("search").map(e=>ti(e,{index$:vi,keyboard$:Br})),...ne("source").map(e=>ai(e))),os=H(()=>T(...ne("announce").map(e=>mn(e)),...ne("content").map(e=>Hn(e,{viewport$:_e,target$:wt,print$:bi})),...ne("content").map(e=>G("search.highlight")?ri(e,{index$:vi,location$:Rt}):L),...ne("header-title").map(e=>In(e,{viewport$:_e,header$:tt})),...ne("sidebar").map(e=>e.getAttribute("data-md-type")==="navigation"?Ur(hi,()=>Qr(e,{viewport$:_e,header$:tt,main$:$t})):Ur(ur,()=>Qr(e,{viewport$:_e,header$:tt,main$:$t}))),...ne("tabs").map(e=>si(e,{viewport$:_e,header$:tt})),...ne("toc").map(e=>ci(e,{viewport$:_e,header$:tt,main$:$t,target$:wt})),...ne("top").map(e=>pi(e,{viewport$:_e,header$:tt,main$:$t,target$:wt})))),gi=rt.pipe(b(()=>os),$e(rs),B(1));gi.subscribe();window.document$=rt;window.location$=Rt;window.target$=wt;window.keyboard$=Br;window.viewport$=_e;window.tablet$=ur;window.screen$=hi;window.print$=bi;window.alert$=Gr;window.progress$=Jr;window.component$=gi;})(); +//# sourceMappingURL=bundle.c8d2eff1.min.js.map + diff --git a/assets/javascripts/bundle.c8d2eff1.min.js.map b/assets/javascripts/bundle.c8d2eff1.min.js.map new file mode 100644 index 00000000..fc522dba --- /dev/null +++ b/assets/javascripts/bundle.c8d2eff1.min.js.map @@ -0,0 +1,7 @@ +{ + "version": 3, + "sources": ["node_modules/focus-visible/dist/focus-visible.js", "node_modules/clipboard/dist/clipboard.js", "node_modules/escape-html/index.js", "src/templates/assets/javascripts/bundle.ts", "node_modules/rxjs/node_modules/tslib/tslib.es6.js", "node_modules/rxjs/src/internal/util/isFunction.ts", "node_modules/rxjs/src/internal/util/createErrorClass.ts", "node_modules/rxjs/src/internal/util/UnsubscriptionError.ts", "node_modules/rxjs/src/internal/util/arrRemove.ts", "node_modules/rxjs/src/internal/Subscription.ts", "node_modules/rxjs/src/internal/config.ts", "node_modules/rxjs/src/internal/scheduler/timeoutProvider.ts", "node_modules/rxjs/src/internal/util/reportUnhandledError.ts", "node_modules/rxjs/src/internal/util/noop.ts", "node_modules/rxjs/src/internal/NotificationFactories.ts", "node_modules/rxjs/src/internal/util/errorContext.ts", "node_modules/rxjs/src/internal/Subscriber.ts", "node_modules/rxjs/src/internal/symbol/observable.ts", "node_modules/rxjs/src/internal/util/identity.ts", "node_modules/rxjs/src/internal/util/pipe.ts", "node_modules/rxjs/src/internal/Observable.ts", "node_modules/rxjs/src/internal/util/lift.ts", "node_modules/rxjs/src/internal/operators/OperatorSubscriber.ts", "node_modules/rxjs/src/internal/scheduler/animationFrameProvider.ts", "node_modules/rxjs/src/internal/util/ObjectUnsubscribedError.ts", "node_modules/rxjs/src/internal/Subject.ts", "node_modules/rxjs/src/internal/scheduler/dateTimestampProvider.ts", "node_modules/rxjs/src/internal/ReplaySubject.ts", "node_modules/rxjs/src/internal/scheduler/Action.ts", "node_modules/rxjs/src/internal/scheduler/intervalProvider.ts", "node_modules/rxjs/src/internal/scheduler/AsyncAction.ts", "node_modules/rxjs/src/internal/Scheduler.ts", "node_modules/rxjs/src/internal/scheduler/AsyncScheduler.ts", "node_modules/rxjs/src/internal/scheduler/async.ts", "node_modules/rxjs/src/internal/scheduler/AnimationFrameAction.ts", "node_modules/rxjs/src/internal/scheduler/AnimationFrameScheduler.ts", "node_modules/rxjs/src/internal/scheduler/animationFrame.ts", "node_modules/rxjs/src/internal/observable/empty.ts", "node_modules/rxjs/src/internal/util/isScheduler.ts", "node_modules/rxjs/src/internal/util/args.ts", "node_modules/rxjs/src/internal/util/isArrayLike.ts", "node_modules/rxjs/src/internal/util/isPromise.ts", "node_modules/rxjs/src/internal/util/isInteropObservable.ts", "node_modules/rxjs/src/internal/util/isAsyncIterable.ts", "node_modules/rxjs/src/internal/util/throwUnobservableError.ts", "node_modules/rxjs/src/internal/symbol/iterator.ts", "node_modules/rxjs/src/internal/util/isIterable.ts", "node_modules/rxjs/src/internal/util/isReadableStreamLike.ts", "node_modules/rxjs/src/internal/observable/innerFrom.ts", "node_modules/rxjs/src/internal/util/executeSchedule.ts", "node_modules/rxjs/src/internal/operators/observeOn.ts", "node_modules/rxjs/src/internal/operators/subscribeOn.ts", "node_modules/rxjs/src/internal/scheduled/scheduleObservable.ts", "node_modules/rxjs/src/internal/scheduled/schedulePromise.ts", "node_modules/rxjs/src/internal/scheduled/scheduleArray.ts", "node_modules/rxjs/src/internal/scheduled/scheduleIterable.ts", "node_modules/rxjs/src/internal/scheduled/scheduleAsyncIterable.ts", "node_modules/rxjs/src/internal/scheduled/scheduleReadableStreamLike.ts", "node_modules/rxjs/src/internal/scheduled/scheduled.ts", "node_modules/rxjs/src/internal/observable/from.ts", "node_modules/rxjs/src/internal/observable/of.ts", "node_modules/rxjs/src/internal/observable/throwError.ts", "node_modules/rxjs/src/internal/util/EmptyError.ts", "node_modules/rxjs/src/internal/util/isDate.ts", "node_modules/rxjs/src/internal/operators/map.ts", "node_modules/rxjs/src/internal/util/mapOneOrManyArgs.ts", "node_modules/rxjs/src/internal/util/argsArgArrayOrObject.ts", "node_modules/rxjs/src/internal/util/createObject.ts", "node_modules/rxjs/src/internal/observable/combineLatest.ts", "node_modules/rxjs/src/internal/operators/mergeInternals.ts", "node_modules/rxjs/src/internal/operators/mergeMap.ts", "node_modules/rxjs/src/internal/operators/mergeAll.ts", "node_modules/rxjs/src/internal/operators/concatAll.ts", "node_modules/rxjs/src/internal/observable/concat.ts", "node_modules/rxjs/src/internal/observable/defer.ts", "node_modules/rxjs/src/internal/observable/fromEvent.ts", "node_modules/rxjs/src/internal/observable/fromEventPattern.ts", "node_modules/rxjs/src/internal/observable/timer.ts", "node_modules/rxjs/src/internal/observable/merge.ts", "node_modules/rxjs/src/internal/observable/never.ts", "node_modules/rxjs/src/internal/util/argsOrArgArray.ts", "node_modules/rxjs/src/internal/operators/filter.ts", "node_modules/rxjs/src/internal/observable/zip.ts", "node_modules/rxjs/src/internal/operators/audit.ts", "node_modules/rxjs/src/internal/operators/auditTime.ts", "node_modules/rxjs/src/internal/operators/bufferCount.ts", "node_modules/rxjs/src/internal/operators/catchError.ts", "node_modules/rxjs/src/internal/operators/scanInternals.ts", "node_modules/rxjs/src/internal/operators/combineLatest.ts", "node_modules/rxjs/src/internal/operators/combineLatestWith.ts", "node_modules/rxjs/src/internal/operators/debounceTime.ts", "node_modules/rxjs/src/internal/operators/defaultIfEmpty.ts", "node_modules/rxjs/src/internal/operators/take.ts", "node_modules/rxjs/src/internal/operators/ignoreElements.ts", "node_modules/rxjs/src/internal/operators/mapTo.ts", "node_modules/rxjs/src/internal/operators/delayWhen.ts", "node_modules/rxjs/src/internal/operators/delay.ts", "node_modules/rxjs/src/internal/operators/distinctUntilChanged.ts", "node_modules/rxjs/src/internal/operators/distinctUntilKeyChanged.ts", "node_modules/rxjs/src/internal/operators/throwIfEmpty.ts", "node_modules/rxjs/src/internal/operators/endWith.ts", "node_modules/rxjs/src/internal/operators/finalize.ts", "node_modules/rxjs/src/internal/operators/first.ts", "node_modules/rxjs/src/internal/operators/takeLast.ts", "node_modules/rxjs/src/internal/operators/merge.ts", "node_modules/rxjs/src/internal/operators/mergeWith.ts", "node_modules/rxjs/src/internal/operators/repeat.ts", "node_modules/rxjs/src/internal/operators/scan.ts", "node_modules/rxjs/src/internal/operators/share.ts", "node_modules/rxjs/src/internal/operators/shareReplay.ts", "node_modules/rxjs/src/internal/operators/skip.ts", "node_modules/rxjs/src/internal/operators/skipUntil.ts", "node_modules/rxjs/src/internal/operators/startWith.ts", "node_modules/rxjs/src/internal/operators/switchMap.ts", "node_modules/rxjs/src/internal/operators/takeUntil.ts", "node_modules/rxjs/src/internal/operators/takeWhile.ts", "node_modules/rxjs/src/internal/operators/tap.ts", "node_modules/rxjs/src/internal/operators/throttle.ts", "node_modules/rxjs/src/internal/operators/throttleTime.ts", "node_modules/rxjs/src/internal/operators/withLatestFrom.ts", "node_modules/rxjs/src/internal/operators/zip.ts", "node_modules/rxjs/src/internal/operators/zipWith.ts", "src/templates/assets/javascripts/browser/document/index.ts", "src/templates/assets/javascripts/browser/element/_/index.ts", "src/templates/assets/javascripts/browser/element/focus/index.ts", "src/templates/assets/javascripts/browser/element/hover/index.ts", "src/templates/assets/javascripts/browser/element/offset/_/index.ts", "src/templates/assets/javascripts/browser/element/offset/content/index.ts", "src/templates/assets/javascripts/utilities/h/index.ts", "src/templates/assets/javascripts/utilities/round/index.ts", "src/templates/assets/javascripts/browser/script/index.ts", "src/templates/assets/javascripts/browser/element/size/_/index.ts", "src/templates/assets/javascripts/browser/element/size/content/index.ts", "src/templates/assets/javascripts/browser/element/visibility/index.ts", "src/templates/assets/javascripts/browser/toggle/index.ts", "src/templates/assets/javascripts/browser/keyboard/index.ts", "src/templates/assets/javascripts/browser/location/_/index.ts", "src/templates/assets/javascripts/browser/location/hash/index.ts", "src/templates/assets/javascripts/browser/media/index.ts", "src/templates/assets/javascripts/browser/request/index.ts", "src/templates/assets/javascripts/browser/viewport/offset/index.ts", "src/templates/assets/javascripts/browser/viewport/size/index.ts", "src/templates/assets/javascripts/browser/viewport/_/index.ts", "src/templates/assets/javascripts/browser/viewport/at/index.ts", "src/templates/assets/javascripts/browser/worker/index.ts", "src/templates/assets/javascripts/_/index.ts", "src/templates/assets/javascripts/components/_/index.ts", "src/templates/assets/javascripts/components/announce/index.ts", "src/templates/assets/javascripts/components/consent/index.ts", "src/templates/assets/javascripts/templates/tooltip/index.tsx", "src/templates/assets/javascripts/templates/annotation/index.tsx", "src/templates/assets/javascripts/templates/clipboard/index.tsx", "src/templates/assets/javascripts/templates/search/index.tsx", "src/templates/assets/javascripts/templates/source/index.tsx", "src/templates/assets/javascripts/templates/tabbed/index.tsx", "src/templates/assets/javascripts/templates/table/index.tsx", "src/templates/assets/javascripts/templates/version/index.tsx", "src/templates/assets/javascripts/components/tooltip/index.ts", "src/templates/assets/javascripts/components/content/annotation/_/index.ts", "src/templates/assets/javascripts/components/content/annotation/list/index.ts", "src/templates/assets/javascripts/components/content/annotation/block/index.ts", "src/templates/assets/javascripts/components/content/code/_/index.ts", "src/templates/assets/javascripts/components/content/details/index.ts", "src/templates/assets/javascripts/components/content/mermaid/index.css", "src/templates/assets/javascripts/components/content/mermaid/index.ts", "src/templates/assets/javascripts/components/content/table/index.ts", "src/templates/assets/javascripts/components/content/tabs/index.ts", "src/templates/assets/javascripts/components/content/_/index.ts", "src/templates/assets/javascripts/components/dialog/index.ts", "src/templates/assets/javascripts/components/header/_/index.ts", "src/templates/assets/javascripts/components/header/title/index.ts", "src/templates/assets/javascripts/components/main/index.ts", "src/templates/assets/javascripts/components/palette/index.ts", "src/templates/assets/javascripts/components/progress/index.ts", "src/templates/assets/javascripts/integrations/clipboard/index.ts", "src/templates/assets/javascripts/integrations/sitemap/index.ts", "src/templates/assets/javascripts/integrations/instant/index.ts", "src/templates/assets/javascripts/integrations/search/highlighter/index.ts", "src/templates/assets/javascripts/integrations/search/worker/message/index.ts", "src/templates/assets/javascripts/integrations/search/worker/_/index.ts", "src/templates/assets/javascripts/integrations/version/index.ts", "src/templates/assets/javascripts/components/search/query/index.ts", "src/templates/assets/javascripts/components/search/result/index.ts", "src/templates/assets/javascripts/components/search/share/index.ts", "src/templates/assets/javascripts/components/search/suggest/index.ts", "src/templates/assets/javascripts/components/search/_/index.ts", "src/templates/assets/javascripts/components/search/highlight/index.ts", "src/templates/assets/javascripts/components/sidebar/index.ts", "src/templates/assets/javascripts/components/source/facts/github/index.ts", "src/templates/assets/javascripts/components/source/facts/gitlab/index.ts", "src/templates/assets/javascripts/components/source/facts/_/index.ts", "src/templates/assets/javascripts/components/source/_/index.ts", "src/templates/assets/javascripts/components/tabs/index.ts", "src/templates/assets/javascripts/components/toc/index.ts", "src/templates/assets/javascripts/components/top/index.ts", "src/templates/assets/javascripts/patches/ellipsis/index.ts", "src/templates/assets/javascripts/patches/indeterminate/index.ts", "src/templates/assets/javascripts/patches/scrollfix/index.ts", "src/templates/assets/javascripts/patches/scrolllock/index.ts", "src/templates/assets/javascripts/polyfills/index.ts"], + "sourcesContent": ["(function (global, factory) {\n typeof exports === 'object' && typeof module !== 'undefined' ? factory() :\n typeof define === 'function' && define.amd ? define(factory) :\n (factory());\n}(this, (function () { 'use strict';\n\n /**\n * Applies the :focus-visible polyfill at the given scope.\n * A scope in this case is either the top-level Document or a Shadow Root.\n *\n * @param {(Document|ShadowRoot)} scope\n * @see https://github.com/WICG/focus-visible\n */\n function applyFocusVisiblePolyfill(scope) {\n var hadKeyboardEvent = true;\n var hadFocusVisibleRecently = false;\n var hadFocusVisibleRecentlyTimeout = null;\n\n var inputTypesAllowlist = {\n text: true,\n search: true,\n url: true,\n tel: true,\n email: true,\n password: true,\n number: true,\n date: true,\n month: true,\n week: true,\n time: true,\n datetime: true,\n 'datetime-local': true\n };\n\n /**\n * Helper function for legacy browsers and iframes which sometimes focus\n * elements like document, body, and non-interactive SVG.\n * @param {Element} el\n */\n function isValidFocusTarget(el) {\n if (\n el &&\n el !== document &&\n el.nodeName !== 'HTML' &&\n el.nodeName !== 'BODY' &&\n 'classList' in el &&\n 'contains' in el.classList\n ) {\n return true;\n }\n return false;\n }\n\n /**\n * Computes whether the given element should automatically trigger the\n * `focus-visible` class being added, i.e. whether it should always match\n * `:focus-visible` when focused.\n * @param {Element} el\n * @return {boolean}\n */\n function focusTriggersKeyboardModality(el) {\n var type = el.type;\n var tagName = el.tagName;\n\n if (tagName === 'INPUT' && inputTypesAllowlist[type] && !el.readOnly) {\n return true;\n }\n\n if (tagName === 'TEXTAREA' && !el.readOnly) {\n return true;\n }\n\n if (el.isContentEditable) {\n return true;\n }\n\n return false;\n }\n\n /**\n * Add the `focus-visible` class to the given element if it was not added by\n * the author.\n * @param {Element} el\n */\n function addFocusVisibleClass(el) {\n if (el.classList.contains('focus-visible')) {\n return;\n }\n el.classList.add('focus-visible');\n el.setAttribute('data-focus-visible-added', '');\n }\n\n /**\n * Remove the `focus-visible` class from the given element if it was not\n * originally added by the author.\n * @param {Element} el\n */\n function removeFocusVisibleClass(el) {\n if (!el.hasAttribute('data-focus-visible-added')) {\n return;\n }\n el.classList.remove('focus-visible');\n el.removeAttribute('data-focus-visible-added');\n }\n\n /**\n * If the most recent user interaction was via the keyboard;\n * and the key press did not include a meta, alt/option, or control key;\n * then the modality is keyboard. Otherwise, the modality is not keyboard.\n * Apply `focus-visible` to any current active element and keep track\n * of our keyboard modality state with `hadKeyboardEvent`.\n * @param {KeyboardEvent} e\n */\n function onKeyDown(e) {\n if (e.metaKey || e.altKey || e.ctrlKey) {\n return;\n }\n\n if (isValidFocusTarget(scope.activeElement)) {\n addFocusVisibleClass(scope.activeElement);\n }\n\n hadKeyboardEvent = true;\n }\n\n /**\n * If at any point a user clicks with a pointing device, ensure that we change\n * the modality away from keyboard.\n * This avoids the situation where a user presses a key on an already focused\n * element, and then clicks on a different element, focusing it with a\n * pointing device, while we still think we're in keyboard modality.\n * @param {Event} e\n */\n function onPointerDown(e) {\n hadKeyboardEvent = false;\n }\n\n /**\n * On `focus`, add the `focus-visible` class to the target if:\n * - the target received focus as a result of keyboard navigation, or\n * - the event target is an element that will likely require interaction\n * via the keyboard (e.g. a text box)\n * @param {Event} e\n */\n function onFocus(e) {\n // Prevent IE from focusing the document or HTML element.\n if (!isValidFocusTarget(e.target)) {\n return;\n }\n\n if (hadKeyboardEvent || focusTriggersKeyboardModality(e.target)) {\n addFocusVisibleClass(e.target);\n }\n }\n\n /**\n * On `blur`, remove the `focus-visible` class from the target.\n * @param {Event} e\n */\n function onBlur(e) {\n if (!isValidFocusTarget(e.target)) {\n return;\n }\n\n if (\n e.target.classList.contains('focus-visible') ||\n e.target.hasAttribute('data-focus-visible-added')\n ) {\n // To detect a tab/window switch, we look for a blur event followed\n // rapidly by a visibility change.\n // If we don't see a visibility change within 100ms, it's probably a\n // regular focus change.\n hadFocusVisibleRecently = true;\n window.clearTimeout(hadFocusVisibleRecentlyTimeout);\n hadFocusVisibleRecentlyTimeout = window.setTimeout(function() {\n hadFocusVisibleRecently = false;\n }, 100);\n removeFocusVisibleClass(e.target);\n }\n }\n\n /**\n * If the user changes tabs, keep track of whether or not the previously\n * focused element had .focus-visible.\n * @param {Event} e\n */\n function onVisibilityChange(e) {\n if (document.visibilityState === 'hidden') {\n // If the tab becomes active again, the browser will handle calling focus\n // on the element (Safari actually calls it twice).\n // If this tab change caused a blur on an element with focus-visible,\n // re-apply the class when the user switches back to the tab.\n if (hadFocusVisibleRecently) {\n hadKeyboardEvent = true;\n }\n addInitialPointerMoveListeners();\n }\n }\n\n /**\n * Add a group of listeners to detect usage of any pointing devices.\n * These listeners will be added when the polyfill first loads, and anytime\n * the window is blurred, so that they are active when the window regains\n * focus.\n */\n function addInitialPointerMoveListeners() {\n document.addEventListener('mousemove', onInitialPointerMove);\n document.addEventListener('mousedown', onInitialPointerMove);\n document.addEventListener('mouseup', onInitialPointerMove);\n document.addEventListener('pointermove', onInitialPointerMove);\n document.addEventListener('pointerdown', onInitialPointerMove);\n document.addEventListener('pointerup', onInitialPointerMove);\n document.addEventListener('touchmove', onInitialPointerMove);\n document.addEventListener('touchstart', onInitialPointerMove);\n document.addEventListener('touchend', onInitialPointerMove);\n }\n\n function removeInitialPointerMoveListeners() {\n document.removeEventListener('mousemove', onInitialPointerMove);\n document.removeEventListener('mousedown', onInitialPointerMove);\n document.removeEventListener('mouseup', onInitialPointerMove);\n document.removeEventListener('pointermove', onInitialPointerMove);\n document.removeEventListener('pointerdown', onInitialPointerMove);\n document.removeEventListener('pointerup', onInitialPointerMove);\n document.removeEventListener('touchmove', onInitialPointerMove);\n document.removeEventListener('touchstart', onInitialPointerMove);\n document.removeEventListener('touchend', onInitialPointerMove);\n }\n\n /**\n * When the polfyill first loads, assume the user is in keyboard modality.\n * If any event is received from a pointing device (e.g. mouse, pointer,\n * touch), turn off keyboard modality.\n * This accounts for situations where focus enters the page from the URL bar.\n * @param {Event} e\n */\n function onInitialPointerMove(e) {\n // Work around a Safari quirk that fires a mousemove on whenever the\n // window blurs, even if you're tabbing out of the page. \u00AF\\_(\u30C4)_/\u00AF\n if (e.target.nodeName && e.target.nodeName.toLowerCase() === 'html') {\n return;\n }\n\n hadKeyboardEvent = false;\n removeInitialPointerMoveListeners();\n }\n\n // For some kinds of state, we are interested in changes at the global scope\n // only. For example, global pointer input, global key presses and global\n // visibility change should affect the state at every scope:\n document.addEventListener('keydown', onKeyDown, true);\n document.addEventListener('mousedown', onPointerDown, true);\n document.addEventListener('pointerdown', onPointerDown, true);\n document.addEventListener('touchstart', onPointerDown, true);\n document.addEventListener('visibilitychange', onVisibilityChange, true);\n\n addInitialPointerMoveListeners();\n\n // For focus and blur, we specifically care about state changes in the local\n // scope. This is because focus / blur events that originate from within a\n // shadow root are not re-dispatched from the host element if it was already\n // the active element in its own scope:\n scope.addEventListener('focus', onFocus, true);\n scope.addEventListener('blur', onBlur, true);\n\n // We detect that a node is a ShadowRoot by ensuring that it is a\n // DocumentFragment and also has a host property. This check covers native\n // implementation and polyfill implementation transparently. If we only cared\n // about the native implementation, we could just check if the scope was\n // an instance of a ShadowRoot.\n if (scope.nodeType === Node.DOCUMENT_FRAGMENT_NODE && scope.host) {\n // Since a ShadowRoot is a special kind of DocumentFragment, it does not\n // have a root element to add a class to. So, we add this attribute to the\n // host element instead:\n scope.host.setAttribute('data-js-focus-visible', '');\n } else if (scope.nodeType === Node.DOCUMENT_NODE) {\n document.documentElement.classList.add('js-focus-visible');\n document.documentElement.setAttribute('data-js-focus-visible', '');\n }\n }\n\n // It is important to wrap all references to global window and document in\n // these checks to support server-side rendering use cases\n // @see https://github.com/WICG/focus-visible/issues/199\n if (typeof window !== 'undefined' && typeof document !== 'undefined') {\n // Make the polyfill helper globally available. This can be used as a signal\n // to interested libraries that wish to coordinate with the polyfill for e.g.,\n // applying the polyfill to a shadow root:\n window.applyFocusVisiblePolyfill = applyFocusVisiblePolyfill;\n\n // Notify interested libraries of the polyfill's presence, in case the\n // polyfill was loaded lazily:\n var event;\n\n try {\n event = new CustomEvent('focus-visible-polyfill-ready');\n } catch (error) {\n // IE11 does not support using CustomEvent as a constructor directly:\n event = document.createEvent('CustomEvent');\n event.initCustomEvent('focus-visible-polyfill-ready', false, false, {});\n }\n\n window.dispatchEvent(event);\n }\n\n if (typeof document !== 'undefined') {\n // Apply the polyfill to the global document, so that no JavaScript\n // coordination is required to use the polyfill in the top-level document:\n applyFocusVisiblePolyfill(document);\n }\n\n})));\n", "/*!\n * clipboard.js v2.0.11\n * https://clipboardjs.com/\n *\n * Licensed MIT \u00A9 Zeno Rocha\n */\n(function webpackUniversalModuleDefinition(root, factory) {\n\tif(typeof exports === 'object' && typeof module === 'object')\n\t\tmodule.exports = factory();\n\telse if(typeof define === 'function' && define.amd)\n\t\tdefine([], factory);\n\telse if(typeof exports === 'object')\n\t\texports[\"ClipboardJS\"] = factory();\n\telse\n\t\troot[\"ClipboardJS\"] = factory();\n})(this, function() {\nreturn /******/ (function() { // webpackBootstrap\n/******/ \tvar __webpack_modules__ = ({\n\n/***/ 686:\n/***/ (function(__unused_webpack_module, __webpack_exports__, __webpack_require__) {\n\n\"use strict\";\n\n// EXPORTS\n__webpack_require__.d(__webpack_exports__, {\n \"default\": function() { return /* binding */ clipboard; }\n});\n\n// EXTERNAL MODULE: ./node_modules/tiny-emitter/index.js\nvar tiny_emitter = __webpack_require__(279);\nvar tiny_emitter_default = /*#__PURE__*/__webpack_require__.n(tiny_emitter);\n// EXTERNAL MODULE: ./node_modules/good-listener/src/listen.js\nvar listen = __webpack_require__(370);\nvar listen_default = /*#__PURE__*/__webpack_require__.n(listen);\n// EXTERNAL MODULE: ./node_modules/select/src/select.js\nvar src_select = __webpack_require__(817);\nvar select_default = /*#__PURE__*/__webpack_require__.n(src_select);\n;// CONCATENATED MODULE: ./src/common/command.js\n/**\n * Executes a given operation type.\n * @param {String} type\n * @return {Boolean}\n */\nfunction command(type) {\n try {\n return document.execCommand(type);\n } catch (err) {\n return false;\n }\n}\n;// CONCATENATED MODULE: ./src/actions/cut.js\n\n\n/**\n * Cut action wrapper.\n * @param {String|HTMLElement} target\n * @return {String}\n */\n\nvar ClipboardActionCut = function ClipboardActionCut(target) {\n var selectedText = select_default()(target);\n command('cut');\n return selectedText;\n};\n\n/* harmony default export */ var actions_cut = (ClipboardActionCut);\n;// CONCATENATED MODULE: ./src/common/create-fake-element.js\n/**\n * Creates a fake textarea element with a value.\n * @param {String} value\n * @return {HTMLElement}\n */\nfunction createFakeElement(value) {\n var isRTL = document.documentElement.getAttribute('dir') === 'rtl';\n var fakeElement = document.createElement('textarea'); // Prevent zooming on iOS\n\n fakeElement.style.fontSize = '12pt'; // Reset box model\n\n fakeElement.style.border = '0';\n fakeElement.style.padding = '0';\n fakeElement.style.margin = '0'; // Move element out of screen horizontally\n\n fakeElement.style.position = 'absolute';\n fakeElement.style[isRTL ? 'right' : 'left'] = '-9999px'; // Move element to the same position vertically\n\n var yPosition = window.pageYOffset || document.documentElement.scrollTop;\n fakeElement.style.top = \"\".concat(yPosition, \"px\");\n fakeElement.setAttribute('readonly', '');\n fakeElement.value = value;\n return fakeElement;\n}\n;// CONCATENATED MODULE: ./src/actions/copy.js\n\n\n\n/**\n * Create fake copy action wrapper using a fake element.\n * @param {String} target\n * @param {Object} options\n * @return {String}\n */\n\nvar fakeCopyAction = function fakeCopyAction(value, options) {\n var fakeElement = createFakeElement(value);\n options.container.appendChild(fakeElement);\n var selectedText = select_default()(fakeElement);\n command('copy');\n fakeElement.remove();\n return selectedText;\n};\n/**\n * Copy action wrapper.\n * @param {String|HTMLElement} target\n * @param {Object} options\n * @return {String}\n */\n\n\nvar ClipboardActionCopy = function ClipboardActionCopy(target) {\n var options = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : {\n container: document.body\n };\n var selectedText = '';\n\n if (typeof target === 'string') {\n selectedText = fakeCopyAction(target, options);\n } else if (target instanceof HTMLInputElement && !['text', 'search', 'url', 'tel', 'password'].includes(target === null || target === void 0 ? void 0 : target.type)) {\n // If input type doesn't support `setSelectionRange`. Simulate it. https://developer.mozilla.org/en-US/docs/Web/API/HTMLInputElement/setSelectionRange\n selectedText = fakeCopyAction(target.value, options);\n } else {\n selectedText = select_default()(target);\n command('copy');\n }\n\n return selectedText;\n};\n\n/* harmony default export */ var actions_copy = (ClipboardActionCopy);\n;// CONCATENATED MODULE: ./src/actions/default.js\nfunction _typeof(obj) { \"@babel/helpers - typeof\"; if (typeof Symbol === \"function\" && typeof Symbol.iterator === \"symbol\") { _typeof = function _typeof(obj) { return typeof obj; }; } else { _typeof = function _typeof(obj) { return obj && typeof Symbol === \"function\" && obj.constructor === Symbol && obj !== Symbol.prototype ? \"symbol\" : typeof obj; }; } return _typeof(obj); }\n\n\n\n/**\n * Inner function which performs selection from either `text` or `target`\n * properties and then executes copy or cut operations.\n * @param {Object} options\n */\n\nvar ClipboardActionDefault = function ClipboardActionDefault() {\n var options = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : {};\n // Defines base properties passed from constructor.\n var _options$action = options.action,\n action = _options$action === void 0 ? 'copy' : _options$action,\n container = options.container,\n target = options.target,\n text = options.text; // Sets the `action` to be performed which can be either 'copy' or 'cut'.\n\n if (action !== 'copy' && action !== 'cut') {\n throw new Error('Invalid \"action\" value, use either \"copy\" or \"cut\"');\n } // Sets the `target` property using an element that will be have its content copied.\n\n\n if (target !== undefined) {\n if (target && _typeof(target) === 'object' && target.nodeType === 1) {\n if (action === 'copy' && target.hasAttribute('disabled')) {\n throw new Error('Invalid \"target\" attribute. Please use \"readonly\" instead of \"disabled\" attribute');\n }\n\n if (action === 'cut' && (target.hasAttribute('readonly') || target.hasAttribute('disabled'))) {\n throw new Error('Invalid \"target\" attribute. You can\\'t cut text from elements with \"readonly\" or \"disabled\" attributes');\n }\n } else {\n throw new Error('Invalid \"target\" value, use a valid Element');\n }\n } // Define selection strategy based on `text` property.\n\n\n if (text) {\n return actions_copy(text, {\n container: container\n });\n } // Defines which selection strategy based on `target` property.\n\n\n if (target) {\n return action === 'cut' ? actions_cut(target) : actions_copy(target, {\n container: container\n });\n }\n};\n\n/* harmony default export */ var actions_default = (ClipboardActionDefault);\n;// CONCATENATED MODULE: ./src/clipboard.js\nfunction clipboard_typeof(obj) { \"@babel/helpers - typeof\"; if (typeof Symbol === \"function\" && typeof Symbol.iterator === \"symbol\") { clipboard_typeof = function _typeof(obj) { return typeof obj; }; } else { clipboard_typeof = function _typeof(obj) { return obj && typeof Symbol === \"function\" && obj.constructor === Symbol && obj !== Symbol.prototype ? \"symbol\" : typeof obj; }; } return clipboard_typeof(obj); }\n\nfunction _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError(\"Cannot call a class as a function\"); } }\n\nfunction _defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if (\"value\" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } }\n\nfunction _createClass(Constructor, protoProps, staticProps) { if (protoProps) _defineProperties(Constructor.prototype, protoProps); if (staticProps) _defineProperties(Constructor, staticProps); return Constructor; }\n\nfunction _inherits(subClass, superClass) { if (typeof superClass !== \"function\" && superClass !== null) { throw new TypeError(\"Super expression must either be null or a function\"); } subClass.prototype = Object.create(superClass && superClass.prototype, { constructor: { value: subClass, writable: true, configurable: true } }); if (superClass) _setPrototypeOf(subClass, superClass); }\n\nfunction _setPrototypeOf(o, p) { _setPrototypeOf = Object.setPrototypeOf || function _setPrototypeOf(o, p) { o.__proto__ = p; return o; }; return _setPrototypeOf(o, p); }\n\nfunction _createSuper(Derived) { var hasNativeReflectConstruct = _isNativeReflectConstruct(); return function _createSuperInternal() { var Super = _getPrototypeOf(Derived), result; if (hasNativeReflectConstruct) { var NewTarget = _getPrototypeOf(this).constructor; result = Reflect.construct(Super, arguments, NewTarget); } else { result = Super.apply(this, arguments); } return _possibleConstructorReturn(this, result); }; }\n\nfunction _possibleConstructorReturn(self, call) { if (call && (clipboard_typeof(call) === \"object\" || typeof call === \"function\")) { return call; } return _assertThisInitialized(self); }\n\nfunction _assertThisInitialized(self) { if (self === void 0) { throw new ReferenceError(\"this hasn't been initialised - super() hasn't been called\"); } return self; }\n\nfunction _isNativeReflectConstruct() { if (typeof Reflect === \"undefined\" || !Reflect.construct) return false; if (Reflect.construct.sham) return false; if (typeof Proxy === \"function\") return true; try { Date.prototype.toString.call(Reflect.construct(Date, [], function () {})); return true; } catch (e) { return false; } }\n\nfunction _getPrototypeOf(o) { _getPrototypeOf = Object.setPrototypeOf ? Object.getPrototypeOf : function _getPrototypeOf(o) { return o.__proto__ || Object.getPrototypeOf(o); }; return _getPrototypeOf(o); }\n\n\n\n\n\n\n/**\n * Helper function to retrieve attribute value.\n * @param {String} suffix\n * @param {Element} element\n */\n\nfunction getAttributeValue(suffix, element) {\n var attribute = \"data-clipboard-\".concat(suffix);\n\n if (!element.hasAttribute(attribute)) {\n return;\n }\n\n return element.getAttribute(attribute);\n}\n/**\n * Base class which takes one or more elements, adds event listeners to them,\n * and instantiates a new `ClipboardAction` on each click.\n */\n\n\nvar Clipboard = /*#__PURE__*/function (_Emitter) {\n _inherits(Clipboard, _Emitter);\n\n var _super = _createSuper(Clipboard);\n\n /**\n * @param {String|HTMLElement|HTMLCollection|NodeList} trigger\n * @param {Object} options\n */\n function Clipboard(trigger, options) {\n var _this;\n\n _classCallCheck(this, Clipboard);\n\n _this = _super.call(this);\n\n _this.resolveOptions(options);\n\n _this.listenClick(trigger);\n\n return _this;\n }\n /**\n * Defines if attributes would be resolved using internal setter functions\n * or custom functions that were passed in the constructor.\n * @param {Object} options\n */\n\n\n _createClass(Clipboard, [{\n key: \"resolveOptions\",\n value: function resolveOptions() {\n var options = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : {};\n this.action = typeof options.action === 'function' ? options.action : this.defaultAction;\n this.target = typeof options.target === 'function' ? options.target : this.defaultTarget;\n this.text = typeof options.text === 'function' ? options.text : this.defaultText;\n this.container = clipboard_typeof(options.container) === 'object' ? options.container : document.body;\n }\n /**\n * Adds a click event listener to the passed trigger.\n * @param {String|HTMLElement|HTMLCollection|NodeList} trigger\n */\n\n }, {\n key: \"listenClick\",\n value: function listenClick(trigger) {\n var _this2 = this;\n\n this.listener = listen_default()(trigger, 'click', function (e) {\n return _this2.onClick(e);\n });\n }\n /**\n * Defines a new `ClipboardAction` on each click event.\n * @param {Event} e\n */\n\n }, {\n key: \"onClick\",\n value: function onClick(e) {\n var trigger = e.delegateTarget || e.currentTarget;\n var action = this.action(trigger) || 'copy';\n var text = actions_default({\n action: action,\n container: this.container,\n target: this.target(trigger),\n text: this.text(trigger)\n }); // Fires an event based on the copy operation result.\n\n this.emit(text ? 'success' : 'error', {\n action: action,\n text: text,\n trigger: trigger,\n clearSelection: function clearSelection() {\n if (trigger) {\n trigger.focus();\n }\n\n window.getSelection().removeAllRanges();\n }\n });\n }\n /**\n * Default `action` lookup function.\n * @param {Element} trigger\n */\n\n }, {\n key: \"defaultAction\",\n value: function defaultAction(trigger) {\n return getAttributeValue('action', trigger);\n }\n /**\n * Default `target` lookup function.\n * @param {Element} trigger\n */\n\n }, {\n key: \"defaultTarget\",\n value: function defaultTarget(trigger) {\n var selector = getAttributeValue('target', trigger);\n\n if (selector) {\n return document.querySelector(selector);\n }\n }\n /**\n * Allow fire programmatically a copy action\n * @param {String|HTMLElement} target\n * @param {Object} options\n * @returns Text copied.\n */\n\n }, {\n key: \"defaultText\",\n\n /**\n * Default `text` lookup function.\n * @param {Element} trigger\n */\n value: function defaultText(trigger) {\n return getAttributeValue('text', trigger);\n }\n /**\n * Destroy lifecycle.\n */\n\n }, {\n key: \"destroy\",\n value: function destroy() {\n this.listener.destroy();\n }\n }], [{\n key: \"copy\",\n value: function copy(target) {\n var options = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : {\n container: document.body\n };\n return actions_copy(target, options);\n }\n /**\n * Allow fire programmatically a cut action\n * @param {String|HTMLElement} target\n * @returns Text cutted.\n */\n\n }, {\n key: \"cut\",\n value: function cut(target) {\n return actions_cut(target);\n }\n /**\n * Returns the support of the given action, or all actions if no action is\n * given.\n * @param {String} [action]\n */\n\n }, {\n key: \"isSupported\",\n value: function isSupported() {\n var action = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : ['copy', 'cut'];\n var actions = typeof action === 'string' ? [action] : action;\n var support = !!document.queryCommandSupported;\n actions.forEach(function (action) {\n support = support && !!document.queryCommandSupported(action);\n });\n return support;\n }\n }]);\n\n return Clipboard;\n}((tiny_emitter_default()));\n\n/* harmony default export */ var clipboard = (Clipboard);\n\n/***/ }),\n\n/***/ 828:\n/***/ (function(module) {\n\nvar DOCUMENT_NODE_TYPE = 9;\n\n/**\n * A polyfill for Element.matches()\n */\nif (typeof Element !== 'undefined' && !Element.prototype.matches) {\n var proto = Element.prototype;\n\n proto.matches = proto.matchesSelector ||\n proto.mozMatchesSelector ||\n proto.msMatchesSelector ||\n proto.oMatchesSelector ||\n proto.webkitMatchesSelector;\n}\n\n/**\n * Finds the closest parent that matches a selector.\n *\n * @param {Element} element\n * @param {String} selector\n * @return {Function}\n */\nfunction closest (element, selector) {\n while (element && element.nodeType !== DOCUMENT_NODE_TYPE) {\n if (typeof element.matches === 'function' &&\n element.matches(selector)) {\n return element;\n }\n element = element.parentNode;\n }\n}\n\nmodule.exports = closest;\n\n\n/***/ }),\n\n/***/ 438:\n/***/ (function(module, __unused_webpack_exports, __webpack_require__) {\n\nvar closest = __webpack_require__(828);\n\n/**\n * Delegates event to a selector.\n *\n * @param {Element} element\n * @param {String} selector\n * @param {String} type\n * @param {Function} callback\n * @param {Boolean} useCapture\n * @return {Object}\n */\nfunction _delegate(element, selector, type, callback, useCapture) {\n var listenerFn = listener.apply(this, arguments);\n\n element.addEventListener(type, listenerFn, useCapture);\n\n return {\n destroy: function() {\n element.removeEventListener(type, listenerFn, useCapture);\n }\n }\n}\n\n/**\n * Delegates event to a selector.\n *\n * @param {Element|String|Array} [elements]\n * @param {String} selector\n * @param {String} type\n * @param {Function} callback\n * @param {Boolean} useCapture\n * @return {Object}\n */\nfunction delegate(elements, selector, type, callback, useCapture) {\n // Handle the regular Element usage\n if (typeof elements.addEventListener === 'function') {\n return _delegate.apply(null, arguments);\n }\n\n // Handle Element-less usage, it defaults to global delegation\n if (typeof type === 'function') {\n // Use `document` as the first parameter, then apply arguments\n // This is a short way to .unshift `arguments` without running into deoptimizations\n return _delegate.bind(null, document).apply(null, arguments);\n }\n\n // Handle Selector-based usage\n if (typeof elements === 'string') {\n elements = document.querySelectorAll(elements);\n }\n\n // Handle Array-like based usage\n return Array.prototype.map.call(elements, function (element) {\n return _delegate(element, selector, type, callback, useCapture);\n });\n}\n\n/**\n * Finds closest match and invokes callback.\n *\n * @param {Element} element\n * @param {String} selector\n * @param {String} type\n * @param {Function} callback\n * @return {Function}\n */\nfunction listener(element, selector, type, callback) {\n return function(e) {\n e.delegateTarget = closest(e.target, selector);\n\n if (e.delegateTarget) {\n callback.call(element, e);\n }\n }\n}\n\nmodule.exports = delegate;\n\n\n/***/ }),\n\n/***/ 879:\n/***/ (function(__unused_webpack_module, exports) {\n\n/**\n * Check if argument is a HTML element.\n *\n * @param {Object} value\n * @return {Boolean}\n */\nexports.node = function(value) {\n return value !== undefined\n && value instanceof HTMLElement\n && value.nodeType === 1;\n};\n\n/**\n * Check if argument is a list of HTML elements.\n *\n * @param {Object} value\n * @return {Boolean}\n */\nexports.nodeList = function(value) {\n var type = Object.prototype.toString.call(value);\n\n return value !== undefined\n && (type === '[object NodeList]' || type === '[object HTMLCollection]')\n && ('length' in value)\n && (value.length === 0 || exports.node(value[0]));\n};\n\n/**\n * Check if argument is a string.\n *\n * @param {Object} value\n * @return {Boolean}\n */\nexports.string = function(value) {\n return typeof value === 'string'\n || value instanceof String;\n};\n\n/**\n * Check if argument is a function.\n *\n * @param {Object} value\n * @return {Boolean}\n */\nexports.fn = function(value) {\n var type = Object.prototype.toString.call(value);\n\n return type === '[object Function]';\n};\n\n\n/***/ }),\n\n/***/ 370:\n/***/ (function(module, __unused_webpack_exports, __webpack_require__) {\n\nvar is = __webpack_require__(879);\nvar delegate = __webpack_require__(438);\n\n/**\n * Validates all params and calls the right\n * listener function based on its target type.\n *\n * @param {String|HTMLElement|HTMLCollection|NodeList} target\n * @param {String} type\n * @param {Function} callback\n * @return {Object}\n */\nfunction listen(target, type, callback) {\n if (!target && !type && !callback) {\n throw new Error('Missing required arguments');\n }\n\n if (!is.string(type)) {\n throw new TypeError('Second argument must be a String');\n }\n\n if (!is.fn(callback)) {\n throw new TypeError('Third argument must be a Function');\n }\n\n if (is.node(target)) {\n return listenNode(target, type, callback);\n }\n else if (is.nodeList(target)) {\n return listenNodeList(target, type, callback);\n }\n else if (is.string(target)) {\n return listenSelector(target, type, callback);\n }\n else {\n throw new TypeError('First argument must be a String, HTMLElement, HTMLCollection, or NodeList');\n }\n}\n\n/**\n * Adds an event listener to a HTML element\n * and returns a remove listener function.\n *\n * @param {HTMLElement} node\n * @param {String} type\n * @param {Function} callback\n * @return {Object}\n */\nfunction listenNode(node, type, callback) {\n node.addEventListener(type, callback);\n\n return {\n destroy: function() {\n node.removeEventListener(type, callback);\n }\n }\n}\n\n/**\n * Add an event listener to a list of HTML elements\n * and returns a remove listener function.\n *\n * @param {NodeList|HTMLCollection} nodeList\n * @param {String} type\n * @param {Function} callback\n * @return {Object}\n */\nfunction listenNodeList(nodeList, type, callback) {\n Array.prototype.forEach.call(nodeList, function(node) {\n node.addEventListener(type, callback);\n });\n\n return {\n destroy: function() {\n Array.prototype.forEach.call(nodeList, function(node) {\n node.removeEventListener(type, callback);\n });\n }\n }\n}\n\n/**\n * Add an event listener to a selector\n * and returns a remove listener function.\n *\n * @param {String} selector\n * @param {String} type\n * @param {Function} callback\n * @return {Object}\n */\nfunction listenSelector(selector, type, callback) {\n return delegate(document.body, selector, type, callback);\n}\n\nmodule.exports = listen;\n\n\n/***/ }),\n\n/***/ 817:\n/***/ (function(module) {\n\nfunction select(element) {\n var selectedText;\n\n if (element.nodeName === 'SELECT') {\n element.focus();\n\n selectedText = element.value;\n }\n else if (element.nodeName === 'INPUT' || element.nodeName === 'TEXTAREA') {\n var isReadOnly = element.hasAttribute('readonly');\n\n if (!isReadOnly) {\n element.setAttribute('readonly', '');\n }\n\n element.select();\n element.setSelectionRange(0, element.value.length);\n\n if (!isReadOnly) {\n element.removeAttribute('readonly');\n }\n\n selectedText = element.value;\n }\n else {\n if (element.hasAttribute('contenteditable')) {\n element.focus();\n }\n\n var selection = window.getSelection();\n var range = document.createRange();\n\n range.selectNodeContents(element);\n selection.removeAllRanges();\n selection.addRange(range);\n\n selectedText = selection.toString();\n }\n\n return selectedText;\n}\n\nmodule.exports = select;\n\n\n/***/ }),\n\n/***/ 279:\n/***/ (function(module) {\n\nfunction E () {\n // Keep this empty so it's easier to inherit from\n // (via https://github.com/lipsmack from https://github.com/scottcorgan/tiny-emitter/issues/3)\n}\n\nE.prototype = {\n on: function (name, callback, ctx) {\n var e = this.e || (this.e = {});\n\n (e[name] || (e[name] = [])).push({\n fn: callback,\n ctx: ctx\n });\n\n return this;\n },\n\n once: function (name, callback, ctx) {\n var self = this;\n function listener () {\n self.off(name, listener);\n callback.apply(ctx, arguments);\n };\n\n listener._ = callback\n return this.on(name, listener, ctx);\n },\n\n emit: function (name) {\n var data = [].slice.call(arguments, 1);\n var evtArr = ((this.e || (this.e = {}))[name] || []).slice();\n var i = 0;\n var len = evtArr.length;\n\n for (i; i < len; i++) {\n evtArr[i].fn.apply(evtArr[i].ctx, data);\n }\n\n return this;\n },\n\n off: function (name, callback) {\n var e = this.e || (this.e = {});\n var evts = e[name];\n var liveEvents = [];\n\n if (evts && callback) {\n for (var i = 0, len = evts.length; i < len; i++) {\n if (evts[i].fn !== callback && evts[i].fn._ !== callback)\n liveEvents.push(evts[i]);\n }\n }\n\n // Remove event from queue to prevent memory leak\n // Suggested by https://github.com/lazd\n // Ref: https://github.com/scottcorgan/tiny-emitter/commit/c6ebfaa9bc973b33d110a84a307742b7cf94c953#commitcomment-5024910\n\n (liveEvents.length)\n ? e[name] = liveEvents\n : delete e[name];\n\n return this;\n }\n};\n\nmodule.exports = E;\nmodule.exports.TinyEmitter = E;\n\n\n/***/ })\n\n/******/ \t});\n/************************************************************************/\n/******/ \t// The module cache\n/******/ \tvar __webpack_module_cache__ = {};\n/******/ \t\n/******/ \t// The require function\n/******/ \tfunction __webpack_require__(moduleId) {\n/******/ \t\t// Check if module is in cache\n/******/ \t\tif(__webpack_module_cache__[moduleId]) {\n/******/ \t\t\treturn __webpack_module_cache__[moduleId].exports;\n/******/ \t\t}\n/******/ \t\t// Create a new module (and put it into the cache)\n/******/ \t\tvar module = __webpack_module_cache__[moduleId] = {\n/******/ \t\t\t// no module.id needed\n/******/ \t\t\t// no module.loaded needed\n/******/ \t\t\texports: {}\n/******/ \t\t};\n/******/ \t\n/******/ \t\t// Execute the module function\n/******/ \t\t__webpack_modules__[moduleId](module, module.exports, __webpack_require__);\n/******/ \t\n/******/ \t\t// Return the exports of the module\n/******/ \t\treturn module.exports;\n/******/ \t}\n/******/ \t\n/************************************************************************/\n/******/ \t/* webpack/runtime/compat get default export */\n/******/ \t!function() {\n/******/ \t\t// getDefaultExport function for compatibility with non-harmony modules\n/******/ \t\t__webpack_require__.n = function(module) {\n/******/ \t\t\tvar getter = module && module.__esModule ?\n/******/ \t\t\t\tfunction() { return module['default']; } :\n/******/ \t\t\t\tfunction() { return module; };\n/******/ \t\t\t__webpack_require__.d(getter, { a: getter });\n/******/ \t\t\treturn getter;\n/******/ \t\t};\n/******/ \t}();\n/******/ \t\n/******/ \t/* webpack/runtime/define property getters */\n/******/ \t!function() {\n/******/ \t\t// define getter functions for harmony exports\n/******/ \t\t__webpack_require__.d = function(exports, definition) {\n/******/ \t\t\tfor(var key in definition) {\n/******/ \t\t\t\tif(__webpack_require__.o(definition, key) && !__webpack_require__.o(exports, key)) {\n/******/ \t\t\t\t\tObject.defineProperty(exports, key, { enumerable: true, get: definition[key] });\n/******/ \t\t\t\t}\n/******/ \t\t\t}\n/******/ \t\t};\n/******/ \t}();\n/******/ \t\n/******/ \t/* webpack/runtime/hasOwnProperty shorthand */\n/******/ \t!function() {\n/******/ \t\t__webpack_require__.o = function(obj, prop) { return Object.prototype.hasOwnProperty.call(obj, prop); }\n/******/ \t}();\n/******/ \t\n/************************************************************************/\n/******/ \t// module exports must be returned from runtime so entry inlining is disabled\n/******/ \t// startup\n/******/ \t// Load entry module and return exports\n/******/ \treturn __webpack_require__(686);\n/******/ })()\n.default;\n});", "/*!\n * escape-html\n * Copyright(c) 2012-2013 TJ Holowaychuk\n * Copyright(c) 2015 Andreas Lubbe\n * Copyright(c) 2015 Tiancheng \"Timothy\" Gu\n * MIT Licensed\n */\n\n'use strict';\n\n/**\n * Module variables.\n * @private\n */\n\nvar matchHtmlRegExp = /[\"'&<>]/;\n\n/**\n * Module exports.\n * @public\n */\n\nmodule.exports = escapeHtml;\n\n/**\n * Escape special characters in the given string of html.\n *\n * @param {string} string The string to escape for inserting into HTML\n * @return {string}\n * @public\n */\n\nfunction escapeHtml(string) {\n var str = '' + string;\n var match = matchHtmlRegExp.exec(str);\n\n if (!match) {\n return str;\n }\n\n var escape;\n var html = '';\n var index = 0;\n var lastIndex = 0;\n\n for (index = match.index; index < str.length; index++) {\n switch (str.charCodeAt(index)) {\n case 34: // \"\n escape = '"';\n break;\n case 38: // &\n escape = '&';\n break;\n case 39: // '\n escape = ''';\n break;\n case 60: // <\n escape = '<';\n break;\n case 62: // >\n escape = '>';\n break;\n default:\n continue;\n }\n\n if (lastIndex !== index) {\n html += str.substring(lastIndex, index);\n }\n\n lastIndex = index + 1;\n html += escape;\n }\n\n return lastIndex !== index\n ? html + str.substring(lastIndex, index)\n : html;\n}\n", "/*\n * Copyright (c) 2016-2024 Martin Donath \n *\n * Permission is hereby granted, free of charge, to any person obtaining a copy\n * of this software and associated documentation files (the \"Software\"), to\n * deal in the Software without restriction, including without limitation the\n * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or\n * sell copies of the Software, and to permit persons to whom the Software is\n * furnished to do so, subject to the following conditions:\n *\n * The above copyright notice and this permission notice shall be included in\n * all copies or substantial portions of the Software.\n *\n * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE\n * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING\n * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS\n * IN THE SOFTWARE.\n */\n\nimport \"focus-visible\"\n\nimport {\n EMPTY,\n NEVER,\n Observable,\n Subject,\n defer,\n delay,\n filter,\n map,\n merge,\n mergeWith,\n shareReplay,\n switchMap\n} from \"rxjs\"\n\nimport { configuration, feature } from \"./_\"\nimport {\n at,\n getActiveElement,\n getOptionalElement,\n requestJSON,\n setLocation,\n setToggle,\n watchDocument,\n watchKeyboard,\n watchLocation,\n watchLocationTarget,\n watchMedia,\n watchPrint,\n watchScript,\n watchViewport\n} from \"./browser\"\nimport {\n getComponentElement,\n getComponentElements,\n mountAnnounce,\n mountBackToTop,\n mountConsent,\n mountContent,\n mountDialog,\n mountHeader,\n mountHeaderTitle,\n mountPalette,\n mountProgress,\n mountSearch,\n mountSearchHiglight,\n mountSidebar,\n mountSource,\n mountTableOfContents,\n mountTabs,\n watchHeader,\n watchMain\n} from \"./components\"\nimport {\n SearchIndex,\n setupClipboardJS,\n setupInstantNavigation,\n setupVersionSelector\n} from \"./integrations\"\nimport {\n patchEllipsis,\n patchIndeterminate,\n patchScrollfix,\n patchScrolllock\n} from \"./patches\"\nimport \"./polyfills\"\n\n/* ----------------------------------------------------------------------------\n * Functions - @todo refactor\n * ------------------------------------------------------------------------- */\n\n/**\n * Fetch search index\n *\n * @returns Search index observable\n */\nfunction fetchSearchIndex(): Observable {\n if (location.protocol === \"file:\") {\n return watchScript(\n `${new URL(\"search/search_index.js\", config.base)}`\n )\n .pipe(\n // @ts-ignore - @todo fix typings\n map(() => __index),\n shareReplay(1)\n )\n } else {\n return requestJSON(\n new URL(\"search/search_index.json\", config.base)\n )\n }\n}\n\n/* ----------------------------------------------------------------------------\n * Application\n * ------------------------------------------------------------------------- */\n\n/* Yay, JavaScript is available */\ndocument.documentElement.classList.remove(\"no-js\")\ndocument.documentElement.classList.add(\"js\")\n\n/* Set up navigation observables and subjects */\nconst document$ = watchDocument()\nconst location$ = watchLocation()\nconst target$ = watchLocationTarget(location$)\nconst keyboard$ = watchKeyboard()\n\n/* Set up media observables */\nconst viewport$ = watchViewport()\nconst tablet$ = watchMedia(\"(min-width: 960px)\")\nconst screen$ = watchMedia(\"(min-width: 1220px)\")\nconst print$ = watchPrint()\n\n/* Retrieve search index, if search is enabled */\nconst config = configuration()\nconst index$ = document.forms.namedItem(\"search\")\n ? fetchSearchIndex()\n : NEVER\n\n/* Set up Clipboard.js integration */\nconst alert$ = new Subject()\nsetupClipboardJS({ alert$ })\n\n/* Set up progress indicator */\nconst progress$ = new Subject()\n\n/* Set up instant navigation, if enabled */\nif (feature(\"navigation.instant\"))\n setupInstantNavigation({ location$, viewport$, progress$ })\n .subscribe(document$)\n\n/* Set up version selector */\nif (config.version?.provider === \"mike\")\n setupVersionSelector({ document$ })\n\n/* Always close drawer and search on navigation */\nmerge(location$, target$)\n .pipe(\n delay(125)\n )\n .subscribe(() => {\n setToggle(\"drawer\", false)\n setToggle(\"search\", false)\n })\n\n/* Set up global keyboard handlers */\nkeyboard$\n .pipe(\n filter(({ mode }) => mode === \"global\")\n )\n .subscribe(key => {\n switch (key.type) {\n\n /* Go to previous page */\n case \"p\":\n case \",\":\n const prev = getOptionalElement(\"link[rel=prev]\")\n if (typeof prev !== \"undefined\")\n setLocation(prev)\n break\n\n /* Go to next page */\n case \"n\":\n case \".\":\n const next = getOptionalElement(\"link[rel=next]\")\n if (typeof next !== \"undefined\")\n setLocation(next)\n break\n\n /* Expand navigation, see https://bit.ly/3ZjG5io */\n case \"Enter\":\n const active = getActiveElement()\n if (active instanceof HTMLLabelElement)\n active.click()\n }\n })\n\n/* Set up patches */\npatchEllipsis({ document$ })\npatchIndeterminate({ document$, tablet$ })\npatchScrollfix({ document$ })\npatchScrolllock({ viewport$, tablet$ })\n\n/* Set up header and main area observable */\nconst header$ = watchHeader(getComponentElement(\"header\"), { viewport$ })\nconst main$ = document$\n .pipe(\n map(() => getComponentElement(\"main\")),\n switchMap(el => watchMain(el, { viewport$, header$ })),\n shareReplay(1)\n )\n\n/* Set up control component observables */\nconst control$ = merge(\n\n /* Consent */\n ...getComponentElements(\"consent\")\n .map(el => mountConsent(el, { target$ })),\n\n /* Dialog */\n ...getComponentElements(\"dialog\")\n .map(el => mountDialog(el, { alert$ })),\n\n /* Header */\n ...getComponentElements(\"header\")\n .map(el => mountHeader(el, { viewport$, header$, main$ })),\n\n /* Color palette */\n ...getComponentElements(\"palette\")\n .map(el => mountPalette(el)),\n\n /* Progress bar */\n ...getComponentElements(\"progress\")\n .map(el => mountProgress(el, { progress$ })),\n\n /* Search */\n ...getComponentElements(\"search\")\n .map(el => mountSearch(el, { index$, keyboard$ })),\n\n /* Repository information */\n ...getComponentElements(\"source\")\n .map(el => mountSource(el))\n)\n\n/* Set up content component observables */\nconst content$ = defer(() => merge(\n\n /* Announcement bar */\n ...getComponentElements(\"announce\")\n .map(el => mountAnnounce(el)),\n\n /* Content */\n ...getComponentElements(\"content\")\n .map(el => mountContent(el, { viewport$, target$, print$ })),\n\n /* Search highlighting */\n ...getComponentElements(\"content\")\n .map(el => feature(\"search.highlight\")\n ? mountSearchHiglight(el, { index$, location$ })\n : EMPTY\n ),\n\n /* Header title */\n ...getComponentElements(\"header-title\")\n .map(el => mountHeaderTitle(el, { viewport$, header$ })),\n\n /* Sidebar */\n ...getComponentElements(\"sidebar\")\n .map(el => el.getAttribute(\"data-md-type\") === \"navigation\"\n ? at(screen$, () => mountSidebar(el, { viewport$, header$, main$ }))\n : at(tablet$, () => mountSidebar(el, { viewport$, header$, main$ }))\n ),\n\n /* Navigation tabs */\n ...getComponentElements(\"tabs\")\n .map(el => mountTabs(el, { viewport$, header$ })),\n\n /* Table of contents */\n ...getComponentElements(\"toc\")\n .map(el => mountTableOfContents(el, {\n viewport$, header$, main$, target$\n })),\n\n /* Back-to-top button */\n ...getComponentElements(\"top\")\n .map(el => mountBackToTop(el, { viewport$, header$, main$, target$ }))\n))\n\n/* Set up component observables */\nconst component$ = document$\n .pipe(\n switchMap(() => content$),\n mergeWith(control$),\n shareReplay(1)\n )\n\n/* Subscribe to all components */\ncomponent$.subscribe()\n\n/* ----------------------------------------------------------------------------\n * Exports\n * ------------------------------------------------------------------------- */\n\nwindow.document$ = document$ /* Document observable */\nwindow.location$ = location$ /* Location subject */\nwindow.target$ = target$ /* Location target observable */\nwindow.keyboard$ = keyboard$ /* Keyboard observable */\nwindow.viewport$ = viewport$ /* Viewport observable */\nwindow.tablet$ = tablet$ /* Media tablet observable */\nwindow.screen$ = screen$ /* Media screen observable */\nwindow.print$ = print$ /* Media print observable */\nwindow.alert$ = alert$ /* Alert subject */\nwindow.progress$ = progress$ /* Progress indicator subject */\nwindow.component$ = component$ /* Component observable */\n", "/*! *****************************************************************************\r\nCopyright (c) Microsoft Corporation.\r\n\r\nPermission to use, copy, modify, and/or distribute this software for any\r\npurpose with or without fee is hereby granted.\r\n\r\nTHE SOFTWARE IS PROVIDED \"AS IS\" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH\r\nREGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY\r\nAND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,\r\nINDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM\r\nLOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR\r\nOTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR\r\nPERFORMANCE OF THIS SOFTWARE.\r\n***************************************************************************** */\r\n/* global Reflect, Promise */\r\n\r\nvar extendStatics = function(d, b) {\r\n extendStatics = Object.setPrototypeOf ||\r\n ({ __proto__: [] } instanceof Array && function (d, b) { d.__proto__ = b; }) ||\r\n function (d, b) { for (var p in b) if (Object.prototype.hasOwnProperty.call(b, p)) d[p] = b[p]; };\r\n return extendStatics(d, b);\r\n};\r\n\r\nexport function __extends(d, b) {\r\n if (typeof b !== \"function\" && b !== null)\r\n throw new TypeError(\"Class extends value \" + String(b) + \" is not a constructor or null\");\r\n extendStatics(d, b);\r\n function __() { this.constructor = d; }\r\n d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());\r\n}\r\n\r\nexport var __assign = function() {\r\n __assign = Object.assign || function __assign(t) {\r\n for (var s, i = 1, n = arguments.length; i < n; i++) {\r\n s = arguments[i];\r\n for (var p in s) if (Object.prototype.hasOwnProperty.call(s, p)) t[p] = s[p];\r\n }\r\n return t;\r\n }\r\n return __assign.apply(this, arguments);\r\n}\r\n\r\nexport function __rest(s, e) {\r\n var t = {};\r\n for (var p in s) if (Object.prototype.hasOwnProperty.call(s, p) && e.indexOf(p) < 0)\r\n t[p] = s[p];\r\n if (s != null && typeof Object.getOwnPropertySymbols === \"function\")\r\n for (var i = 0, p = Object.getOwnPropertySymbols(s); i < p.length; i++) {\r\n if (e.indexOf(p[i]) < 0 && Object.prototype.propertyIsEnumerable.call(s, p[i]))\r\n t[p[i]] = s[p[i]];\r\n }\r\n return t;\r\n}\r\n\r\nexport function __decorate(decorators, target, key, desc) {\r\n var c = arguments.length, r = c < 3 ? target : desc === null ? desc = Object.getOwnPropertyDescriptor(target, key) : desc, d;\r\n if (typeof Reflect === \"object\" && typeof Reflect.decorate === \"function\") r = Reflect.decorate(decorators, target, key, desc);\r\n else for (var i = decorators.length - 1; i >= 0; i--) if (d = decorators[i]) r = (c < 3 ? d(r) : c > 3 ? d(target, key, r) : d(target, key)) || r;\r\n return c > 3 && r && Object.defineProperty(target, key, r), r;\r\n}\r\n\r\nexport function __param(paramIndex, decorator) {\r\n return function (target, key) { decorator(target, key, paramIndex); }\r\n}\r\n\r\nexport function __metadata(metadataKey, metadataValue) {\r\n if (typeof Reflect === \"object\" && typeof Reflect.metadata === \"function\") return Reflect.metadata(metadataKey, metadataValue);\r\n}\r\n\r\nexport function __awaiter(thisArg, _arguments, P, generator) {\r\n function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); }\r\n return new (P || (P = Promise))(function (resolve, reject) {\r\n function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }\r\n function rejected(value) { try { step(generator[\"throw\"](value)); } catch (e) { reject(e); } }\r\n function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); }\r\n step((generator = generator.apply(thisArg, _arguments || [])).next());\r\n });\r\n}\r\n\r\nexport function __generator(thisArg, body) {\r\n var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g;\r\n return g = { next: verb(0), \"throw\": verb(1), \"return\": verb(2) }, typeof Symbol === \"function\" && (g[Symbol.iterator] = function() { return this; }), g;\r\n function verb(n) { return function (v) { return step([n, v]); }; }\r\n function step(op) {\r\n if (f) throw new TypeError(\"Generator is already executing.\");\r\n while (_) try {\r\n if (f = 1, y && (t = op[0] & 2 ? y[\"return\"] : op[0] ? y[\"throw\"] || ((t = y[\"return\"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t;\r\n if (y = 0, t) op = [op[0] & 2, t.value];\r\n switch (op[0]) {\r\n case 0: case 1: t = op; break;\r\n case 4: _.label++; return { value: op[1], done: false };\r\n case 5: _.label++; y = op[1]; op = [0]; continue;\r\n case 7: op = _.ops.pop(); _.trys.pop(); continue;\r\n default:\r\n if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; }\r\n if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; }\r\n if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; }\r\n if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; }\r\n if (t[2]) _.ops.pop();\r\n _.trys.pop(); continue;\r\n }\r\n op = body.call(thisArg, _);\r\n } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; }\r\n if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true };\r\n }\r\n}\r\n\r\nexport var __createBinding = Object.create ? (function(o, m, k, k2) {\r\n if (k2 === undefined) k2 = k;\r\n Object.defineProperty(o, k2, { enumerable: true, get: function() { return m[k]; } });\r\n}) : (function(o, m, k, k2) {\r\n if (k2 === undefined) k2 = k;\r\n o[k2] = m[k];\r\n});\r\n\r\nexport function __exportStar(m, o) {\r\n for (var p in m) if (p !== \"default\" && !Object.prototype.hasOwnProperty.call(o, p)) __createBinding(o, m, p);\r\n}\r\n\r\nexport function __values(o) {\r\n var s = typeof Symbol === \"function\" && Symbol.iterator, m = s && o[s], i = 0;\r\n if (m) return m.call(o);\r\n if (o && typeof o.length === \"number\") return {\r\n next: function () {\r\n if (o && i >= o.length) o = void 0;\r\n return { value: o && o[i++], done: !o };\r\n }\r\n };\r\n throw new TypeError(s ? \"Object is not iterable.\" : \"Symbol.iterator is not defined.\");\r\n}\r\n\r\nexport function __read(o, n) {\r\n var m = typeof Symbol === \"function\" && o[Symbol.iterator];\r\n if (!m) return o;\r\n var i = m.call(o), r, ar = [], e;\r\n try {\r\n while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value);\r\n }\r\n catch (error) { e = { error: error }; }\r\n finally {\r\n try {\r\n if (r && !r.done && (m = i[\"return\"])) m.call(i);\r\n }\r\n finally { if (e) throw e.error; }\r\n }\r\n return ar;\r\n}\r\n\r\n/** @deprecated */\r\nexport function __spread() {\r\n for (var ar = [], i = 0; i < arguments.length; i++)\r\n ar = ar.concat(__read(arguments[i]));\r\n return ar;\r\n}\r\n\r\n/** @deprecated */\r\nexport function __spreadArrays() {\r\n for (var s = 0, i = 0, il = arguments.length; i < il; i++) s += arguments[i].length;\r\n for (var r = Array(s), k = 0, i = 0; i < il; i++)\r\n for (var a = arguments[i], j = 0, jl = a.length; j < jl; j++, k++)\r\n r[k] = a[j];\r\n return r;\r\n}\r\n\r\nexport function __spreadArray(to, from, pack) {\r\n if (pack || arguments.length === 2) for (var i = 0, l = from.length, ar; i < l; i++) {\r\n if (ar || !(i in from)) {\r\n if (!ar) ar = Array.prototype.slice.call(from, 0, i);\r\n ar[i] = from[i];\r\n }\r\n }\r\n return to.concat(ar || Array.prototype.slice.call(from));\r\n}\r\n\r\nexport function __await(v) {\r\n return this instanceof __await ? (this.v = v, this) : new __await(v);\r\n}\r\n\r\nexport function __asyncGenerator(thisArg, _arguments, generator) {\r\n if (!Symbol.asyncIterator) throw new TypeError(\"Symbol.asyncIterator is not defined.\");\r\n var g = generator.apply(thisArg, _arguments || []), i, q = [];\r\n return i = {}, verb(\"next\"), verb(\"throw\"), verb(\"return\"), i[Symbol.asyncIterator] = function () { return this; }, i;\r\n function verb(n) { if (g[n]) i[n] = function (v) { return new Promise(function (a, b) { q.push([n, v, a, b]) > 1 || resume(n, v); }); }; }\r\n function resume(n, v) { try { step(g[n](v)); } catch (e) { settle(q[0][3], e); } }\r\n function step(r) { r.value instanceof __await ? Promise.resolve(r.value.v).then(fulfill, reject) : settle(q[0][2], r); }\r\n function fulfill(value) { resume(\"next\", value); }\r\n function reject(value) { resume(\"throw\", value); }\r\n function settle(f, v) { if (f(v), q.shift(), q.length) resume(q[0][0], q[0][1]); }\r\n}\r\n\r\nexport function __asyncDelegator(o) {\r\n var i, p;\r\n return i = {}, verb(\"next\"), verb(\"throw\", function (e) { throw e; }), verb(\"return\"), i[Symbol.iterator] = function () { return this; }, i;\r\n function verb(n, f) { i[n] = o[n] ? function (v) { return (p = !p) ? { value: __await(o[n](v)), done: n === \"return\" } : f ? f(v) : v; } : f; }\r\n}\r\n\r\nexport function __asyncValues(o) {\r\n if (!Symbol.asyncIterator) throw new TypeError(\"Symbol.asyncIterator is not defined.\");\r\n var m = o[Symbol.asyncIterator], i;\r\n return m ? m.call(o) : (o = typeof __values === \"function\" ? __values(o) : o[Symbol.iterator](), i = {}, verb(\"next\"), verb(\"throw\"), verb(\"return\"), i[Symbol.asyncIterator] = function () { return this; }, i);\r\n function verb(n) { i[n] = o[n] && function (v) { return new Promise(function (resolve, reject) { v = o[n](v), settle(resolve, reject, v.done, v.value); }); }; }\r\n function settle(resolve, reject, d, v) { Promise.resolve(v).then(function(v) { resolve({ value: v, done: d }); }, reject); }\r\n}\r\n\r\nexport function __makeTemplateObject(cooked, raw) {\r\n if (Object.defineProperty) { Object.defineProperty(cooked, \"raw\", { value: raw }); } else { cooked.raw = raw; }\r\n return cooked;\r\n};\r\n\r\nvar __setModuleDefault = Object.create ? (function(o, v) {\r\n Object.defineProperty(o, \"default\", { enumerable: true, value: v });\r\n}) : function(o, v) {\r\n o[\"default\"] = v;\r\n};\r\n\r\nexport function __importStar(mod) {\r\n if (mod && mod.__esModule) return mod;\r\n var result = {};\r\n if (mod != null) for (var k in mod) if (k !== \"default\" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k);\r\n __setModuleDefault(result, mod);\r\n return result;\r\n}\r\n\r\nexport function __importDefault(mod) {\r\n return (mod && mod.__esModule) ? mod : { default: mod };\r\n}\r\n\r\nexport function __classPrivateFieldGet(receiver, state, kind, f) {\r\n if (kind === \"a\" && !f) throw new TypeError(\"Private accessor was defined without a getter\");\r\n if (typeof state === \"function\" ? receiver !== state || !f : !state.has(receiver)) throw new TypeError(\"Cannot read private member from an object whose class did not declare it\");\r\n return kind === \"m\" ? f : kind === \"a\" ? f.call(receiver) : f ? f.value : state.get(receiver);\r\n}\r\n\r\nexport function __classPrivateFieldSet(receiver, state, value, kind, f) {\r\n if (kind === \"m\") throw new TypeError(\"Private method is not writable\");\r\n if (kind === \"a\" && !f) throw new TypeError(\"Private accessor was defined without a setter\");\r\n if (typeof state === \"function\" ? receiver !== state || !f : !state.has(receiver)) throw new TypeError(\"Cannot write private member to an object whose class did not declare it\");\r\n return (kind === \"a\" ? f.call(receiver, value) : f ? f.value = value : state.set(receiver, value)), value;\r\n}\r\n", "/**\n * Returns true if the object is a function.\n * @param value The value to check\n */\nexport function isFunction(value: any): value is (...args: any[]) => any {\n return typeof value === 'function';\n}\n", "/**\n * Used to create Error subclasses until the community moves away from ES5.\n *\n * This is because compiling from TypeScript down to ES5 has issues with subclassing Errors\n * as well as other built-in types: https://github.com/Microsoft/TypeScript/issues/12123\n *\n * @param createImpl A factory function to create the actual constructor implementation. The returned\n * function should be a named function that calls `_super` internally.\n */\nexport function createErrorClass(createImpl: (_super: any) => any): T {\n const _super = (instance: any) => {\n Error.call(instance);\n instance.stack = new Error().stack;\n };\n\n const ctorFunc = createImpl(_super);\n ctorFunc.prototype = Object.create(Error.prototype);\n ctorFunc.prototype.constructor = ctorFunc;\n return ctorFunc;\n}\n", "import { createErrorClass } from './createErrorClass';\n\nexport interface UnsubscriptionError extends Error {\n readonly errors: any[];\n}\n\nexport interface UnsubscriptionErrorCtor {\n /**\n * @deprecated Internal implementation detail. Do not construct error instances.\n * Cannot be tagged as internal: https://github.com/ReactiveX/rxjs/issues/6269\n */\n new (errors: any[]): UnsubscriptionError;\n}\n\n/**\n * An error thrown when one or more errors have occurred during the\n * `unsubscribe` of a {@link Subscription}.\n */\nexport const UnsubscriptionError: UnsubscriptionErrorCtor = createErrorClass(\n (_super) =>\n function UnsubscriptionErrorImpl(this: any, errors: (Error | string)[]) {\n _super(this);\n this.message = errors\n ? `${errors.length} errors occurred during unsubscription:\n${errors.map((err, i) => `${i + 1}) ${err.toString()}`).join('\\n ')}`\n : '';\n this.name = 'UnsubscriptionError';\n this.errors = errors;\n }\n);\n", "/**\n * Removes an item from an array, mutating it.\n * @param arr The array to remove the item from\n * @param item The item to remove\n */\nexport function arrRemove(arr: T[] | undefined | null, item: T) {\n if (arr) {\n const index = arr.indexOf(item);\n 0 <= index && arr.splice(index, 1);\n }\n}\n", "import { isFunction } from './util/isFunction';\nimport { UnsubscriptionError } from './util/UnsubscriptionError';\nimport { SubscriptionLike, TeardownLogic, Unsubscribable } from './types';\nimport { arrRemove } from './util/arrRemove';\n\n/**\n * Represents a disposable resource, such as the execution of an Observable. A\n * Subscription has one important method, `unsubscribe`, that takes no argument\n * and just disposes the resource held by the subscription.\n *\n * Additionally, subscriptions may be grouped together through the `add()`\n * method, which will attach a child Subscription to the current Subscription.\n * When a Subscription is unsubscribed, all its children (and its grandchildren)\n * will be unsubscribed as well.\n *\n * @class Subscription\n */\nexport class Subscription implements SubscriptionLike {\n /** @nocollapse */\n public static EMPTY = (() => {\n const empty = new Subscription();\n empty.closed = true;\n return empty;\n })();\n\n /**\n * A flag to indicate whether this Subscription has already been unsubscribed.\n */\n public closed = false;\n\n private _parentage: Subscription[] | Subscription | null = null;\n\n /**\n * The list of registered finalizers to execute upon unsubscription. Adding and removing from this\n * list occurs in the {@link #add} and {@link #remove} methods.\n */\n private _finalizers: Exclude[] | null = null;\n\n /**\n * @param initialTeardown A function executed first as part of the finalization\n * process that is kicked off when {@link #unsubscribe} is called.\n */\n constructor(private initialTeardown?: () => void) {}\n\n /**\n * Disposes the resources held by the subscription. May, for instance, cancel\n * an ongoing Observable execution or cancel any other type of work that\n * started when the Subscription was created.\n * @return {void}\n */\n unsubscribe(): void {\n let errors: any[] | undefined;\n\n if (!this.closed) {\n this.closed = true;\n\n // Remove this from it's parents.\n const { _parentage } = this;\n if (_parentage) {\n this._parentage = null;\n if (Array.isArray(_parentage)) {\n for (const parent of _parentage) {\n parent.remove(this);\n }\n } else {\n _parentage.remove(this);\n }\n }\n\n const { initialTeardown: initialFinalizer } = this;\n if (isFunction(initialFinalizer)) {\n try {\n initialFinalizer();\n } catch (e) {\n errors = e instanceof UnsubscriptionError ? e.errors : [e];\n }\n }\n\n const { _finalizers } = this;\n if (_finalizers) {\n this._finalizers = null;\n for (const finalizer of _finalizers) {\n try {\n execFinalizer(finalizer);\n } catch (err) {\n errors = errors ?? [];\n if (err instanceof UnsubscriptionError) {\n errors = [...errors, ...err.errors];\n } else {\n errors.push(err);\n }\n }\n }\n }\n\n if (errors) {\n throw new UnsubscriptionError(errors);\n }\n }\n }\n\n /**\n * Adds a finalizer to this subscription, so that finalization will be unsubscribed/called\n * when this subscription is unsubscribed. If this subscription is already {@link #closed},\n * because it has already been unsubscribed, then whatever finalizer is passed to it\n * will automatically be executed (unless the finalizer itself is also a closed subscription).\n *\n * Closed Subscriptions cannot be added as finalizers to any subscription. Adding a closed\n * subscription to a any subscription will result in no operation. (A noop).\n *\n * Adding a subscription to itself, or adding `null` or `undefined` will not perform any\n * operation at all. (A noop).\n *\n * `Subscription` instances that are added to this instance will automatically remove themselves\n * if they are unsubscribed. Functions and {@link Unsubscribable} objects that you wish to remove\n * will need to be removed manually with {@link #remove}\n *\n * @param teardown The finalization logic to add to this subscription.\n */\n add(teardown: TeardownLogic): void {\n // Only add the finalizer if it's not undefined\n // and don't add a subscription to itself.\n if (teardown && teardown !== this) {\n if (this.closed) {\n // If this subscription is already closed,\n // execute whatever finalizer is handed to it automatically.\n execFinalizer(teardown);\n } else {\n if (teardown instanceof Subscription) {\n // We don't add closed subscriptions, and we don't add the same subscription\n // twice. Subscription unsubscribe is idempotent.\n if (teardown.closed || teardown._hasParent(this)) {\n return;\n }\n teardown._addParent(this);\n }\n (this._finalizers = this._finalizers ?? []).push(teardown);\n }\n }\n }\n\n /**\n * Checks to see if a this subscription already has a particular parent.\n * This will signal that this subscription has already been added to the parent in question.\n * @param parent the parent to check for\n */\n private _hasParent(parent: Subscription) {\n const { _parentage } = this;\n return _parentage === parent || (Array.isArray(_parentage) && _parentage.includes(parent));\n }\n\n /**\n * Adds a parent to this subscription so it can be removed from the parent if it\n * unsubscribes on it's own.\n *\n * NOTE: THIS ASSUMES THAT {@link _hasParent} HAS ALREADY BEEN CHECKED.\n * @param parent The parent subscription to add\n */\n private _addParent(parent: Subscription) {\n const { _parentage } = this;\n this._parentage = Array.isArray(_parentage) ? (_parentage.push(parent), _parentage) : _parentage ? [_parentage, parent] : parent;\n }\n\n /**\n * Called on a child when it is removed via {@link #remove}.\n * @param parent The parent to remove\n */\n private _removeParent(parent: Subscription) {\n const { _parentage } = this;\n if (_parentage === parent) {\n this._parentage = null;\n } else if (Array.isArray(_parentage)) {\n arrRemove(_parentage, parent);\n }\n }\n\n /**\n * Removes a finalizer from this subscription that was previously added with the {@link #add} method.\n *\n * Note that `Subscription` instances, when unsubscribed, will automatically remove themselves\n * from every other `Subscription` they have been added to. This means that using the `remove` method\n * is not a common thing and should be used thoughtfully.\n *\n * If you add the same finalizer instance of a function or an unsubscribable object to a `Subscription` instance\n * more than once, you will need to call `remove` the same number of times to remove all instances.\n *\n * All finalizer instances are removed to free up memory upon unsubscription.\n *\n * @param teardown The finalizer to remove from this subscription\n */\n remove(teardown: Exclude): void {\n const { _finalizers } = this;\n _finalizers && arrRemove(_finalizers, teardown);\n\n if (teardown instanceof Subscription) {\n teardown._removeParent(this);\n }\n }\n}\n\nexport const EMPTY_SUBSCRIPTION = Subscription.EMPTY;\n\nexport function isSubscription(value: any): value is Subscription {\n return (\n value instanceof Subscription ||\n (value && 'closed' in value && isFunction(value.remove) && isFunction(value.add) && isFunction(value.unsubscribe))\n );\n}\n\nfunction execFinalizer(finalizer: Unsubscribable | (() => void)) {\n if (isFunction(finalizer)) {\n finalizer();\n } else {\n finalizer.unsubscribe();\n }\n}\n", "import { Subscriber } from './Subscriber';\nimport { ObservableNotification } from './types';\n\n/**\n * The {@link GlobalConfig} object for RxJS. It is used to configure things\n * like how to react on unhandled errors.\n */\nexport const config: GlobalConfig = {\n onUnhandledError: null,\n onStoppedNotification: null,\n Promise: undefined,\n useDeprecatedSynchronousErrorHandling: false,\n useDeprecatedNextContext: false,\n};\n\n/**\n * The global configuration object for RxJS, used to configure things\n * like how to react on unhandled errors. Accessible via {@link config}\n * object.\n */\nexport interface GlobalConfig {\n /**\n * A registration point for unhandled errors from RxJS. These are errors that\n * cannot were not handled by consuming code in the usual subscription path. For\n * example, if you have this configured, and you subscribe to an observable without\n * providing an error handler, errors from that subscription will end up here. This\n * will _always_ be called asynchronously on another job in the runtime. This is because\n * we do not want errors thrown in this user-configured handler to interfere with the\n * behavior of the library.\n */\n onUnhandledError: ((err: any) => void) | null;\n\n /**\n * A registration point for notifications that cannot be sent to subscribers because they\n * have completed, errored or have been explicitly unsubscribed. By default, next, complete\n * and error notifications sent to stopped subscribers are noops. However, sometimes callers\n * might want a different behavior. For example, with sources that attempt to report errors\n * to stopped subscribers, a caller can configure RxJS to throw an unhandled error instead.\n * This will _always_ be called asynchronously on another job in the runtime. This is because\n * we do not want errors thrown in this user-configured handler to interfere with the\n * behavior of the library.\n */\n onStoppedNotification: ((notification: ObservableNotification, subscriber: Subscriber) => void) | null;\n\n /**\n * The promise constructor used by default for {@link Observable#toPromise toPromise} and {@link Observable#forEach forEach}\n * methods.\n *\n * @deprecated As of version 8, RxJS will no longer support this sort of injection of a\n * Promise constructor. If you need a Promise implementation other than native promises,\n * please polyfill/patch Promise as you see appropriate. Will be removed in v8.\n */\n Promise?: PromiseConstructorLike;\n\n /**\n * If true, turns on synchronous error rethrowing, which is a deprecated behavior\n * in v6 and higher. This behavior enables bad patterns like wrapping a subscribe\n * call in a try/catch block. It also enables producer interference, a nasty bug\n * where a multicast can be broken for all observers by a downstream consumer with\n * an unhandled error. DO NOT USE THIS FLAG UNLESS IT'S NEEDED TO BUY TIME\n * FOR MIGRATION REASONS.\n *\n * @deprecated As of version 8, RxJS will no longer support synchronous throwing\n * of unhandled errors. All errors will be thrown on a separate call stack to prevent bad\n * behaviors described above. Will be removed in v8.\n */\n useDeprecatedSynchronousErrorHandling: boolean;\n\n /**\n * If true, enables an as-of-yet undocumented feature from v5: The ability to access\n * `unsubscribe()` via `this` context in `next` functions created in observers passed\n * to `subscribe`.\n *\n * This is being removed because the performance was severely problematic, and it could also cause\n * issues when types other than POJOs are passed to subscribe as subscribers, as they will likely have\n * their `this` context overwritten.\n *\n * @deprecated As of version 8, RxJS will no longer support altering the\n * context of next functions provided as part of an observer to Subscribe. Instead,\n * you will have access to a subscription or a signal or token that will allow you to do things like\n * unsubscribe and test closed status. Will be removed in v8.\n */\n useDeprecatedNextContext: boolean;\n}\n", "import type { TimerHandle } from './timerHandle';\ntype SetTimeoutFunction = (handler: () => void, timeout?: number, ...args: any[]) => TimerHandle;\ntype ClearTimeoutFunction = (handle: TimerHandle) => void;\n\ninterface TimeoutProvider {\n setTimeout: SetTimeoutFunction;\n clearTimeout: ClearTimeoutFunction;\n delegate:\n | {\n setTimeout: SetTimeoutFunction;\n clearTimeout: ClearTimeoutFunction;\n }\n | undefined;\n}\n\nexport const timeoutProvider: TimeoutProvider = {\n // When accessing the delegate, use the variable rather than `this` so that\n // the functions can be called without being bound to the provider.\n setTimeout(handler: () => void, timeout?: number, ...args) {\n const { delegate } = timeoutProvider;\n if (delegate?.setTimeout) {\n return delegate.setTimeout(handler, timeout, ...args);\n }\n return setTimeout(handler, timeout, ...args);\n },\n clearTimeout(handle) {\n const { delegate } = timeoutProvider;\n return (delegate?.clearTimeout || clearTimeout)(handle as any);\n },\n delegate: undefined,\n};\n", "import { config } from '../config';\nimport { timeoutProvider } from '../scheduler/timeoutProvider';\n\n/**\n * Handles an error on another job either with the user-configured {@link onUnhandledError},\n * or by throwing it on that new job so it can be picked up by `window.onerror`, `process.on('error')`, etc.\n *\n * This should be called whenever there is an error that is out-of-band with the subscription\n * or when an error hits a terminal boundary of the subscription and no error handler was provided.\n *\n * @param err the error to report\n */\nexport function reportUnhandledError(err: any) {\n timeoutProvider.setTimeout(() => {\n const { onUnhandledError } = config;\n if (onUnhandledError) {\n // Execute the user-configured error handler.\n onUnhandledError(err);\n } else {\n // Throw so it is picked up by the runtime's uncaught error mechanism.\n throw err;\n }\n });\n}\n", "/* tslint:disable:no-empty */\nexport function noop() { }\n", "import { CompleteNotification, NextNotification, ErrorNotification } from './types';\n\n/**\n * A completion object optimized for memory use and created to be the\n * same \"shape\" as other notifications in v8.\n * @internal\n */\nexport const COMPLETE_NOTIFICATION = (() => createNotification('C', undefined, undefined) as CompleteNotification)();\n\n/**\n * Internal use only. Creates an optimized error notification that is the same \"shape\"\n * as other notifications.\n * @internal\n */\nexport function errorNotification(error: any): ErrorNotification {\n return createNotification('E', undefined, error) as any;\n}\n\n/**\n * Internal use only. Creates an optimized next notification that is the same \"shape\"\n * as other notifications.\n * @internal\n */\nexport function nextNotification(value: T) {\n return createNotification('N', value, undefined) as NextNotification;\n}\n\n/**\n * Ensures that all notifications created internally have the same \"shape\" in v8.\n *\n * TODO: This is only exported to support a crazy legacy test in `groupBy`.\n * @internal\n */\nexport function createNotification(kind: 'N' | 'E' | 'C', value: any, error: any) {\n return {\n kind,\n value,\n error,\n };\n}\n", "import { config } from '../config';\n\nlet context: { errorThrown: boolean; error: any } | null = null;\n\n/**\n * Handles dealing with errors for super-gross mode. Creates a context, in which\n * any synchronously thrown errors will be passed to {@link captureError}. Which\n * will record the error such that it will be rethrown after the call back is complete.\n * TODO: Remove in v8\n * @param cb An immediately executed function.\n */\nexport function errorContext(cb: () => void) {\n if (config.useDeprecatedSynchronousErrorHandling) {\n const isRoot = !context;\n if (isRoot) {\n context = { errorThrown: false, error: null };\n }\n cb();\n if (isRoot) {\n const { errorThrown, error } = context!;\n context = null;\n if (errorThrown) {\n throw error;\n }\n }\n } else {\n // This is the general non-deprecated path for everyone that\n // isn't crazy enough to use super-gross mode (useDeprecatedSynchronousErrorHandling)\n cb();\n }\n}\n\n/**\n * Captures errors only in super-gross mode.\n * @param err the error to capture\n */\nexport function captureError(err: any) {\n if (config.useDeprecatedSynchronousErrorHandling && context) {\n context.errorThrown = true;\n context.error = err;\n }\n}\n", "import { isFunction } from './util/isFunction';\nimport { Observer, ObservableNotification } from './types';\nimport { isSubscription, Subscription } from './Subscription';\nimport { config } from './config';\nimport { reportUnhandledError } from './util/reportUnhandledError';\nimport { noop } from './util/noop';\nimport { nextNotification, errorNotification, COMPLETE_NOTIFICATION } from './NotificationFactories';\nimport { timeoutProvider } from './scheduler/timeoutProvider';\nimport { captureError } from './util/errorContext';\n\n/**\n * Implements the {@link Observer} interface and extends the\n * {@link Subscription} class. While the {@link Observer} is the public API for\n * consuming the values of an {@link Observable}, all Observers get converted to\n * a Subscriber, in order to provide Subscription-like capabilities such as\n * `unsubscribe`. Subscriber is a common type in RxJS, and crucial for\n * implementing operators, but it is rarely used as a public API.\n *\n * @class Subscriber\n */\nexport class Subscriber extends Subscription implements Observer {\n /**\n * A static factory for a Subscriber, given a (potentially partial) definition\n * of an Observer.\n * @param next The `next` callback of an Observer.\n * @param error The `error` callback of an\n * Observer.\n * @param complete The `complete` callback of an\n * Observer.\n * @return A Subscriber wrapping the (partially defined)\n * Observer represented by the given arguments.\n * @nocollapse\n * @deprecated Do not use. Will be removed in v8. There is no replacement for this\n * method, and there is no reason to be creating instances of `Subscriber` directly.\n * If you have a specific use case, please file an issue.\n */\n static create(next?: (x?: T) => void, error?: (e?: any) => void, complete?: () => void): Subscriber {\n return new SafeSubscriber(next, error, complete);\n }\n\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n protected isStopped: boolean = false;\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n protected destination: Subscriber | Observer; // this `any` is the escape hatch to erase extra type param (e.g. R)\n\n /**\n * @deprecated Internal implementation detail, do not use directly. Will be made internal in v8.\n * There is no reason to directly create an instance of Subscriber. This type is exported for typings reasons.\n */\n constructor(destination?: Subscriber | Observer) {\n super();\n if (destination) {\n this.destination = destination;\n // Automatically chain subscriptions together here.\n // if destination is a Subscription, then it is a Subscriber.\n if (isSubscription(destination)) {\n destination.add(this);\n }\n } else {\n this.destination = EMPTY_OBSERVER;\n }\n }\n\n /**\n * The {@link Observer} callback to receive notifications of type `next` from\n * the Observable, with a value. The Observable may call this method 0 or more\n * times.\n * @param {T} [value] The `next` value.\n * @return {void}\n */\n next(value?: T): void {\n if (this.isStopped) {\n handleStoppedNotification(nextNotification(value), this);\n } else {\n this._next(value!);\n }\n }\n\n /**\n * The {@link Observer} callback to receive notifications of type `error` from\n * the Observable, with an attached `Error`. Notifies the Observer that\n * the Observable has experienced an error condition.\n * @param {any} [err] The `error` exception.\n * @return {void}\n */\n error(err?: any): void {\n if (this.isStopped) {\n handleStoppedNotification(errorNotification(err), this);\n } else {\n this.isStopped = true;\n this._error(err);\n }\n }\n\n /**\n * The {@link Observer} callback to receive a valueless notification of type\n * `complete` from the Observable. Notifies the Observer that the Observable\n * has finished sending push-based notifications.\n * @return {void}\n */\n complete(): void {\n if (this.isStopped) {\n handleStoppedNotification(COMPLETE_NOTIFICATION, this);\n } else {\n this.isStopped = true;\n this._complete();\n }\n }\n\n unsubscribe(): void {\n if (!this.closed) {\n this.isStopped = true;\n super.unsubscribe();\n this.destination = null!;\n }\n }\n\n protected _next(value: T): void {\n this.destination.next(value);\n }\n\n protected _error(err: any): void {\n try {\n this.destination.error(err);\n } finally {\n this.unsubscribe();\n }\n }\n\n protected _complete(): void {\n try {\n this.destination.complete();\n } finally {\n this.unsubscribe();\n }\n }\n}\n\n/**\n * This bind is captured here because we want to be able to have\n * compatibility with monoid libraries that tend to use a method named\n * `bind`. In particular, a library called Monio requires this.\n */\nconst _bind = Function.prototype.bind;\n\nfunction bind any>(fn: Fn, thisArg: any): Fn {\n return _bind.call(fn, thisArg);\n}\n\n/**\n * Internal optimization only, DO NOT EXPOSE.\n * @internal\n */\nclass ConsumerObserver implements Observer {\n constructor(private partialObserver: Partial>) {}\n\n next(value: T): void {\n const { partialObserver } = this;\n if (partialObserver.next) {\n try {\n partialObserver.next(value);\n } catch (error) {\n handleUnhandledError(error);\n }\n }\n }\n\n error(err: any): void {\n const { partialObserver } = this;\n if (partialObserver.error) {\n try {\n partialObserver.error(err);\n } catch (error) {\n handleUnhandledError(error);\n }\n } else {\n handleUnhandledError(err);\n }\n }\n\n complete(): void {\n const { partialObserver } = this;\n if (partialObserver.complete) {\n try {\n partialObserver.complete();\n } catch (error) {\n handleUnhandledError(error);\n }\n }\n }\n}\n\nexport class SafeSubscriber extends Subscriber {\n constructor(\n observerOrNext?: Partial> | ((value: T) => void) | null,\n error?: ((e?: any) => void) | null,\n complete?: (() => void) | null\n ) {\n super();\n\n let partialObserver: Partial>;\n if (isFunction(observerOrNext) || !observerOrNext) {\n // The first argument is a function, not an observer. The next\n // two arguments *could* be observers, or they could be empty.\n partialObserver = {\n next: (observerOrNext ?? undefined) as (((value: T) => void) | undefined),\n error: error ?? undefined,\n complete: complete ?? undefined,\n };\n } else {\n // The first argument is a partial observer.\n let context: any;\n if (this && config.useDeprecatedNextContext) {\n // This is a deprecated path that made `this.unsubscribe()` available in\n // next handler functions passed to subscribe. This only exists behind a flag\n // now, as it is *very* slow.\n context = Object.create(observerOrNext);\n context.unsubscribe = () => this.unsubscribe();\n partialObserver = {\n next: observerOrNext.next && bind(observerOrNext.next, context),\n error: observerOrNext.error && bind(observerOrNext.error, context),\n complete: observerOrNext.complete && bind(observerOrNext.complete, context),\n };\n } else {\n // The \"normal\" path. Just use the partial observer directly.\n partialObserver = observerOrNext;\n }\n }\n\n // Wrap the partial observer to ensure it's a full observer, and\n // make sure proper error handling is accounted for.\n this.destination = new ConsumerObserver(partialObserver);\n }\n}\n\nfunction handleUnhandledError(error: any) {\n if (config.useDeprecatedSynchronousErrorHandling) {\n captureError(error);\n } else {\n // Ideal path, we report this as an unhandled error,\n // which is thrown on a new call stack.\n reportUnhandledError(error);\n }\n}\n\n/**\n * An error handler used when no error handler was supplied\n * to the SafeSubscriber -- meaning no error handler was supplied\n * do the `subscribe` call on our observable.\n * @param err The error to handle\n */\nfunction defaultErrorHandler(err: any) {\n throw err;\n}\n\n/**\n * A handler for notifications that cannot be sent to a stopped subscriber.\n * @param notification The notification being sent\n * @param subscriber The stopped subscriber\n */\nfunction handleStoppedNotification(notification: ObservableNotification, subscriber: Subscriber) {\n const { onStoppedNotification } = config;\n onStoppedNotification && timeoutProvider.setTimeout(() => onStoppedNotification(notification, subscriber));\n}\n\n/**\n * The observer used as a stub for subscriptions where the user did not\n * pass any arguments to `subscribe`. Comes with the default error handling\n * behavior.\n */\nexport const EMPTY_OBSERVER: Readonly> & { closed: true } = {\n closed: true,\n next: noop,\n error: defaultErrorHandler,\n complete: noop,\n};\n", "/**\n * Symbol.observable or a string \"@@observable\". Used for interop\n *\n * @deprecated We will no longer be exporting this symbol in upcoming versions of RxJS.\n * Instead polyfill and use Symbol.observable directly *or* use https://www.npmjs.com/package/symbol-observable\n */\nexport const observable: string | symbol = (() => (typeof Symbol === 'function' && Symbol.observable) || '@@observable')();\n", "/**\n * This function takes one parameter and just returns it. Simply put,\n * this is like `(x: T): T => x`.\n *\n * ## Examples\n *\n * This is useful in some cases when using things like `mergeMap`\n *\n * ```ts\n * import { interval, take, map, range, mergeMap, identity } from 'rxjs';\n *\n * const source$ = interval(1000).pipe(take(5));\n *\n * const result$ = source$.pipe(\n * map(i => range(i)),\n * mergeMap(identity) // same as mergeMap(x => x)\n * );\n *\n * result$.subscribe({\n * next: console.log\n * });\n * ```\n *\n * Or when you want to selectively apply an operator\n *\n * ```ts\n * import { interval, take, identity } from 'rxjs';\n *\n * const shouldLimit = () => Math.random() < 0.5;\n *\n * const source$ = interval(1000);\n *\n * const result$ = source$.pipe(shouldLimit() ? take(5) : identity);\n *\n * result$.subscribe({\n * next: console.log\n * });\n * ```\n *\n * @param x Any value that is returned by this function\n * @returns The value passed as the first parameter to this function\n */\nexport function identity(x: T): T {\n return x;\n}\n", "import { identity } from './identity';\nimport { UnaryFunction } from '../types';\n\nexport function pipe(): typeof identity;\nexport function pipe(fn1: UnaryFunction): UnaryFunction;\nexport function pipe(fn1: UnaryFunction, fn2: UnaryFunction): UnaryFunction;\nexport function pipe(fn1: UnaryFunction, fn2: UnaryFunction, fn3: UnaryFunction): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction,\n fn6: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction,\n fn6: UnaryFunction,\n fn7: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction,\n fn6: UnaryFunction,\n fn7: UnaryFunction,\n fn8: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction,\n fn6: UnaryFunction,\n fn7: UnaryFunction,\n fn8: UnaryFunction,\n fn9: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction,\n fn6: UnaryFunction,\n fn7: UnaryFunction,\n fn8: UnaryFunction,\n fn9: UnaryFunction,\n ...fns: UnaryFunction[]\n): UnaryFunction;\n\n/**\n * pipe() can be called on one or more functions, each of which can take one argument (\"UnaryFunction\")\n * and uses it to return a value.\n * It returns a function that takes one argument, passes it to the first UnaryFunction, and then\n * passes the result to the next one, passes that result to the next one, and so on. \n */\nexport function pipe(...fns: Array>): UnaryFunction {\n return pipeFromArray(fns);\n}\n\n/** @internal */\nexport function pipeFromArray(fns: Array>): UnaryFunction {\n if (fns.length === 0) {\n return identity as UnaryFunction;\n }\n\n if (fns.length === 1) {\n return fns[0];\n }\n\n return function piped(input: T): R {\n return fns.reduce((prev: any, fn: UnaryFunction) => fn(prev), input as any);\n };\n}\n", "import { Operator } from './Operator';\nimport { SafeSubscriber, Subscriber } from './Subscriber';\nimport { isSubscription, Subscription } from './Subscription';\nimport { TeardownLogic, OperatorFunction, Subscribable, Observer } from './types';\nimport { observable as Symbol_observable } from './symbol/observable';\nimport { pipeFromArray } from './util/pipe';\nimport { config } from './config';\nimport { isFunction } from './util/isFunction';\nimport { errorContext } from './util/errorContext';\n\n/**\n * A representation of any set of values over any amount of time. This is the most basic building block\n * of RxJS.\n *\n * @class Observable\n */\nexport class Observable implements Subscribable {\n /**\n * @deprecated Internal implementation detail, do not use directly. Will be made internal in v8.\n */\n source: Observable | undefined;\n\n /**\n * @deprecated Internal implementation detail, do not use directly. Will be made internal in v8.\n */\n operator: Operator | undefined;\n\n /**\n * @constructor\n * @param {Function} subscribe the function that is called when the Observable is\n * initially subscribed to. This function is given a Subscriber, to which new values\n * can be `next`ed, or an `error` method can be called to raise an error, or\n * `complete` can be called to notify of a successful completion.\n */\n constructor(subscribe?: (this: Observable, subscriber: Subscriber) => TeardownLogic) {\n if (subscribe) {\n this._subscribe = subscribe;\n }\n }\n\n // HACK: Since TypeScript inherits static properties too, we have to\n // fight against TypeScript here so Subject can have a different static create signature\n /**\n * Creates a new Observable by calling the Observable constructor\n * @owner Observable\n * @method create\n * @param {Function} subscribe? the subscriber function to be passed to the Observable constructor\n * @return {Observable} a new observable\n * @nocollapse\n * @deprecated Use `new Observable()` instead. Will be removed in v8.\n */\n static create: (...args: any[]) => any = (subscribe?: (subscriber: Subscriber) => TeardownLogic) => {\n return new Observable(subscribe);\n };\n\n /**\n * Creates a new Observable, with this Observable instance as the source, and the passed\n * operator defined as the new observable's operator.\n * @method lift\n * @param operator the operator defining the operation to take on the observable\n * @return a new observable with the Operator applied\n * @deprecated Internal implementation detail, do not use directly. Will be made internal in v8.\n * If you have implemented an operator using `lift`, it is recommended that you create an\n * operator by simply returning `new Observable()` directly. See \"Creating new operators from\n * scratch\" section here: https://rxjs.dev/guide/operators\n */\n lift(operator?: Operator): Observable {\n const observable = new Observable();\n observable.source = this;\n observable.operator = operator;\n return observable;\n }\n\n subscribe(observerOrNext?: Partial> | ((value: T) => void)): Subscription;\n /** @deprecated Instead of passing separate callback arguments, use an observer argument. Signatures taking separate callback arguments will be removed in v8. Details: https://rxjs.dev/deprecations/subscribe-arguments */\n subscribe(next?: ((value: T) => void) | null, error?: ((error: any) => void) | null, complete?: (() => void) | null): Subscription;\n /**\n * Invokes an execution of an Observable and registers Observer handlers for notifications it will emit.\n *\n * Use it when you have all these Observables, but still nothing is happening.\n *\n * `subscribe` is not a regular operator, but a method that calls Observable's internal `subscribe` function. It\n * might be for example a function that you passed to Observable's constructor, but most of the time it is\n * a library implementation, which defines what will be emitted by an Observable, and when it be will emitted. This means\n * that calling `subscribe` is actually the moment when Observable starts its work, not when it is created, as it is often\n * the thought.\n *\n * Apart from starting the execution of an Observable, this method allows you to listen for values\n * that an Observable emits, as well as for when it completes or errors. You can achieve this in two\n * of the following ways.\n *\n * The first way is creating an object that implements {@link Observer} interface. It should have methods\n * defined by that interface, but note that it should be just a regular JavaScript object, which you can create\n * yourself in any way you want (ES6 class, classic function constructor, object literal etc.). In particular, do\n * not attempt to use any RxJS implementation details to create Observers - you don't need them. Remember also\n * that your object does not have to implement all methods. If you find yourself creating a method that doesn't\n * do anything, you can simply omit it. Note however, if the `error` method is not provided and an error happens,\n * it will be thrown asynchronously. Errors thrown asynchronously cannot be caught using `try`/`catch`. Instead,\n * use the {@link onUnhandledError} configuration option or use a runtime handler (like `window.onerror` or\n * `process.on('error)`) to be notified of unhandled errors. Because of this, it's recommended that you provide\n * an `error` method to avoid missing thrown errors.\n *\n * The second way is to give up on Observer object altogether and simply provide callback functions in place of its methods.\n * This means you can provide three functions as arguments to `subscribe`, where the first function is equivalent\n * of a `next` method, the second of an `error` method and the third of a `complete` method. Just as in case of an Observer,\n * if you do not need to listen for something, you can omit a function by passing `undefined` or `null`,\n * since `subscribe` recognizes these functions by where they were placed in function call. When it comes\n * to the `error` function, as with an Observer, if not provided, errors emitted by an Observable will be thrown asynchronously.\n *\n * You can, however, subscribe with no parameters at all. This may be the case where you're not interested in terminal events\n * and you also handled emissions internally by using operators (e.g. using `tap`).\n *\n * Whichever style of calling `subscribe` you use, in both cases it returns a Subscription object.\n * This object allows you to call `unsubscribe` on it, which in turn will stop the work that an Observable does and will clean\n * up all resources that an Observable used. Note that cancelling a subscription will not call `complete` callback\n * provided to `subscribe` function, which is reserved for a regular completion signal that comes from an Observable.\n *\n * Remember that callbacks provided to `subscribe` are not guaranteed to be called asynchronously.\n * It is an Observable itself that decides when these functions will be called. For example {@link of}\n * by default emits all its values synchronously. Always check documentation for how given Observable\n * will behave when subscribed and if its default behavior can be modified with a `scheduler`.\n *\n * #### Examples\n *\n * Subscribe with an {@link guide/observer Observer}\n *\n * ```ts\n * import { of } from 'rxjs';\n *\n * const sumObserver = {\n * sum: 0,\n * next(value) {\n * console.log('Adding: ' + value);\n * this.sum = this.sum + value;\n * },\n * error() {\n * // We actually could just remove this method,\n * // since we do not really care about errors right now.\n * },\n * complete() {\n * console.log('Sum equals: ' + this.sum);\n * }\n * };\n *\n * of(1, 2, 3) // Synchronously emits 1, 2, 3 and then completes.\n * .subscribe(sumObserver);\n *\n * // Logs:\n * // 'Adding: 1'\n * // 'Adding: 2'\n * // 'Adding: 3'\n * // 'Sum equals: 6'\n * ```\n *\n * Subscribe with functions ({@link deprecations/subscribe-arguments deprecated})\n *\n * ```ts\n * import { of } from 'rxjs'\n *\n * let sum = 0;\n *\n * of(1, 2, 3).subscribe(\n * value => {\n * console.log('Adding: ' + value);\n * sum = sum + value;\n * },\n * undefined,\n * () => console.log('Sum equals: ' + sum)\n * );\n *\n * // Logs:\n * // 'Adding: 1'\n * // 'Adding: 2'\n * // 'Adding: 3'\n * // 'Sum equals: 6'\n * ```\n *\n * Cancel a subscription\n *\n * ```ts\n * import { interval } from 'rxjs';\n *\n * const subscription = interval(1000).subscribe({\n * next(num) {\n * console.log(num)\n * },\n * complete() {\n * // Will not be called, even when cancelling subscription.\n * console.log('completed!');\n * }\n * });\n *\n * setTimeout(() => {\n * subscription.unsubscribe();\n * console.log('unsubscribed!');\n * }, 2500);\n *\n * // Logs:\n * // 0 after 1s\n * // 1 after 2s\n * // 'unsubscribed!' after 2.5s\n * ```\n *\n * @param {Observer|Function} observerOrNext (optional) Either an observer with methods to be called,\n * or the first of three possible handlers, which is the handler for each value emitted from the subscribed\n * Observable.\n * @param {Function} error (optional) A handler for a terminal event resulting from an error. If no error handler is provided,\n * the error will be thrown asynchronously as unhandled.\n * @param {Function} complete (optional) A handler for a terminal event resulting from successful completion.\n * @return {Subscription} a subscription reference to the registered handlers\n * @method subscribe\n */\n subscribe(\n observerOrNext?: Partial> | ((value: T) => void) | null,\n error?: ((error: any) => void) | null,\n complete?: (() => void) | null\n ): Subscription {\n const subscriber = isSubscriber(observerOrNext) ? observerOrNext : new SafeSubscriber(observerOrNext, error, complete);\n\n errorContext(() => {\n const { operator, source } = this;\n subscriber.add(\n operator\n ? // We're dealing with a subscription in the\n // operator chain to one of our lifted operators.\n operator.call(subscriber, source)\n : source\n ? // If `source` has a value, but `operator` does not, something that\n // had intimate knowledge of our API, like our `Subject`, must have\n // set it. We're going to just call `_subscribe` directly.\n this._subscribe(subscriber)\n : // In all other cases, we're likely wrapping a user-provided initializer\n // function, so we need to catch errors and handle them appropriately.\n this._trySubscribe(subscriber)\n );\n });\n\n return subscriber;\n }\n\n /** @internal */\n protected _trySubscribe(sink: Subscriber): TeardownLogic {\n try {\n return this._subscribe(sink);\n } catch (err) {\n // We don't need to return anything in this case,\n // because it's just going to try to `add()` to a subscription\n // above.\n sink.error(err);\n }\n }\n\n /**\n * Used as a NON-CANCELLABLE means of subscribing to an observable, for use with\n * APIs that expect promises, like `async/await`. You cannot unsubscribe from this.\n *\n * **WARNING**: Only use this with observables you *know* will complete. If the source\n * observable does not complete, you will end up with a promise that is hung up, and\n * potentially all of the state of an async function hanging out in memory. To avoid\n * this situation, look into adding something like {@link timeout}, {@link take},\n * {@link takeWhile}, or {@link takeUntil} amongst others.\n *\n * #### Example\n *\n * ```ts\n * import { interval, take } from 'rxjs';\n *\n * const source$ = interval(1000).pipe(take(4));\n *\n * async function getTotal() {\n * let total = 0;\n *\n * await source$.forEach(value => {\n * total += value;\n * console.log('observable -> ' + value);\n * });\n *\n * return total;\n * }\n *\n * getTotal().then(\n * total => console.log('Total: ' + total)\n * );\n *\n * // Expected:\n * // 'observable -> 0'\n * // 'observable -> 1'\n * // 'observable -> 2'\n * // 'observable -> 3'\n * // 'Total: 6'\n * ```\n *\n * @param next a handler for each value emitted by the observable\n * @return a promise that either resolves on observable completion or\n * rejects with the handled error\n */\n forEach(next: (value: T) => void): Promise;\n\n /**\n * @param next a handler for each value emitted by the observable\n * @param promiseCtor a constructor function used to instantiate the Promise\n * @return a promise that either resolves on observable completion or\n * rejects with the handled error\n * @deprecated Passing a Promise constructor will no longer be available\n * in upcoming versions of RxJS. This is because it adds weight to the library, for very\n * little benefit. If you need this functionality, it is recommended that you either\n * polyfill Promise, or you create an adapter to convert the returned native promise\n * to whatever promise implementation you wanted. Will be removed in v8.\n */\n forEach(next: (value: T) => void, promiseCtor: PromiseConstructorLike): Promise;\n\n forEach(next: (value: T) => void, promiseCtor?: PromiseConstructorLike): Promise {\n promiseCtor = getPromiseCtor(promiseCtor);\n\n return new promiseCtor((resolve, reject) => {\n const subscriber = new SafeSubscriber({\n next: (value) => {\n try {\n next(value);\n } catch (err) {\n reject(err);\n subscriber.unsubscribe();\n }\n },\n error: reject,\n complete: resolve,\n });\n this.subscribe(subscriber);\n }) as Promise;\n }\n\n /** @internal */\n protected _subscribe(subscriber: Subscriber): TeardownLogic {\n return this.source?.subscribe(subscriber);\n }\n\n /**\n * An interop point defined by the es7-observable spec https://github.com/zenparsing/es-observable\n * @method Symbol.observable\n * @return {Observable} this instance of the observable\n */\n [Symbol_observable]() {\n return this;\n }\n\n /* tslint:disable:max-line-length */\n pipe(): Observable;\n pipe(op1: OperatorFunction): Observable;\n pipe(op1: OperatorFunction, op2: OperatorFunction): Observable;\n pipe(op1: OperatorFunction, op2: OperatorFunction, op3: OperatorFunction): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction,\n op6: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction,\n op6: OperatorFunction,\n op7: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction,\n op6: OperatorFunction,\n op7: OperatorFunction,\n op8: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction,\n op6: OperatorFunction,\n op7: OperatorFunction,\n op8: OperatorFunction,\n op9: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction,\n op6: OperatorFunction,\n op7: OperatorFunction,\n op8: OperatorFunction,\n op9: OperatorFunction,\n ...operations: OperatorFunction[]\n ): Observable;\n /* tslint:enable:max-line-length */\n\n /**\n * Used to stitch together functional operators into a chain.\n * @method pipe\n * @return {Observable} the Observable result of all of the operators having\n * been called in the order they were passed in.\n *\n * ## Example\n *\n * ```ts\n * import { interval, filter, map, scan } from 'rxjs';\n *\n * interval(1000)\n * .pipe(\n * filter(x => x % 2 === 0),\n * map(x => x + x),\n * scan((acc, x) => acc + x)\n * )\n * .subscribe(x => console.log(x));\n * ```\n */\n pipe(...operations: OperatorFunction[]): Observable {\n return pipeFromArray(operations)(this);\n }\n\n /* tslint:disable:max-line-length */\n /** @deprecated Replaced with {@link firstValueFrom} and {@link lastValueFrom}. Will be removed in v8. Details: https://rxjs.dev/deprecations/to-promise */\n toPromise(): Promise;\n /** @deprecated Replaced with {@link firstValueFrom} and {@link lastValueFrom}. Will be removed in v8. Details: https://rxjs.dev/deprecations/to-promise */\n toPromise(PromiseCtor: typeof Promise): Promise;\n /** @deprecated Replaced with {@link firstValueFrom} and {@link lastValueFrom}. Will be removed in v8. Details: https://rxjs.dev/deprecations/to-promise */\n toPromise(PromiseCtor: PromiseConstructorLike): Promise;\n /* tslint:enable:max-line-length */\n\n /**\n * Subscribe to this Observable and get a Promise resolving on\n * `complete` with the last emission (if any).\n *\n * **WARNING**: Only use this with observables you *know* will complete. If the source\n * observable does not complete, you will end up with a promise that is hung up, and\n * potentially all of the state of an async function hanging out in memory. To avoid\n * this situation, look into adding something like {@link timeout}, {@link take},\n * {@link takeWhile}, or {@link takeUntil} amongst others.\n *\n * @method toPromise\n * @param [promiseCtor] a constructor function used to instantiate\n * the Promise\n * @return A Promise that resolves with the last value emit, or\n * rejects on an error. If there were no emissions, Promise\n * resolves with undefined.\n * @deprecated Replaced with {@link firstValueFrom} and {@link lastValueFrom}. Will be removed in v8. Details: https://rxjs.dev/deprecations/to-promise\n */\n toPromise(promiseCtor?: PromiseConstructorLike): Promise {\n promiseCtor = getPromiseCtor(promiseCtor);\n\n return new promiseCtor((resolve, reject) => {\n let value: T | undefined;\n this.subscribe(\n (x: T) => (value = x),\n (err: any) => reject(err),\n () => resolve(value)\n );\n }) as Promise;\n }\n}\n\n/**\n * Decides between a passed promise constructor from consuming code,\n * A default configured promise constructor, and the native promise\n * constructor and returns it. If nothing can be found, it will throw\n * an error.\n * @param promiseCtor The optional promise constructor to passed by consuming code\n */\nfunction getPromiseCtor(promiseCtor: PromiseConstructorLike | undefined) {\n return promiseCtor ?? config.Promise ?? Promise;\n}\n\nfunction isObserver(value: any): value is Observer {\n return value && isFunction(value.next) && isFunction(value.error) && isFunction(value.complete);\n}\n\nfunction isSubscriber(value: any): value is Subscriber {\n return (value && value instanceof Subscriber) || (isObserver(value) && isSubscription(value));\n}\n", "import { Observable } from '../Observable';\nimport { Subscriber } from '../Subscriber';\nimport { OperatorFunction } from '../types';\nimport { isFunction } from './isFunction';\n\n/**\n * Used to determine if an object is an Observable with a lift function.\n */\nexport function hasLift(source: any): source is { lift: InstanceType['lift'] } {\n return isFunction(source?.lift);\n}\n\n/**\n * Creates an `OperatorFunction`. Used to define operators throughout the library in a concise way.\n * @param init The logic to connect the liftedSource to the subscriber at the moment of subscription.\n */\nexport function operate(\n init: (liftedSource: Observable, subscriber: Subscriber) => (() => void) | void\n): OperatorFunction {\n return (source: Observable) => {\n if (hasLift(source)) {\n return source.lift(function (this: Subscriber, liftedSource: Observable) {\n try {\n return init(liftedSource, this);\n } catch (err) {\n this.error(err);\n }\n });\n }\n throw new TypeError('Unable to lift unknown Observable type');\n };\n}\n", "import { Subscriber } from '../Subscriber';\n\n/**\n * Creates an instance of an `OperatorSubscriber`.\n * @param destination The downstream subscriber.\n * @param onNext Handles next values, only called if this subscriber is not stopped or closed. Any\n * error that occurs in this function is caught and sent to the `error` method of this subscriber.\n * @param onError Handles errors from the subscription, any errors that occur in this handler are caught\n * and send to the `destination` error handler.\n * @param onComplete Handles completion notification from the subscription. Any errors that occur in\n * this handler are sent to the `destination` error handler.\n * @param onFinalize Additional teardown logic here. This will only be called on teardown if the\n * subscriber itself is not already closed. This is called after all other teardown logic is executed.\n */\nexport function createOperatorSubscriber(\n destination: Subscriber,\n onNext?: (value: T) => void,\n onComplete?: () => void,\n onError?: (err: any) => void,\n onFinalize?: () => void\n): Subscriber {\n return new OperatorSubscriber(destination, onNext, onComplete, onError, onFinalize);\n}\n\n/**\n * A generic helper for allowing operators to be created with a Subscriber and\n * use closures to capture necessary state from the operator function itself.\n */\nexport class OperatorSubscriber extends Subscriber {\n /**\n * Creates an instance of an `OperatorSubscriber`.\n * @param destination The downstream subscriber.\n * @param onNext Handles next values, only called if this subscriber is not stopped or closed. Any\n * error that occurs in this function is caught and sent to the `error` method of this subscriber.\n * @param onError Handles errors from the subscription, any errors that occur in this handler are caught\n * and send to the `destination` error handler.\n * @param onComplete Handles completion notification from the subscription. Any errors that occur in\n * this handler are sent to the `destination` error handler.\n * @param onFinalize Additional finalization logic here. This will only be called on finalization if the\n * subscriber itself is not already closed. This is called after all other finalization logic is executed.\n * @param shouldUnsubscribe An optional check to see if an unsubscribe call should truly unsubscribe.\n * NOTE: This currently **ONLY** exists to support the strange behavior of {@link groupBy}, where unsubscription\n * to the resulting observable does not actually disconnect from the source if there are active subscriptions\n * to any grouped observable. (DO NOT EXPOSE OR USE EXTERNALLY!!!)\n */\n constructor(\n destination: Subscriber,\n onNext?: (value: T) => void,\n onComplete?: () => void,\n onError?: (err: any) => void,\n private onFinalize?: () => void,\n private shouldUnsubscribe?: () => boolean\n ) {\n // It's important - for performance reasons - that all of this class's\n // members are initialized and that they are always initialized in the same\n // order. This will ensure that all OperatorSubscriber instances have the\n // same hidden class in V8. This, in turn, will help keep the number of\n // hidden classes involved in property accesses within the base class as\n // low as possible. If the number of hidden classes involved exceeds four,\n // the property accesses will become megamorphic and performance penalties\n // will be incurred - i.e. inline caches won't be used.\n //\n // The reasons for ensuring all instances have the same hidden class are\n // further discussed in this blog post from Benedikt Meurer:\n // https://benediktmeurer.de/2018/03/23/impact-of-polymorphism-on-component-based-frameworks-like-react/\n super(destination);\n this._next = onNext\n ? function (this: OperatorSubscriber, value: T) {\n try {\n onNext(value);\n } catch (err) {\n destination.error(err);\n }\n }\n : super._next;\n this._error = onError\n ? function (this: OperatorSubscriber, err: any) {\n try {\n onError(err);\n } catch (err) {\n // Send any errors that occur down stream.\n destination.error(err);\n } finally {\n // Ensure finalization.\n this.unsubscribe();\n }\n }\n : super._error;\n this._complete = onComplete\n ? function (this: OperatorSubscriber) {\n try {\n onComplete();\n } catch (err) {\n // Send any errors that occur down stream.\n destination.error(err);\n } finally {\n // Ensure finalization.\n this.unsubscribe();\n }\n }\n : super._complete;\n }\n\n unsubscribe() {\n if (!this.shouldUnsubscribe || this.shouldUnsubscribe()) {\n const { closed } = this;\n super.unsubscribe();\n // Execute additional teardown if we have any and we didn't already do so.\n !closed && this.onFinalize?.();\n }\n }\n}\n", "import { Subscription } from '../Subscription';\n\ninterface AnimationFrameProvider {\n schedule(callback: FrameRequestCallback): Subscription;\n requestAnimationFrame: typeof requestAnimationFrame;\n cancelAnimationFrame: typeof cancelAnimationFrame;\n delegate:\n | {\n requestAnimationFrame: typeof requestAnimationFrame;\n cancelAnimationFrame: typeof cancelAnimationFrame;\n }\n | undefined;\n}\n\nexport const animationFrameProvider: AnimationFrameProvider = {\n // When accessing the delegate, use the variable rather than `this` so that\n // the functions can be called without being bound to the provider.\n schedule(callback) {\n let request = requestAnimationFrame;\n let cancel: typeof cancelAnimationFrame | undefined = cancelAnimationFrame;\n const { delegate } = animationFrameProvider;\n if (delegate) {\n request = delegate.requestAnimationFrame;\n cancel = delegate.cancelAnimationFrame;\n }\n const handle = request((timestamp) => {\n // Clear the cancel function. The request has been fulfilled, so\n // attempting to cancel the request upon unsubscription would be\n // pointless.\n cancel = undefined;\n callback(timestamp);\n });\n return new Subscription(() => cancel?.(handle));\n },\n requestAnimationFrame(...args) {\n const { delegate } = animationFrameProvider;\n return (delegate?.requestAnimationFrame || requestAnimationFrame)(...args);\n },\n cancelAnimationFrame(...args) {\n const { delegate } = animationFrameProvider;\n return (delegate?.cancelAnimationFrame || cancelAnimationFrame)(...args);\n },\n delegate: undefined,\n};\n", "import { createErrorClass } from './createErrorClass';\n\nexport interface ObjectUnsubscribedError extends Error {}\n\nexport interface ObjectUnsubscribedErrorCtor {\n /**\n * @deprecated Internal implementation detail. Do not construct error instances.\n * Cannot be tagged as internal: https://github.com/ReactiveX/rxjs/issues/6269\n */\n new (): ObjectUnsubscribedError;\n}\n\n/**\n * An error thrown when an action is invalid because the object has been\n * unsubscribed.\n *\n * @see {@link Subject}\n * @see {@link BehaviorSubject}\n *\n * @class ObjectUnsubscribedError\n */\nexport const ObjectUnsubscribedError: ObjectUnsubscribedErrorCtor = createErrorClass(\n (_super) =>\n function ObjectUnsubscribedErrorImpl(this: any) {\n _super(this);\n this.name = 'ObjectUnsubscribedError';\n this.message = 'object unsubscribed';\n }\n);\n", "import { Operator } from './Operator';\nimport { Observable } from './Observable';\nimport { Subscriber } from './Subscriber';\nimport { Subscription, EMPTY_SUBSCRIPTION } from './Subscription';\nimport { Observer, SubscriptionLike, TeardownLogic } from './types';\nimport { ObjectUnsubscribedError } from './util/ObjectUnsubscribedError';\nimport { arrRemove } from './util/arrRemove';\nimport { errorContext } from './util/errorContext';\n\n/**\n * A Subject is a special type of Observable that allows values to be\n * multicasted to many Observers. Subjects are like EventEmitters.\n *\n * Every Subject is an Observable and an Observer. You can subscribe to a\n * Subject, and you can call next to feed values as well as error and complete.\n */\nexport class Subject extends Observable implements SubscriptionLike {\n closed = false;\n\n private currentObservers: Observer[] | null = null;\n\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n observers: Observer[] = [];\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n isStopped = false;\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n hasError = false;\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n thrownError: any = null;\n\n /**\n * Creates a \"subject\" by basically gluing an observer to an observable.\n *\n * @nocollapse\n * @deprecated Recommended you do not use. Will be removed at some point in the future. Plans for replacement still under discussion.\n */\n static create: (...args: any[]) => any = (destination: Observer, source: Observable): AnonymousSubject => {\n return new AnonymousSubject(destination, source);\n };\n\n constructor() {\n // NOTE: This must be here to obscure Observable's constructor.\n super();\n }\n\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n lift(operator: Operator): Observable {\n const subject = new AnonymousSubject(this, this);\n subject.operator = operator as any;\n return subject as any;\n }\n\n /** @internal */\n protected _throwIfClosed() {\n if (this.closed) {\n throw new ObjectUnsubscribedError();\n }\n }\n\n next(value: T) {\n errorContext(() => {\n this._throwIfClosed();\n if (!this.isStopped) {\n if (!this.currentObservers) {\n this.currentObservers = Array.from(this.observers);\n }\n for (const observer of this.currentObservers) {\n observer.next(value);\n }\n }\n });\n }\n\n error(err: any) {\n errorContext(() => {\n this._throwIfClosed();\n if (!this.isStopped) {\n this.hasError = this.isStopped = true;\n this.thrownError = err;\n const { observers } = this;\n while (observers.length) {\n observers.shift()!.error(err);\n }\n }\n });\n }\n\n complete() {\n errorContext(() => {\n this._throwIfClosed();\n if (!this.isStopped) {\n this.isStopped = true;\n const { observers } = this;\n while (observers.length) {\n observers.shift()!.complete();\n }\n }\n });\n }\n\n unsubscribe() {\n this.isStopped = this.closed = true;\n this.observers = this.currentObservers = null!;\n }\n\n get observed() {\n return this.observers?.length > 0;\n }\n\n /** @internal */\n protected _trySubscribe(subscriber: Subscriber): TeardownLogic {\n this._throwIfClosed();\n return super._trySubscribe(subscriber);\n }\n\n /** @internal */\n protected _subscribe(subscriber: Subscriber): Subscription {\n this._throwIfClosed();\n this._checkFinalizedStatuses(subscriber);\n return this._innerSubscribe(subscriber);\n }\n\n /** @internal */\n protected _innerSubscribe(subscriber: Subscriber) {\n const { hasError, isStopped, observers } = this;\n if (hasError || isStopped) {\n return EMPTY_SUBSCRIPTION;\n }\n this.currentObservers = null;\n observers.push(subscriber);\n return new Subscription(() => {\n this.currentObservers = null;\n arrRemove(observers, subscriber);\n });\n }\n\n /** @internal */\n protected _checkFinalizedStatuses(subscriber: Subscriber) {\n const { hasError, thrownError, isStopped } = this;\n if (hasError) {\n subscriber.error(thrownError);\n } else if (isStopped) {\n subscriber.complete();\n }\n }\n\n /**\n * Creates a new Observable with this Subject as the source. You can do this\n * to create custom Observer-side logic of the Subject and conceal it from\n * code that uses the Observable.\n * @return {Observable} Observable that the Subject casts to\n */\n asObservable(): Observable {\n const observable: any = new Observable();\n observable.source = this;\n return observable;\n }\n}\n\n/**\n * @class AnonymousSubject\n */\nexport class AnonymousSubject extends Subject {\n constructor(\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n public destination?: Observer,\n source?: Observable\n ) {\n super();\n this.source = source;\n }\n\n next(value: T) {\n this.destination?.next?.(value);\n }\n\n error(err: any) {\n this.destination?.error?.(err);\n }\n\n complete() {\n this.destination?.complete?.();\n }\n\n /** @internal */\n protected _subscribe(subscriber: Subscriber): Subscription {\n return this.source?.subscribe(subscriber) ?? EMPTY_SUBSCRIPTION;\n }\n}\n", "import { TimestampProvider } from '../types';\n\ninterface DateTimestampProvider extends TimestampProvider {\n delegate: TimestampProvider | undefined;\n}\n\nexport const dateTimestampProvider: DateTimestampProvider = {\n now() {\n // Use the variable rather than `this` so that the function can be called\n // without being bound to the provider.\n return (dateTimestampProvider.delegate || Date).now();\n },\n delegate: undefined,\n};\n", "import { Subject } from './Subject';\nimport { TimestampProvider } from './types';\nimport { Subscriber } from './Subscriber';\nimport { Subscription } from './Subscription';\nimport { dateTimestampProvider } from './scheduler/dateTimestampProvider';\n\n/**\n * A variant of {@link Subject} that \"replays\" old values to new subscribers by emitting them when they first subscribe.\n *\n * `ReplaySubject` has an internal buffer that will store a specified number of values that it has observed. Like `Subject`,\n * `ReplaySubject` \"observes\" values by having them passed to its `next` method. When it observes a value, it will store that\n * value for a time determined by the configuration of the `ReplaySubject`, as passed to its constructor.\n *\n * When a new subscriber subscribes to the `ReplaySubject` instance, it will synchronously emit all values in its buffer in\n * a First-In-First-Out (FIFO) manner. The `ReplaySubject` will also complete, if it has observed completion; and it will\n * error if it has observed an error.\n *\n * There are two main configuration items to be concerned with:\n *\n * 1. `bufferSize` - This will determine how many items are stored in the buffer, defaults to infinite.\n * 2. `windowTime` - The amount of time to hold a value in the buffer before removing it from the buffer.\n *\n * Both configurations may exist simultaneously. So if you would like to buffer a maximum of 3 values, as long as the values\n * are less than 2 seconds old, you could do so with a `new ReplaySubject(3, 2000)`.\n *\n * ### Differences with BehaviorSubject\n *\n * `BehaviorSubject` is similar to `new ReplaySubject(1)`, with a couple of exceptions:\n *\n * 1. `BehaviorSubject` comes \"primed\" with a single value upon construction.\n * 2. `ReplaySubject` will replay values, even after observing an error, where `BehaviorSubject` will not.\n *\n * @see {@link Subject}\n * @see {@link BehaviorSubject}\n * @see {@link shareReplay}\n */\nexport class ReplaySubject extends Subject {\n private _buffer: (T | number)[] = [];\n private _infiniteTimeWindow = true;\n\n /**\n * @param bufferSize The size of the buffer to replay on subscription\n * @param windowTime The amount of time the buffered items will stay buffered\n * @param timestampProvider An object with a `now()` method that provides the current timestamp. This is used to\n * calculate the amount of time something has been buffered.\n */\n constructor(\n private _bufferSize = Infinity,\n private _windowTime = Infinity,\n private _timestampProvider: TimestampProvider = dateTimestampProvider\n ) {\n super();\n this._infiniteTimeWindow = _windowTime === Infinity;\n this._bufferSize = Math.max(1, _bufferSize);\n this._windowTime = Math.max(1, _windowTime);\n }\n\n next(value: T): void {\n const { isStopped, _buffer, _infiniteTimeWindow, _timestampProvider, _windowTime } = this;\n if (!isStopped) {\n _buffer.push(value);\n !_infiniteTimeWindow && _buffer.push(_timestampProvider.now() + _windowTime);\n }\n this._trimBuffer();\n super.next(value);\n }\n\n /** @internal */\n protected _subscribe(subscriber: Subscriber): Subscription {\n this._throwIfClosed();\n this._trimBuffer();\n\n const subscription = this._innerSubscribe(subscriber);\n\n const { _infiniteTimeWindow, _buffer } = this;\n // We use a copy here, so reentrant code does not mutate our array while we're\n // emitting it to a new subscriber.\n const copy = _buffer.slice();\n for (let i = 0; i < copy.length && !subscriber.closed; i += _infiniteTimeWindow ? 1 : 2) {\n subscriber.next(copy[i] as T);\n }\n\n this._checkFinalizedStatuses(subscriber);\n\n return subscription;\n }\n\n private _trimBuffer() {\n const { _bufferSize, _timestampProvider, _buffer, _infiniteTimeWindow } = this;\n // If we don't have an infinite buffer size, and we're over the length,\n // use splice to truncate the old buffer values off. Note that we have to\n // double the size for instances where we're not using an infinite time window\n // because we're storing the values and the timestamps in the same array.\n const adjustedBufferSize = (_infiniteTimeWindow ? 1 : 2) * _bufferSize;\n _bufferSize < Infinity && adjustedBufferSize < _buffer.length && _buffer.splice(0, _buffer.length - adjustedBufferSize);\n\n // Now, if we're not in an infinite time window, remove all values where the time is\n // older than what is allowed.\n if (!_infiniteTimeWindow) {\n const now = _timestampProvider.now();\n let last = 0;\n // Search the array for the first timestamp that isn't expired and\n // truncate the buffer up to that point.\n for (let i = 1; i < _buffer.length && (_buffer[i] as number) <= now; i += 2) {\n last = i;\n }\n last && _buffer.splice(0, last + 1);\n }\n }\n}\n", "import { Scheduler } from '../Scheduler';\nimport { Subscription } from '../Subscription';\nimport { SchedulerAction } from '../types';\n\n/**\n * A unit of work to be executed in a `scheduler`. An action is typically\n * created from within a {@link SchedulerLike} and an RxJS user does not need to concern\n * themselves about creating and manipulating an Action.\n *\n * ```ts\n * class Action extends Subscription {\n * new (scheduler: Scheduler, work: (state?: T) => void);\n * schedule(state?: T, delay: number = 0): Subscription;\n * }\n * ```\n *\n * @class Action\n */\nexport class Action extends Subscription {\n constructor(scheduler: Scheduler, work: (this: SchedulerAction, state?: T) => void) {\n super();\n }\n /**\n * Schedules this action on its parent {@link SchedulerLike} for execution. May be passed\n * some context object, `state`. May happen at some point in the future,\n * according to the `delay` parameter, if specified.\n * @param {T} [state] Some contextual data that the `work` function uses when\n * called by the Scheduler.\n * @param {number} [delay] Time to wait before executing the work, where the\n * time unit is implicit and defined by the Scheduler.\n * @return {void}\n */\n public schedule(state?: T, delay: number = 0): Subscription {\n return this;\n }\n}\n", "import type { TimerHandle } from './timerHandle';\ntype SetIntervalFunction = (handler: () => void, timeout?: number, ...args: any[]) => TimerHandle;\ntype ClearIntervalFunction = (handle: TimerHandle) => void;\n\ninterface IntervalProvider {\n setInterval: SetIntervalFunction;\n clearInterval: ClearIntervalFunction;\n delegate:\n | {\n setInterval: SetIntervalFunction;\n clearInterval: ClearIntervalFunction;\n }\n | undefined;\n}\n\nexport const intervalProvider: IntervalProvider = {\n // When accessing the delegate, use the variable rather than `this` so that\n // the functions can be called without being bound to the provider.\n setInterval(handler: () => void, timeout?: number, ...args) {\n const { delegate } = intervalProvider;\n if (delegate?.setInterval) {\n return delegate.setInterval(handler, timeout, ...args);\n }\n return setInterval(handler, timeout, ...args);\n },\n clearInterval(handle) {\n const { delegate } = intervalProvider;\n return (delegate?.clearInterval || clearInterval)(handle as any);\n },\n delegate: undefined,\n};\n", "import { Action } from './Action';\nimport { SchedulerAction } from '../types';\nimport { Subscription } from '../Subscription';\nimport { AsyncScheduler } from './AsyncScheduler';\nimport { intervalProvider } from './intervalProvider';\nimport { arrRemove } from '../util/arrRemove';\nimport { TimerHandle } from './timerHandle';\n\nexport class AsyncAction extends Action {\n public id: TimerHandle | undefined;\n public state?: T;\n // @ts-ignore: Property has no initializer and is not definitely assigned\n public delay: number;\n protected pending: boolean = false;\n\n constructor(protected scheduler: AsyncScheduler, protected work: (this: SchedulerAction, state?: T) => void) {\n super(scheduler, work);\n }\n\n public schedule(state?: T, delay: number = 0): Subscription {\n if (this.closed) {\n return this;\n }\n\n // Always replace the current state with the new state.\n this.state = state;\n\n const id = this.id;\n const scheduler = this.scheduler;\n\n //\n // Important implementation note:\n //\n // Actions only execute once by default, unless rescheduled from within the\n // scheduled callback. This allows us to implement single and repeat\n // actions via the same code path, without adding API surface area, as well\n // as mimic traditional recursion but across asynchronous boundaries.\n //\n // However, JS runtimes and timers distinguish between intervals achieved by\n // serial `setTimeout` calls vs. a single `setInterval` call. An interval of\n // serial `setTimeout` calls can be individually delayed, which delays\n // scheduling the next `setTimeout`, and so on. `setInterval` attempts to\n // guarantee the interval callback will be invoked more precisely to the\n // interval period, regardless of load.\n //\n // Therefore, we use `setInterval` to schedule single and repeat actions.\n // If the action reschedules itself with the same delay, the interval is not\n // canceled. If the action doesn't reschedule, or reschedules with a\n // different delay, the interval will be canceled after scheduled callback\n // execution.\n //\n if (id != null) {\n this.id = this.recycleAsyncId(scheduler, id, delay);\n }\n\n // Set the pending flag indicating that this action has been scheduled, or\n // has recursively rescheduled itself.\n this.pending = true;\n\n this.delay = delay;\n // If this action has already an async Id, don't request a new one.\n this.id = this.id ?? this.requestAsyncId(scheduler, this.id, delay);\n\n return this;\n }\n\n protected requestAsyncId(scheduler: AsyncScheduler, _id?: TimerHandle, delay: number = 0): TimerHandle {\n return intervalProvider.setInterval(scheduler.flush.bind(scheduler, this), delay);\n }\n\n protected recycleAsyncId(_scheduler: AsyncScheduler, id?: TimerHandle, delay: number | null = 0): TimerHandle | undefined {\n // If this action is rescheduled with the same delay time, don't clear the interval id.\n if (delay != null && this.delay === delay && this.pending === false) {\n return id;\n }\n // Otherwise, if the action's delay time is different from the current delay,\n // or the action has been rescheduled before it's executed, clear the interval id\n if (id != null) {\n intervalProvider.clearInterval(id);\n }\n\n return undefined;\n }\n\n /**\n * Immediately executes this action and the `work` it contains.\n * @return {any}\n */\n public execute(state: T, delay: number): any {\n if (this.closed) {\n return new Error('executing a cancelled action');\n }\n\n this.pending = false;\n const error = this._execute(state, delay);\n if (error) {\n return error;\n } else if (this.pending === false && this.id != null) {\n // Dequeue if the action didn't reschedule itself. Don't call\n // unsubscribe(), because the action could reschedule later.\n // For example:\n // ```\n // scheduler.schedule(function doWork(counter) {\n // /* ... I'm a busy worker bee ... */\n // var originalAction = this;\n // /* wait 100ms before rescheduling the action */\n // setTimeout(function () {\n // originalAction.schedule(counter + 1);\n // }, 100);\n // }, 1000);\n // ```\n this.id = this.recycleAsyncId(this.scheduler, this.id, null);\n }\n }\n\n protected _execute(state: T, _delay: number): any {\n let errored: boolean = false;\n let errorValue: any;\n try {\n this.work(state);\n } catch (e) {\n errored = true;\n // HACK: Since code elsewhere is relying on the \"truthiness\" of the\n // return here, we can't have it return \"\" or 0 or false.\n // TODO: Clean this up when we refactor schedulers mid-version-8 or so.\n errorValue = e ? e : new Error('Scheduled action threw falsy error');\n }\n if (errored) {\n this.unsubscribe();\n return errorValue;\n }\n }\n\n unsubscribe() {\n if (!this.closed) {\n const { id, scheduler } = this;\n const { actions } = scheduler;\n\n this.work = this.state = this.scheduler = null!;\n this.pending = false;\n\n arrRemove(actions, this);\n if (id != null) {\n this.id = this.recycleAsyncId(scheduler, id, null);\n }\n\n this.delay = null!;\n super.unsubscribe();\n }\n }\n}\n", "import { Action } from './scheduler/Action';\nimport { Subscription } from './Subscription';\nimport { SchedulerLike, SchedulerAction } from './types';\nimport { dateTimestampProvider } from './scheduler/dateTimestampProvider';\n\n/**\n * An execution context and a data structure to order tasks and schedule their\n * execution. Provides a notion of (potentially virtual) time, through the\n * `now()` getter method.\n *\n * Each unit of work in a Scheduler is called an `Action`.\n *\n * ```ts\n * class Scheduler {\n * now(): number;\n * schedule(work, delay?, state?): Subscription;\n * }\n * ```\n *\n * @class Scheduler\n * @deprecated Scheduler is an internal implementation detail of RxJS, and\n * should not be used directly. Rather, create your own class and implement\n * {@link SchedulerLike}. Will be made internal in v8.\n */\nexport class Scheduler implements SchedulerLike {\n public static now: () => number = dateTimestampProvider.now;\n\n constructor(private schedulerActionCtor: typeof Action, now: () => number = Scheduler.now) {\n this.now = now;\n }\n\n /**\n * A getter method that returns a number representing the current time\n * (at the time this function was called) according to the scheduler's own\n * internal clock.\n * @return {number} A number that represents the current time. May or may not\n * have a relation to wall-clock time. May or may not refer to a time unit\n * (e.g. milliseconds).\n */\n public now: () => number;\n\n /**\n * Schedules a function, `work`, for execution. May happen at some point in\n * the future, according to the `delay` parameter, if specified. May be passed\n * some context object, `state`, which will be passed to the `work` function.\n *\n * The given arguments will be processed an stored as an Action object in a\n * queue of actions.\n *\n * @param {function(state: ?T): ?Subscription} work A function representing a\n * task, or some unit of work to be executed by the Scheduler.\n * @param {number} [delay] Time to wait before executing the work, where the\n * time unit is implicit and defined by the Scheduler itself.\n * @param {T} [state] Some contextual data that the `work` function uses when\n * called by the Scheduler.\n * @return {Subscription} A subscription in order to be able to unsubscribe\n * the scheduled work.\n */\n public schedule(work: (this: SchedulerAction, state?: T) => void, delay: number = 0, state?: T): Subscription {\n return new this.schedulerActionCtor(this, work).schedule(state, delay);\n }\n}\n", "import { Scheduler } from '../Scheduler';\nimport { Action } from './Action';\nimport { AsyncAction } from './AsyncAction';\nimport { TimerHandle } from './timerHandle';\n\nexport class AsyncScheduler extends Scheduler {\n public actions: Array> = [];\n /**\n * A flag to indicate whether the Scheduler is currently executing a batch of\n * queued actions.\n * @type {boolean}\n * @internal\n */\n public _active: boolean = false;\n /**\n * An internal ID used to track the latest asynchronous task such as those\n * coming from `setTimeout`, `setInterval`, `requestAnimationFrame`, and\n * others.\n * @type {any}\n * @internal\n */\n public _scheduled: TimerHandle | undefined;\n\n constructor(SchedulerAction: typeof Action, now: () => number = Scheduler.now) {\n super(SchedulerAction, now);\n }\n\n public flush(action: AsyncAction): void {\n const { actions } = this;\n\n if (this._active) {\n actions.push(action);\n return;\n }\n\n let error: any;\n this._active = true;\n\n do {\n if ((error = action.execute(action.state, action.delay))) {\n break;\n }\n } while ((action = actions.shift()!)); // exhaust the scheduler queue\n\n this._active = false;\n\n if (error) {\n while ((action = actions.shift()!)) {\n action.unsubscribe();\n }\n throw error;\n }\n }\n}\n", "import { AsyncAction } from './AsyncAction';\nimport { AsyncScheduler } from './AsyncScheduler';\n\n/**\n *\n * Async Scheduler\n *\n * Schedule task as if you used setTimeout(task, duration)\n *\n * `async` scheduler schedules tasks asynchronously, by putting them on the JavaScript\n * event loop queue. It is best used to delay tasks in time or to schedule tasks repeating\n * in intervals.\n *\n * If you just want to \"defer\" task, that is to perform it right after currently\n * executing synchronous code ends (commonly achieved by `setTimeout(deferredTask, 0)`),\n * better choice will be the {@link asapScheduler} scheduler.\n *\n * ## Examples\n * Use async scheduler to delay task\n * ```ts\n * import { asyncScheduler } from 'rxjs';\n *\n * const task = () => console.log('it works!');\n *\n * asyncScheduler.schedule(task, 2000);\n *\n * // After 2 seconds logs:\n * // \"it works!\"\n * ```\n *\n * Use async scheduler to repeat task in intervals\n * ```ts\n * import { asyncScheduler } from 'rxjs';\n *\n * function task(state) {\n * console.log(state);\n * this.schedule(state + 1, 1000); // `this` references currently executing Action,\n * // which we reschedule with new state and delay\n * }\n *\n * asyncScheduler.schedule(task, 3000, 0);\n *\n * // Logs:\n * // 0 after 3s\n * // 1 after 4s\n * // 2 after 5s\n * // 3 after 6s\n * ```\n */\n\nexport const asyncScheduler = new AsyncScheduler(AsyncAction);\n\n/**\n * @deprecated Renamed to {@link asyncScheduler}. Will be removed in v8.\n */\nexport const async = asyncScheduler;\n", "import { AsyncAction } from './AsyncAction';\nimport { AnimationFrameScheduler } from './AnimationFrameScheduler';\nimport { SchedulerAction } from '../types';\nimport { animationFrameProvider } from './animationFrameProvider';\nimport { TimerHandle } from './timerHandle';\n\nexport class AnimationFrameAction extends AsyncAction {\n constructor(protected scheduler: AnimationFrameScheduler, protected work: (this: SchedulerAction, state?: T) => void) {\n super(scheduler, work);\n }\n\n protected requestAsyncId(scheduler: AnimationFrameScheduler, id?: TimerHandle, delay: number = 0): TimerHandle {\n // If delay is greater than 0, request as an async action.\n if (delay !== null && delay > 0) {\n return super.requestAsyncId(scheduler, id, delay);\n }\n // Push the action to the end of the scheduler queue.\n scheduler.actions.push(this);\n // If an animation frame has already been requested, don't request another\n // one. If an animation frame hasn't been requested yet, request one. Return\n // the current animation frame request id.\n return scheduler._scheduled || (scheduler._scheduled = animationFrameProvider.requestAnimationFrame(() => scheduler.flush(undefined)));\n }\n\n protected recycleAsyncId(scheduler: AnimationFrameScheduler, id?: TimerHandle, delay: number = 0): TimerHandle | undefined {\n // If delay exists and is greater than 0, or if the delay is null (the\n // action wasn't rescheduled) but was originally scheduled as an async\n // action, then recycle as an async action.\n if (delay != null ? delay > 0 : this.delay > 0) {\n return super.recycleAsyncId(scheduler, id, delay);\n }\n // If the scheduler queue has no remaining actions with the same async id,\n // cancel the requested animation frame and set the scheduled flag to\n // undefined so the next AnimationFrameAction will request its own.\n const { actions } = scheduler;\n if (id != null && actions[actions.length - 1]?.id !== id) {\n animationFrameProvider.cancelAnimationFrame(id as number);\n scheduler._scheduled = undefined;\n }\n // Return undefined so the action knows to request a new async id if it's rescheduled.\n return undefined;\n }\n}\n", "import { AsyncAction } from './AsyncAction';\nimport { AsyncScheduler } from './AsyncScheduler';\n\nexport class AnimationFrameScheduler extends AsyncScheduler {\n public flush(action?: AsyncAction): void {\n this._active = true;\n // The async id that effects a call to flush is stored in _scheduled.\n // Before executing an action, it's necessary to check the action's async\n // id to determine whether it's supposed to be executed in the current\n // flush.\n // Previous implementations of this method used a count to determine this,\n // but that was unsound, as actions that are unsubscribed - i.e. cancelled -\n // are removed from the actions array and that can shift actions that are\n // scheduled to be executed in a subsequent flush into positions at which\n // they are executed within the current flush.\n const flushId = this._scheduled;\n this._scheduled = undefined;\n\n const { actions } = this;\n let error: any;\n action = action || actions.shift()!;\n\n do {\n if ((error = action.execute(action.state, action.delay))) {\n break;\n }\n } while ((action = actions[0]) && action.id === flushId && actions.shift());\n\n this._active = false;\n\n if (error) {\n while ((action = actions[0]) && action.id === flushId && actions.shift()) {\n action.unsubscribe();\n }\n throw error;\n }\n }\n}\n", "import { AnimationFrameAction } from './AnimationFrameAction';\nimport { AnimationFrameScheduler } from './AnimationFrameScheduler';\n\n/**\n *\n * Animation Frame Scheduler\n *\n * Perform task when `window.requestAnimationFrame` would fire\n *\n * When `animationFrame` scheduler is used with delay, it will fall back to {@link asyncScheduler} scheduler\n * behaviour.\n *\n * Without delay, `animationFrame` scheduler can be used to create smooth browser animations.\n * It makes sure scheduled task will happen just before next browser content repaint,\n * thus performing animations as efficiently as possible.\n *\n * ## Example\n * Schedule div height animation\n * ```ts\n * // html:
\n * import { animationFrameScheduler } from 'rxjs';\n *\n * const div = document.querySelector('div');\n *\n * animationFrameScheduler.schedule(function(height) {\n * div.style.height = height + \"px\";\n *\n * this.schedule(height + 1); // `this` references currently executing Action,\n * // which we reschedule with new state\n * }, 0, 0);\n *\n * // You will see a div element growing in height\n * ```\n */\n\nexport const animationFrameScheduler = new AnimationFrameScheduler(AnimationFrameAction);\n\n/**\n * @deprecated Renamed to {@link animationFrameScheduler}. Will be removed in v8.\n */\nexport const animationFrame = animationFrameScheduler;\n", "import { Observable } from '../Observable';\nimport { SchedulerLike } from '../types';\n\n/**\n * A simple Observable that emits no items to the Observer and immediately\n * emits a complete notification.\n *\n * Just emits 'complete', and nothing else.\n *\n * ![](empty.png)\n *\n * A simple Observable that only emits the complete notification. It can be used\n * for composing with other Observables, such as in a {@link mergeMap}.\n *\n * ## Examples\n *\n * Log complete notification\n *\n * ```ts\n * import { EMPTY } from 'rxjs';\n *\n * EMPTY.subscribe({\n * next: () => console.log('Next'),\n * complete: () => console.log('Complete!')\n * });\n *\n * // Outputs\n * // Complete!\n * ```\n *\n * Emit the number 7, then complete\n *\n * ```ts\n * import { EMPTY, startWith } from 'rxjs';\n *\n * const result = EMPTY.pipe(startWith(7));\n * result.subscribe(x => console.log(x));\n *\n * // Outputs\n * // 7\n * ```\n *\n * Map and flatten only odd numbers to the sequence `'a'`, `'b'`, `'c'`\n *\n * ```ts\n * import { interval, mergeMap, of, EMPTY } from 'rxjs';\n *\n * const interval$ = interval(1000);\n * const result = interval$.pipe(\n * mergeMap(x => x % 2 === 1 ? of('a', 'b', 'c') : EMPTY),\n * );\n * result.subscribe(x => console.log(x));\n *\n * // Results in the following to the console:\n * // x is equal to the count on the interval, e.g. (0, 1, 2, 3, ...)\n * // x will occur every 1000ms\n * // if x % 2 is equal to 1, print a, b, c (each on its own)\n * // if x % 2 is not equal to 1, nothing will be output\n * ```\n *\n * @see {@link Observable}\n * @see {@link NEVER}\n * @see {@link of}\n * @see {@link throwError}\n */\nexport const EMPTY = new Observable((subscriber) => subscriber.complete());\n\n/**\n * @param scheduler A {@link SchedulerLike} to use for scheduling\n * the emission of the complete notification.\n * @deprecated Replaced with the {@link EMPTY} constant or {@link scheduled} (e.g. `scheduled([], scheduler)`). Will be removed in v8.\n */\nexport function empty(scheduler?: SchedulerLike) {\n return scheduler ? emptyScheduled(scheduler) : EMPTY;\n}\n\nfunction emptyScheduled(scheduler: SchedulerLike) {\n return new Observable((subscriber) => scheduler.schedule(() => subscriber.complete()));\n}\n", "import { SchedulerLike } from '../types';\nimport { isFunction } from './isFunction';\n\nexport function isScheduler(value: any): value is SchedulerLike {\n return value && isFunction(value.schedule);\n}\n", "import { SchedulerLike } from '../types';\nimport { isFunction } from './isFunction';\nimport { isScheduler } from './isScheduler';\n\nfunction last(arr: T[]): T | undefined {\n return arr[arr.length - 1];\n}\n\nexport function popResultSelector(args: any[]): ((...args: unknown[]) => unknown) | undefined {\n return isFunction(last(args)) ? args.pop() : undefined;\n}\n\nexport function popScheduler(args: any[]): SchedulerLike | undefined {\n return isScheduler(last(args)) ? args.pop() : undefined;\n}\n\nexport function popNumber(args: any[], defaultValue: number): number {\n return typeof last(args) === 'number' ? args.pop()! : defaultValue;\n}\n", "export const isArrayLike = ((x: any): x is ArrayLike => x && typeof x.length === 'number' && typeof x !== 'function');", "import { isFunction } from \"./isFunction\";\n\n/**\n * Tests to see if the object is \"thennable\".\n * @param value the object to test\n */\nexport function isPromise(value: any): value is PromiseLike {\n return isFunction(value?.then);\n}\n", "import { InteropObservable } from '../types';\nimport { observable as Symbol_observable } from '../symbol/observable';\nimport { isFunction } from './isFunction';\n\n/** Identifies an input as being Observable (but not necessary an Rx Observable) */\nexport function isInteropObservable(input: any): input is InteropObservable {\n return isFunction(input[Symbol_observable]);\n}\n", "import { isFunction } from './isFunction';\n\nexport function isAsyncIterable(obj: any): obj is AsyncIterable {\n return Symbol.asyncIterator && isFunction(obj?.[Symbol.asyncIterator]);\n}\n", "/**\n * Creates the TypeError to throw if an invalid object is passed to `from` or `scheduled`.\n * @param input The object that was passed.\n */\nexport function createInvalidObservableTypeError(input: any) {\n // TODO: We should create error codes that can be looked up, so this can be less verbose.\n return new TypeError(\n `You provided ${\n input !== null && typeof input === 'object' ? 'an invalid object' : `'${input}'`\n } where a stream was expected. You can provide an Observable, Promise, ReadableStream, Array, AsyncIterable, or Iterable.`\n );\n}\n", "export function getSymbolIterator(): symbol {\n if (typeof Symbol !== 'function' || !Symbol.iterator) {\n return '@@iterator' as any;\n }\n\n return Symbol.iterator;\n}\n\nexport const iterator = getSymbolIterator();\n", "import { iterator as Symbol_iterator } from '../symbol/iterator';\nimport { isFunction } from './isFunction';\n\n/** Identifies an input as being an Iterable */\nexport function isIterable(input: any): input is Iterable {\n return isFunction(input?.[Symbol_iterator]);\n}\n", "import { ReadableStreamLike } from '../types';\nimport { isFunction } from './isFunction';\n\nexport async function* readableStreamLikeToAsyncGenerator(readableStream: ReadableStreamLike): AsyncGenerator {\n const reader = readableStream.getReader();\n try {\n while (true) {\n const { value, done } = await reader.read();\n if (done) {\n return;\n }\n yield value!;\n }\n } finally {\n reader.releaseLock();\n }\n}\n\nexport function isReadableStreamLike(obj: any): obj is ReadableStreamLike {\n // We don't want to use instanceof checks because they would return\n // false for instances from another Realm, like an