This repository has been archived by the owner on Jan 13, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
liquid.py
143 lines (113 loc) · 4.52 KB
/
liquid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from __future__ import print_function
import sys
from functions import *
def liquid_fit(num_param, str_param, project_name='simple_fit'):
try:
project_name = str_param['project_name']
except KeyError:
pass
# will look like onegauss_2016-8-31-12-58-48
prefix = project_name + '_' + propertime()
os.mkdir(prefix)
os.chdir(prefix)
log = open('%s.log' % prefix, mode='w')
screen = sys.stdout
graph_print = boolean_translate(str_param, 'graph_print')
table_print = boolean_translate(str_param, 'table_print')
dat_print = boolean_translate(str_param, 'dat_print')
normalize = boolean_translate(str_param, 'normalize')
table = str_param['table']
xserver = str_param['xserver']
table = get_grd(table, xserver=xserver)
bragg = num_param['bragg'].value
template = str_param['template']
real_data = str_param['data']
if template == 'xy':
theta, yelid = get_dat(real_data, bragg=bragg, normalize=normalize, template=template)
yelid_errors = None
elif template == 'xyy' or template == 'xyyerror':
theta, yelid, yelid_errors = get_dat(real_data, bragg=bragg, normalize=normalize, template=template)
elif template == 'xxerroryyerror':
theta, theta_error, yelid, yelid_errors = get_dat(real_data, bragg=bragg, normalize=normalize,
template=template)
logprint(log, screen, """
Data succesfully read from:
prefix = %s
table = %s
data = %s
bragg = %f
normalize = %s
graph_print = %s
table_print = %s
""" % (prefix, str_param['table'], str_param['data'], bragg, normalize, graph_print, table_print))
# now we have yelid with correct angles (not relative to bragg),
# errors and standing wave table as np.array() with correct order
logprint(log, screen, "\n\n")
logprint(log, screen, """
************************
* MINIMIZATION STARTED *
************************""")
logprint(log, screen, """
Initial parameters are:\n""")
sys.stdout = log
num_param.pretty_print()
print('\n')
for key in str_param.keys():
print(key, str_param[key], sep=':\t')
sys.stdout = screen
num_param.pretty_print()
print('\n')
for key in str_param.keys():
print(key, str_param[key], sep=':\t')
start = time.time()
out = minimize(residual_liquid, num_param, args=(table, theta, yelid, yelid_errors))
stop = time.time()
logprint(log, screen, """
MINIMIZATION FINISHED
Time consumed is: %.2f s
""" % (stop - start))
logprint(log, screen, """
Fitted parameters are:
""")
# def intensity_liquid(table, angles,
# z0, c0, lmbda, const, length,
# zmax, zmin=0,
# angle_slope=0, get_ibar=False):
model, ibar = intensity_liquid(table,
theta,
out.params['z0'],
out.params['c0'],
out.params['lmbda'],
out.params['const'],
out.params['length'],
out.params['zmax'],
out.params['zmin'],
out.params['angle_slope'],
get_ibar=True
)
if yelid_errors is not None: # if we have errors
chisquared = np.sum((yelid - model) ** 2 / yelid_errors ** 2) / (
len(theta - 4)) # that must be chi-squared criteria with errors
else:
chisquared = np.sum((yelid - model) ** 2) / (len(theta - 4)) # that must be chi-squared criteria with errors
rfactor = sum(abs(model - yelid) / sum(yelid))
sys.stdout = log
out.params.pretty_print()
sys.stdout = screen
out.params.pretty_print()
if dat_print:
fout = open('data_%s.dat' % prefix, 'w')
for i in range(len(theta)):
print(theta[i], model[i], file=fout, sep='\t')
fout.close()
if graph_print:
plt.plot(theta, model, 'b')
plt.plot(theta, yelid, 'ko')
plt.title('z0=%.1f, lambda=%.1f' % (out.params['z0'], out.params['lmbda']))
plt.savefig('yelid_%s.png' % prefix)
# plt.clf()
return out.params, theta, model, yelid, chisquared, rfactor
parameters = sys.argv[1]
num_param, str_param = get_initials(parameters)
params, theta, model, yelid, chisquared, rfactor = liquid_fit(num_param, str_param)
plt.show()