MLApproches tag in the configuration file favel.conf has three variable method, parameters, and normalizer.
[MLApproches]
method = GradientBoostingClassifier
parameters = default
normalizer = default
The machine learning (ML) algorithm has to be specified to the method. The algorithm name must be the sklearn module.
method = GradientBoostingClassifier
default
is used to run an experiment on the default ML algorithm parameters.
parameters = default
To set specified parameters of ML algorithm. The parameters should be passed in JSON format.
parameters = {'n_estimators': 100, 'learning_rate': 1.0, 'max_depth': 1, 'random_state': 0}
For optimization of ML Algorithm parameters. Parameters name with range is specified.
parameters = [
{'name':'n_estimators', 'range':(1, 3)},
{'name':'learning_rate', 'range':(1.0,2.0)},
{'name': 'warm_start', 'range':[True, False]}
]
To normalize data used for ML. Any one of these normalizers should be specified in the config file.
normalizer = default
normalizer = Normalizer
normalizer = MinMaxScaler
normalizer = StandardScaler
normalizer = MaxAbsScaler
normalizer = RobustScaler
Classification Report.xlsx
shows the performance of the ML model for each class.classifier.pkl
trained ml model dump in pickle format.predicate_le.pkl
label encoding for predicates dump in pickle format.