Skip to content

Latest commit

 

History

History
129 lines (105 loc) · 8.03 KB

InsertRollingFieldTimestampHeaders.md

File metadata and controls

129 lines (105 loc) · 8.03 KB

Insert Rolling Field Timestamp Headers

Description

A Kafka Connect Single Message Transform (SMT) that inserts date, year, month,day, hour, minute and second headers using a timestamp field from the record payload and a rolling time window configuration. The timestamp field can be in various valid formats, including long integers, strings, or date objects. The timestamp field can originate from either the record Key or the record Value. When extracting from the record Key, prefix the field with _key.; otherwise, extract from the record Value by default or explicitly using the field without prefixing. For string-formatted fields, specify a format.from.pattern parameter to define the parsing pattern. Long integer fields are assumed to be Unix timestamps; the desired Unix precision can be specified using the unix.precision parameter.

The headers inserted are of type STRING. By using this SMT, you can partition the data by yyyy-MM-dd/HH or yyyy/MM/dd/HH, for example, and only use one SMT.

The list of headers inserted are:

  • date
  • year
  • month
  • day
  • hour
  • minute
  • second

All headers can be prefixed with a custom prefix. For example, if the prefix is wallclock_, then the headers will be:

  • wallclock_date
  • wallclock_year
  • wallclock_month
  • wallclock_day
  • wallclock_hour
  • wallclock_minute
  • wallclock_second

When used with the Lenses connectors for S3, GCS or Azure data lake, the headers can be used to partition the data. Considering the headers have been prefixed by _, here are a few KCQL examples:

connect.s3.kcql=INSERT INTO $bucket:prefix SELECT * FROM kafka_topic PARTITIONBY _header._date, _header._hour
connect.s3.kcql=INSERT INTO $bucket:prefix SELECT * FROM kafka_topic PARTITIONBY _header._year, _header._month, _header._day, _header._hour

Configuration

Name Description Type Default
field The field name. If the key is part of the record Key prefix with _key otherwise _value. If _value or _key is not used it defaults to the record Value to resolve the field. String
format.from.pattern Optional date timeFormatter-compatible format for the timestamp. Used to parse the input if the input is a string. String
unix.precision Optional "The desired Unix precision for the timestamp: seconds, milliseconds, microseconds, or nanoseconds. Used to parse the input if the input is a Long. String milliseconds
header.prefix.name Optional header prefix. String
date.format Optional Java date time formatter. String yyyy-MM-dd
year.format Optional Java date time formatter for the year component. String yyyy
month.format Optional Java date time formatter for the month component. String MM
day.format Optional Java date time formatter for the day component. String dd
hour.format Optional Java date time formatter for the hour component. String HH
minute.format Optional Java date time formatter for the minute component. String mm
second.format Optional Java date time formatter for the second component. String ss
timezone Optional. Sets the timezone. It can be any valid Java timezone. String UTC
locale Optional. Sets the locale. It can be any valid Java locale. String en
rolling.window.type Sets the window type. It can be fixed or rolling. String minutes
rolling.window.size Sets the window size. It can be any positive integer, and depending on the window.type it has an upper bound, 60 for seconds and minutes, and 24 for hours. Int 15

Example

To store the epoch value, use the following configuration:

transforms=rollingWindow
transforms.rollingWindow.type=io.lenses.connect.smt.header.InsertRollingFieldTimestampHeaders
transforms.rollingWindow.field=created_at
transforms.rollingWindow.rolling.window.type=minutes
transforms.rollingWindow.rolling.window.size=15

To prefix the headers with wallclock_, use the following:

transforms=rollingWindow
transforms.rollingWindow.type=io.lenses.connect.smt.header.InsertRollingFieldTimestampHeaders
transforms.rollingWindow.field=created_at
transforms.rollingWindow.header.prefix.name=wallclock_
transforms.rollingWindow.rolling.window.type=minutes
transforms.rollingWindow.rolling.window.size=15

To change the date format, use the following:

transforms=rollingWindow
transforms.rollingWindow.type=io.lenses.connect.smt.header.InsertRollingFieldTimestampHeaders
transforms.rollingWindow.field=created_at
transforms.rollingWindow.header.prefix.name=wallclock_
transforms.rollingWindow.rolling.window.type=minutes
transforms.rollingWindow.rolling.window.size=15
transforms.rollingWindow.date.format="date=yyyy-MM-dd"

To use the timezone Asia/Kolkoata, use the following:

transforms=rollingWindow
transforms.rollingWindow.type=io.lenses.connect.smt.header.InsertRollingFieldTimestampHeaders
transforms.rollingWindow.field=created_at
transforms.rollingWindow.header.prefix.name=wallclock_
transforms.rollingWindow.rolling.window.type=minutes
transforms.rollingWindow.rolling.window.size=15
transforms.rollingWindow.timezone=Asia/Kolkata

To facilitate S3, GCS, or Azure Data Lake partitioning using a Hive-like partition name format, such as date=yyyy-MM-dd / hour=HH, employ the following SMT configuration for a partition strategy.

transforms=rollingWindow
transforms.rollingWindow.type=io.lenses.connect.smt.header.InsertRollingFieldTimestampHeaders
transforms.rollingWindow.field=created_at
transforms.rollingWindow.rolling.window.type=minutes
transforms.rollingWindow.rolling.window.size=15
transforms.rollingWindow.timezone=Asia/Kolkata
transforms.rollingWindow.date.format="date=yyyy-MM-dd"
transforms.rollingWindow.hour.format="hour=yyyy"

and in the KCQL setting utilise the headers as partitioning keys:

connect.s3.kcql=INSERT INTO $bucket:prefix SELECT * FROM kafka_topic PARTITIONBY _header.date, _header.year