From 9e952dfc4eb892599a60d85c9c1d8e88d0aabae9 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Janko=20Slavi=C4=8D?= Date: Tue, 26 Sep 2023 14:33:24 +0200 Subject: [PATCH] updated showcase with get_structure_xx --- pyuff_Showcase.ipynb | 3304 ++---------------------------------------- 1 file changed, 113 insertions(+), 3191 deletions(-) diff --git a/pyuff_Showcase.ipynb b/pyuff_Showcase.ipynb index 4e4eb0d..04263cf 100644 --- a/pyuff_Showcase.ipynb +++ b/pyuff_Showcase.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Aug 2021: Janko Slavič (janko.slavic@fs.uni-lj.si), Klemen Zaletelj (klemen.zaletelj@fs.uni-lj.si), Matej Razpotnik (matej.razpotnik@gmail.com), Blaž Starc (sbtlaarzc@gmail.com), Matjaž Mršnik (matjaz.mrsnik@gmail.com), Matija Brumat (matija.brumat@gmail.com)" + "Sep 2023: Janko Slavič (janko.slavic@fs.uni-lj.si), Klemen Zaletelj (klemen.zaletelj@fs.uni-lj.si), Matej Razpotnik (matej.razpotnik@gmail.com), Blaž Starc (sbtlaarzc@gmail.com), Matjaž Mršnik (matjaz.mrsnik@gmail.com), Matija Brumat (matija.brumat@gmail.com)" ] }, { @@ -21,13 +21,6 @@ "See the [documentation](https://pyuff.readthedocs.io/en/latest/index.html) for the ``pyUFF`` package!" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This module was part of the [www.openmodal.com](www.openmodal.com) project and defines an UFF class to manipulate with the UFF (Universal File Format) files." - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -56,7 +49,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -254,3143 +247,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEGCAYAAACpXNjrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABBjklEQVR4nO2dd5wcdf3/n+/r/S69J3cxBUIJgSNU6YQiEWwU/SoggihFv4gK+lXx609RvwiiYkFFiggiFlqkN4EAKRBICCWEhPSElOtt796/P2Zmb++Su9vbm53d2X0/H4993O7s7Mx752bnNe/yeX9EVTEMwzAMP8lJtQGGYRhG5mHiYhiGYfiOiYthGIbhOyYuhmEYhu+YuBiGYRi+k5dqA5LByJEjtbq6OtVmGIZhhIolS5Z8oKqj/NhWRopLdXU1ixcvTrUZhmEYoUJE1vq1LQuLGYZhGL6TUeIiIvNF5Oa6urpUm2IYhpHVZJS4qOoDqnpRZWVlqk0xDMPIajJKXAzDMIz0wMTFMAzD8B0TF8MwDMN3TFwMwzAM3zFxMQzDMHzHxMUwDMPwnbQXFxGZKiJ/FJF7U22LYRiGER8pERcRuUVEtorI8l7LTxaRt0RklYhcBaCqq1X1glTYaRiGYSRGqjyXW4GTYxeISC5wE3AKMAs4R0RmBW+aYRiGMVRSIi6q+iywo9fiucAq11NpB+4GTo93myJykYgsFpHF27Zt89FawzAMY7CkU85lArAu5vV6YIKIjBCR3wJzROTqvj6sqjeraq2q1o4a5UvHaMMwDCNB0r7lvqpuBy6OZ10RmQ/MnzZtWnKNMgzDMPolnTyXDcCkmNcT3WVxY40rDcMw0oN0EpdFwHQRqRGRAuBs4P7BbMBa7huGYaQHqSpFvgtYCMwUkfUicoGqRoBLgUeAlcA9qrpiMNs1z8UwDCM9SEnORVXP6WP5AmBBotu1nIthGEZ6kE5hsSFjnothGEZ6kFHiYhiGYexOa0cnqhroPjNKXCyhbxiG0ZNdze3s9Z2HuempVYHuN6PExcJihmEYPfmgsQ2Af74yqJEdQyajxMUwDMNIDzJKXCwsZhiG0ZOAUy1RMkpcLCxmGIaRHmSUuGQCdc0dPLx8U6rNMAwjQxBJzX4zSlwyISx22d2vcPGfl7J+Z3OqTTGMpPH4G1vYVNeSajOyAi8sFnR0LKPEJRPCYp6otHZ0ptiSwbOzqZ3OrhQFeI1Q8YXbF3PGTc+n2oysIFU/yYwSl0wgx/Vhw3aNrm/tYM4PHuNHC1am2hQjJGypb0u1CVlBqm74TFzSDC88mqoKj0RpbI0A8NBrli8y+ifokeLZTleKjreJS5qRquTbUOn2uOzCYfRP2LzysGOeiw9kQkLfQwNPvw0NTxTDZbWRCuwGJFgiJi5DJxMS+uIGxsL2+4uKS8jsNoLHxCVYLCyWRqze1kj1VQ+xclN94PsO60VaurNFKbXDSH+6ulJtQXYRDYsF/NM0cdkDj6zYAsC/Xg220VuY8cJ4YRNFI3jMcwkWy7mkEemQ70gHGwZFigZqGeHDxCVYTFzSCO/c7w71BIdIOHMuITPXSCFWLRYsnZZzST9SURYc0krk6N2ojWEwBqLL1CVQUnW8M0pcMqEUOawJ/VT1LzLCh4XFgsUrRbbeYkPA71LkVHgR3eNFwvUD9Ky164YxEKkK02QrXs4l6EhMRomLX6QytBPWcS6e621hMWMgrBQ5WDo6nQOeE7C6mLikGdGS3hTbkShhtdsIDvNcgqU94olLsPs1cUlTwhaX9uwNa0GCERyW0A8WL+dinksaIGnQPTJs4SW7XhjxYnP+BIuFxdKQVP4Ewvb7swuGES8WFguWaFgs4Ku9icseSGU5sLfPsIUOwuZpGakjbOd22ElVWCwv0L0lgIiUAr8G2oGnVfXOoPadynLgsP3+wmavkTrMcwmWDtdzCTrc36e4iMj9cXx+h6qeN9idisgtwGnAVlXdN2b5ycCNQC7wB1X9MfBx4F5VfUBE/gokXVyibV9S+BsImydgYTEjXuxcCRYv5xJ0Jrk/z2Vv4Av9vC/ATQnu91bgV8Dt0Y2J5LrbOxFYDyxyBW4i8Lq7WmeC+xsUqZz4KhoWC9nvL1otlgbFEEZ6E7L7ptDT4V5MPJEJiv7E5duq+kx/HxaR7yeyU1V9VkSqey2eC6xS1dXutu8GTscRmonAq/STIxKRi4CLACZPnpyIWd3b6rZzSNsZCmErRQ6ZuUYKSdWI8WzFC4u1dgRybx6lz4u1qt4z0IfjWWcQTADWxbxe7y77B/AJEfkN8EA/ttysqrWqWjtq1ChfDErlXXjYxMXi6Ea8dNqYqEDxPJbWjjTxXETkT/QdGVJVvSA5Ju22oybg/HjWFZH5wPxp06Yl16gkEtYeXWETQyN1WLVYsLS5nktbJFjPpb+w2IN7WDYJ+G+chLvfbHC37zHRXRY3qvoA8EBtbe2FfhqWCsJ2sQ5bAYKROrrDYua7BEGLGw5LG89FVf/uPReRqcC3gKOAHwN/TIIti4DpIlKDIypnA58ezAb89lxSm3NJ2a4TIuBcoRFiLIQaLM3tnrikSc4FQET2EpE/4+Q6ngNmqepvVLV9KDsVkbuAhcBMEVkvIheoagS4FHgEWAnco6orBrNdv1vupwJP0MLmuXRXi6XYkIDp6Ozi+J89zRMrt6TalNDgdUXOslMlZXiiEunSQCvG+su5/A04CPgZTiisE6jonoZXdyS6U1U9p4/lC4AFiW43E3IuHmELM2VrHH17YzvvbmviW/98nZf2HpNqc0JBZ5beiKQKz3MBR2jyc4NpzNLfXg7Gubm4EngJWAwscR+Lk2/a4MkEz8UjbNdqz95su16EbVK3dCASHdSXbWdLamjpIS5p4LkA01W1IzBLfMBvzyUVCUdvn5GQqUvYwnh+YxfK+PEaKebn2jELgpaOnp5LUPTnuSwUkX+JyMV7GPCYlmSC5+J5rJGQZci9UEe2SUyWa2pCtLvndm7Qs1dlKS3tnZQUOAW+QZYj9zeIshb4qvvy5yKySERuEJF5IlIYiHVZiHcH7N3dhYVoIULIPC4jeLxxFyYuwdDYFmFkmXPJjs2/JJt+MzuqukZVf6uqZwCH41SNnQD8R0QeCsC+QSEi80Xk5rq6Ol+2l4qkuheJaw+Z5xLp9KrcUmxIirDkdPy0p6hLbzbSHumisS3C5OElADS2RgLbd9wt9938y5PuAxGZkCyjEiUTBlF6P7eweS4drriErcptqGTXt/WHsJ3bYaauxUmbT3LFpb41uDT6gDVpInKaiLwiIjtFpF5EGkSkXlUHNXo+jKQyoR86z8UdvJCtF1u7B4+f9hS1gM9GdjU7QxKnjHDFpSW9PJef48yp8rpmyW1pKkM7np51RMJ1qDs6wzn4c6hkyU/CV9o6vLBYig3JAna5nsvkdPRccDoVLw+DsPiVc0nlBdJLiLd3BtuqYah41W3ZmnMx4sc7t23SsOSzs8nxXCYOK0YE6tMs5/INYIGIPAO0eQtV9fqkWZUgfuVcvAt8KvS03fUAwhaX9iYkyra4mHeKWHI6frxz2/N2jeSxq9nxVIaVFFBWmEd9S3CeSzzi8kOgESgCCpJrTnqQyhsqzwMI2w+v23MJl91G8HjlsGHLK4aRbY2OPzCyrJCKovxAw2LxiMv42HnuswFvQGAqRsl7jeXaQua5RLI055Jt39cPmtqc0Ex7pAtVNa8viWyua6WqJJ/iglzKi/JoCDAsFk/OZYGIzEu6JWmEd4FPRWiqI7RhsezMuUSjgSYycdPY1n2BC1ubo7Cxqa6VsRVFAFSV5Eerx4IgHnH5EvCwiLTEliIn27BE8CuhH0mhuHglva0Bzxo3VCIhC+P5RfcUCSk2JETEikuQLeCzkU11LYytdMRlRFkh25vSSFxUtVxVc1S1WFUr3NcVQRg3WPzqLRb1HlJw4nv7bmoLzn31g9iLRDZdMDxRsfBY/DS1dd84hc1DDxsbd7UwrrIYgBGlBWxvTCNxyUZSGxZz9hlkmwY/iC1ACJswDgXzXAZPrOdiSf3k0dDawc7mjugYlxGlhdS1dAR2XTNx2QNpIS4hu0DHdnEOMmmYajxNsZxL/Oxoaqc43+nSG7aqyDCxbkcL0D2AckSZU+y7M6C8i4nLHvDyB0FXbKlqdJ+hE5eYW/em9nDZPhS6snSqgURpj3RR19LBuKqi6GsjOby/oxnobv0y0hWXoEJjcYuLiJSISK2IjEqmQemANyAw6BO/LdIVHZQXNnGJzbOELaQ3FLz54C3nEh873ITyhConDxDk5FXZxtrtTUB308oRbtv97U1tfX7GT/oUFxH5qIisEZGlInIqsAL4FfC6iJwbiHWDxK9qsQ5XVNoCjgd7P7SSglwaWyOhCrXETp8aNmEcCl02j82g+MAd1OeFaoKcXyTbWLW1kVHlhVQW5wMwvDR9PJcfAPOALwL3AMer6qHA/sCVAdg2aPyqFvPKgYP2XLzpSEeWFRLp0lANpGyOCYVlk7h4hOg+IKV4I8YnRcUl+86VoHh3WyMfGlUafT2y1PFcPIFPNv2JS5eqvq2qi4D3VHU1gKpuBTL6jPD6e7UF7LK3uHdxYyqckyDIPkBDpam9MzpYqy5Edg+VqOdi6hIXG3Y6SeZpo8oA81yShaqyamsj00aXRZdVFOdRkJvDtobUi0uOiAwTkRFAl/t8uIgMH+BzoSeSoootz3Px7uq2BXSH4Qct7REmDXfi6B80BFdLn2q6x7mk1o6wsH5nC/m5QvVI5466xcQlKWypb6O+NRIVcXCaq46tLGJTXWsgNvTXW6wSWEL3nD5LY97L6J9SqsqBvZyLF4/e2tDGPoFakDhNbZ2MrypmWEl+YG53OqDmuQyKdTubmVBVTHmRc+kxzyU5vLZ+FwD7TeyZIhhXWcTmVIuLqlYHYkEa4tXeN7d3EunsIi83GEfNS4p74hKU++oHze0RSgpyGVVeGCq7h0p3b7HU2hEW3t3ayJQRpRQXOONcLOeSHJa+v4u8HGHWuN3FZfHanYHY0Ke4iMiB/X1QVZf2936YiS2rbWrrpLIkGHHxQgRhFJem9k5KC11xMc/F2APtkS7e3dbIMTNHU5LviYt5Lsng6be2Uls9LCriHuOqitny+ia6upScnOR2o+4vLPYz928RUAsswwmR7Q8sBg5LqmUppCUmkd/Q1kFlSX6g+60qyae8KC9U4tLcFqGkII9RZYWB3RmlA56kmLgMzKqtjXR0KnuPKycvN4eC3BwTlySwcVcLb25u4Fun7rXbe+Mqi+joVD5oamN0eVFS7ejzllxVj1XVY4FNwIGqWquqBwFzgA1JtSrFtHV0UeoqfpCtTDxxKcrPZUJVMevcEbbpTleX0tzRSWlBLpOHl7BxVwttIevqnCje+BZL6A/Myk1OM/VZ45y+t8UFubRYWMx3Hl2xGYBjZ47e7T2viWUQeZd44j0zVfV174WqLgf2Tp5JPRGRqSLyRxG5N6h9tnR0MqrcKQcOUlxaY8Rl6qhSVn/QFNi+h0JrpBNVKCnMY+qoMroU3t8eDmEcKiYq8bNyUz0FeTnUuJVipQW55rn4zKqtjfzyyVXMnljJ9DHlu70/zm2/H0TFWDzi8pqI/EFEjnEfvwdei2fjInKLiGwVkeW9lp8sIm+JyCoRuaq/bajqalW9IJ79+UVrRycThzl5j+0B5g88ISsvymPqyDLe39Ecit5LXgv10gJHFAHe3RYOYRwqmtmFk76ycnM9M8eURwtkik1cfOX/PfgGJ1z/DAr87MwD9rhOVFx2tSTdnnjE5Xyc1i9fcR9vuMvi4Vbg5NgFIpIL3AScAswCzhGRWSKyn4g82Ouxu1+XZFSVlo7OlIw1qWvpoCg/h8I85yLd2aXR/kDpjFfxU1KQF70rfWdLQypNCgxLtcSHqrJyUwN7j+u+my4rzMvKbg7J4OHlm/jDc+8BcPdFh/YYPBnL8NICCvJy2FSffM+lv4Q+AKraCtzgPgaFqj4rItW9Fs8FVnkj/kXkbuB0Vb0WOG2w+/AQkYuAiwAmT56c6GZo73SaR46vLCI3RwJNqtc1d0T7AO07wSkhfG193R7d23TCu/ssLcylvCifGWPKWJQlSX1L5MfH1oY2djS1s/e47nkGy4vyaWjNnm4OiXD/so38/PG3eeiyD+9W+eXR2aX83yNvAXDfJUcwo5/rhYgwrrKITbtSGBYTkZsH+nA86+yBCcC6mNfr3WV97WOEiPwWmCMiV/e1nqre7BYd1I4alXjj5tZ2JwxVWpjHiNKCYMWlpYOKIkdcpo0qo7wwj6Xvp/9FOtZzATikZgSL1+wIRUhvqFjOJT7ecJP5PcUlL6vm/kmEy+96hdXbmqKDIvfEg69t5N1tTdz06QOZPalqwG2OrQhmIGV/nssZItKfBQIc67M9u6Gq24GL41lXROYD86dNm5bw/mIrtkaVF7I1QHGpb+32XHJyhAMmV/HK+7sC23+ieDmXEvfO6piZo7jjxbW8uHo7R83I7BkaYjtXBzF2IKw89eZWCnJzoh45QEVRPvXmufTJio3d3d3f2drIIVNH7LZOZ5dy4xPvMHNMOafsOzau7Y6vKmbRmh2+2dkX/eVcvo7T/qWvx2Lg2wnscwMwKeb1RNKotNmr2CouyGF8VTHrdwZX9VTX0i0uALVThrNycz33Llmf1vNe9PZcjpg2kuL8XB5xSyIzmdioWHMa/49SyZV/W8btC9cyf/Z4ygq772fNc+mfb/2zuw5qVx+zRz6wbCOrtzXxlROmx31jM7ayiC31rXQm2e3ub5zLbXE87klgn4uA6SJSIyIFwNnA/Yl+gV42D7nlvue5FOfnMnVkKWu2Nyf9n+DRW1xOnDUGVefH+c2/x1WglxKi1WKFjudSlJ/LvH3GcP+rGzM+YRubcwnToNeguO2FNdy7ZD0A//ORniMYyovyoy2WjJ7Ut3awbN0uRpYVUFqQy46m3T28jbta+OpfX2X66DJO3ic+rwWgZkQpHZ2a9BvnpPY1EZG7gIXATBFZLyIXqGoEuBR4BFgJ3KOqK5Jpx2DwPIRCd6xJe6SLjQGU7YGbc4kRl9jKmkXvJd+NTZTengvAeYdX09AW4e6X30+VWYEQ67lsqgvmPAkLrR2d/PrpVQAs//5JDHMnq/KoKHbOF/NedufBZZsA+M5psxhWWtDDc3l4+Waqr3qIw3/8ZHSdwYRjp41xKsne2dLoo8W7k1RxUdVzVHWcquar6kRV/aO7fIGqzlDVD6nqD/3anx8zUUZzLnm51Ix0/glBDGbs7FIaWiM9PBcR4fAPOXHWjQF1Mk2EpvaengvAnMnD+PD0kfzyyVXRqW0zkVjPJahus+mOqnNX/JOH32RLfRt3fuGQHuEwj3K3eMXEBVZva6T6qoeovuohVm1t4M8vrmX66DI+Ons8w0oK2OGKywurPuDiPy+Jfu6y46YNOq/plSm/szVNxEVESpJpiB/4ERbzQjxlhXnMdEv6Xu+nUsMvvJLMWHEBJ3/hka4hpua2CCKOIMfyPx+ZRUt7J1fc82qPZqCZRGzE9N1tyf2xhgFV5TN/eIkjf/IUf3p+DfNnj+9xDsfitd3P9qS+qnLcz56Jvj7h+md5Y1M9nzu8GhFhWGkBO5s7WL6hjk//4SXAKTle8+OP8LV5Mwe9v4qifEaXF7Iq1eIiIoeLyBvAm+7r2SLy66RalSB+eC7eRb68KI/Kknxmjinn5TXJLwf2Zm+s6CUunztsSnSq0t+4IYZ0o6m9k5L83N1c85ljy/neR2fx9FvbuOTOpRk6MZSjLiLw+ob6FNuSGt7d1sgZNz1PQ2sHT6zcygvvbo++93+f3L/Pz3ll99ksLq+u20XN1QsAKMzL4RMHToy+99HZ4wEYVpLPsnW7OO2XzwFwZu3EuEqO+2P6mDLe2Zrcgc4DDqLEGTx5Em7SXVWXichRSbUqQVT1AeCB2traCxPdhucdeHdVB9cM41+vbEz6vC6euPT2XMqL8nnia8fwtXuW8eun3+WQmhFpV97b3N5JyR7CHgCfOWQKkU7lmgdW8LFfP891n5rdoxw17Hiey9zq4bz83vbdijIynYbWDo5377r3u+ZRwJky4omvHU3+AL+XqOfSkp4e+VBQVepaOqgqcfJM63Y08+U7l/LXLx4azU1O//aC6NxRAC9/+wQqi/P53GFTmDy8JHoeDSvpzlUV5uXw00/OHrJ9M8dU8JeX19LZpeQmqXw+HnFBVdeJ9DAgE29Bge74b5l74h85bSR/fvF9Xng3uWM2vB9YXxemH5yxD8s31HHh7Yv5xTlzOGkQ1SHJprk9Eu0ivSfOPbya6pGlfPXuVzjtl89xzMxRXHrsNGqrhwdoZXLwci5nHTyJl97bwQ2Pvc335s+i1+8lI1BVRIR3tzVy1u8WMmt8JXu6Ll33qdkDCgt0ey5hHqVf39rBC6u2UzOylKmjSsnPzWFHUzsH/uAxAD59yGT2HlfBd/7llBXP+u4jfP2kmWytb40Ky8RhxTz5tWMoyHOOWW+vxJvfCeDNH/ToppUwe40tp7Wji+Ub6obsBfVFPOKyTkQOB1RE8nH6i61MijVDxBtEOaE68UGU9a0dFOQ5/b0Ajt1rNBVFefx96fqkiktfnotHSUEed154CBfctpiL/7yE73xkFucfUZ0WF7Gmtk6KC/o/lY6eMYpnvnEsdyxcyx+fe49P/nYhB06u4vi9xzC3ZjizJ1ZFf1ypYltDGwf/8HH+dN7BHLtXfG3tvHz+/hMrOe/wam59YQ0bd7Vw3ZmzoxfPVNDYFuEvL63lM4dMobQPr9LDu3uNdHaxZnsTU0eWIQLX3L+CRWt28rvPHsTPH3+Hvy9d3+Nzz769DYDzj6jme/P3YcXGOjo6lQPivFh5nks6J/RvX7iGNzbWc+3H99vtt7aruZ0D/vexHstO3mcsD8eM7/rLS7tXS3qtWgBeuOo4xlcV92vDWQdP4vlVH+zRhkSpcUPtp9/0PGt+/BFfttmbeMTlYuBGnBYtG4BHgUuSYs0Q8cJio6fOSjws1hqhoqj7sBTm5fLxAydy50trufqUvRlbmZwJdgYSF4CRZYXcfeGhXH73K/zvg2/wzNvb+OoJ05kzeVhSbIqXgTwXj4qifC45dhrnH1HNXS+v494l66M/tKL8HA6aMozaKcOZM7mKWeMrKMzLpaIoLzAB9eYb+f1/VsctLp7nIiJ897RZTKgq5icPv8mpN/6HD08fxYSqIo6eMZq9x5XTFumKXugbWjt4f0czHxpVRluki20NrUwZ4dz5ejM2Th5ewnWPvsWmXa1cMW8Gk4eX8PqGOiqL85k0rIQ7X1pLaWEeZ9VOYs32Jk775XN897RZnHXwJPb93iMAPPnmVm7+XC37uyGrkWUF/O6ztQwvLeALty2Kq3v1h3/61G7LXv728dz05CpKC/P46gkzANhn/ODCneme0F++oY7v3ueMkrjgyBoWr93J1f94nStOnMHlx0/nM25yPZZYYXnqymM49rqnATcC8oVDuO/VDXzl7lcBWPw/JzCyrHBAO0oL8/jjeQcP/QvFMGN08vsVxtO48gPgM0m3JE1oaI3sVjZ5wZE13PHiWm56ahU/OGPfpOw3HnEBp0357/7rIG59YQ03PP42H/v1Cxw5bSSXHjeNudXDU9J+pKm9c1B5hpKCPC44soYLjqxhZ1M7i9bsYOHq7by0egc3PvFOj3XHVBSy34QqSgpyKS/KY9b4CiYOK6GkINdZVphPZUk+xfm55OfKkITIK6UezJ2057kITsueC4+ayuxJVfxowUrucsf4XPfo2z0+8+HpI1m0ZgetHV3kSM+Ks4/OHs9jb2zpMRsq9LxoAT0+d/U/otMtcdU/XuenMXfGL67eERUWgA8a2/nEb16I+/t99YTp/Pxx53+y4vsn9fCCvn/60H4Lebk5lBbkpiTn0tWl0XZLy9bX0dHZRe2UYT3OHy+BDvDTR97isTe2AHD9Y2+z74QKVrvC/N61pyIiPLBsI5fd9QoAr3znRIaVFrDqh6fQ0BqJjvE5/YAJnH5An60UA6OyJJ9po8uSOvC3T3ERkV9C35NVqOrlSbEoxTS0dkTr7z0mDS/hs4dO4baFazj9gPFJyRXUtXRQkJtDUf7AoaGcHOHzR9Zw1sGTuPOltdz87GrOvvlFRpQWcNxeozl77iQOnDwssDv+5rYI4xP06IaVFjBvn7HMc3NITo3/+3xoVCktHZ2s2FjPyk31tEe62N7Uzp17CDN45OUIpYV5lBXmUVqYG31eVpjHhKpiSgrzaGjtoDAvl4K8HOpbOhhWUsDh00ZQXpQXHVT2+oY6Xlj1AeOripkyoqTf4+h5Ljkx68ytGc6/LjkCcOYD+vfyzSxcvZ3po8u486X3Wb2tiVP3G8dR00fx1pYGtjW0UVKQyz2L1/Hcqg84YtoIWjo6Kc7P45iZozh6xij+vXwTD72+mUhnF6fsO5bm9k6O33s0ty9cy32vbgTghL3H8PjKLdFxRat/dCrf/Ptr/G3Jen5w+j589rBqvnffcm5buBaAqaNKefCyI8kRYXNdK5OGl5Cb4+RUWto7o4UXnmeSDCqKg+kv1tmlfOhbTlXW41ccxQnXPzuoz3vC4vH5WxcDcMNZs6Pnx/zZ4zlh7zEA0Q7Gebk5uw0eTRcOmjyMe5euj+bS/Ea0j5bhInKu+/QInHlX/uq+/hTwhqrG1UwySLycS+WEaRfuWv/OgOvviU/+5gUK8nL4y4WH9lje1BZh3g3PUpSfw0OXf5ii/IHDQIPh6n+8zmNvbGHx/5ww6M82t0d4ZMVmnnlrG4+9sSU6qHF4aQFXnbIX82aNiVatJIMjfvwkh04dwc/OHHoVS384g/Na2NrQRnN7hKa2ThpaO6hr6aClvZPmjk6a2iI0tkVoanPeb2yL0NDawbqdLbRHuigrzKM90kV7ZxflhXk0tUf67Wy819jy6Nw6h04dwZm1k3rcvf99yXq+9rdlPPv1Y5k8IjVDwd7e0sDCd7fz2UOnsPqDJr71z9f5zWcOZEQcIZdUc9INzzJlRAk3f652yNtSVb54xxK+8OGpzK0ZTvVVDwHwzg9P4dbn1/DDBYNPFd978WGs2trIVa53uOx78zjuuqfZ7gr4W//v5Gh+NmzcsXAN37lvBS9efXw03C8iS1R16P8M+vFcVPU2d2dfAo5027bgtr//jx879xsv5zKqZgg5l7YIk0t3v0iUFubxo4/vx7m3vMx371vOjz62n6+lyfUtHdF2GIOlpCCPj82ZyMfmTKSxLcKC1zbxjb+/xo6mdr5x72t8A2dU7v4TKjl65iiOnDbS1wtPU3ukx+j8ZCEiTBpeEp3IbTCoKl1KtOzS62C8q7mdRWt20tHZxZfvXArA/ZceQX1LhHe2NvDga5t4a3MDkS7lkRVb+OFDKzlqxij+9/R9mDisJCbn4t/3HCwzxpRH5/CYNrqMe754WOqMGSSVQ/BcVJUTrn+GhtYIL3/7hOh4kUff2ELtlO485LUL3uSW59/b7fMvXHUc3/nXcn772YPYXNcazS3dePYB0bzIQVOGccCkKu5ftpFLj51GZXE+L3/7BH768Jucf0RNaIUFYMoIJ6n//o7mpOSS47maDQMqAK+5VZm7LCNpaI3sFhbzOHqGU0L7q6dWsbWhjZs+feCAlTjx4tf4iLLCPM48eBKnzxlPjggrNtbz/KoPeOX9nTz7zjb+8YrTgHpcZRGn7jeOk/cdy77jKynMy0k4X9Pc1tmjr1g6IiLkxnw977tWlRRw4iwnlPGfbxzLzuZ29p9YBcCR00dy/hE10c8sWbuTBa9v4p5F6/j071/iwcuPjMaN06BoL5RUFOexYRATV63cVM8pN/6H5686jh888Ea0IOFyN9fhsThmsjpPWE6cNYbf/ddB/Hv5ZubtM4b83JxoonzS8JIeVVOxeZG8XOkRycjNEa4+tWcTzjAyxfW012xvYm6N/6H+eK4IPwZeEZGncPKWRwHX+G5JmlDf2hGtYtkTV540k3FVRXz3vhWc8/sXueW8g+Oq+Ihnv8N9jM16d1QHTKqKloZ2dSmvrNvJ0rW7WLRmB7cvXMMf3alRR5cX8p3TZnHyvmPjGqPg0dHphJjiqRZLdwbyig6aMoyDpgzjlH3HctbNL/Ljf7/J7IlOXiLH1CUhKoryWdkS30hxVeWUG52gyRFu00aP+5c5eacrTpzB9Y85BRQfnzOBV9bt4j23N+D1Z84mJ0f4yP7j/DI/1Hgl0Lc89x5n1k4aYO3BE0+12J9E5N/AIe6ib6pqRk7Uoao0tkX6FRdwRp2PrSjikr8s5cTrn+GLR3+Icw+r7nMa0nioa+mIzj+fLHJyhIOmDOegKcO58Kip1LV08OLq7fxt8ToeX7mVy+56hYqiPObPHs/5R1QzLY5yRW+K46F897BRWz2csw+exN8Wr2eC+wM1bUmMwST0e48p2ROXHTeNCz88lUhXF+VF+agq+1/zKN/6yN59RiSyFe8mcnuSGssOKC4xrV48P3OGiMxQ1cGVWwRATEI/oc83tXeiyoDiAnD83mP4x5eO4CcPv8mP//0mf1u8jivnzWTePmMTaqeQirYhlcX5nLTPWE7aZyxdXcrjK7dw36sb+cfSDfx10TouPGoqlx83vV/h8Nrt+xUeDAtn1k7izpfejw4kNM8lMSqK82lojfTbhuSRFZv54h3dnYAfuvxIPvILp0z45W8dz4iyQh5YtpFj9xqNiLjnq3POigivf/+kpH+PsHLuYVO4d8n6pMyiGs8V4esxz4uAuTgzUR7nqyU+0J3Q3zuhhH5308r4LvKzxldw2+fn8uzb2/jm31/jS3cu5aApw7jx7AOYOCz+pHNXl1Kf4p5UOTkSLQne3tjGtf9+k988/S73LlnPTz6xH8ftNWaPn+s9xXG2sO+ESiqL83nJnWfHpCUxvAHLja0RKkt2P/9b2jt7CMsFR9awz/jK3UaVnzEn9WNHwkhlcT5N7Z3c8eJazj282tdtDxhcV9X5MY8TgX3p9mLSkkTnjWxs7dm0Ml6OmjGKx644mjmTq1iydicnXv8s970a/8zNjW45bLo0PBxRVsh1n5rNPV88jKL8HL54xxKeWLllj+tGPZc0T+j7TW6OcOjU7iRoOrThCSPeOd9XaGzv7z4cff7OD0/hO6fNCsSubOEYtxPFpiTMRZRILe16IK1LJRLtVVTvNa1MIMRTVpjHP798BM9981j2nVDBV+5+lcvueoXtjQOPgK1rdtvtp1lMeG7NcB687MPsPa6Cy+56ZY/zlUQ9lwBKkdONqaPKos9T0BghI/CmmPA6VHh0dml0nArAsu/OG1ShiREfB7iVkb995l3ftx3PfC6/FJFfuI9f4YxxWeq7JT7TlcC894MNi+2JicNK+MuFh/K1E2fw4GsbOej/Pc6aAWay7Gsul3Sgsjifmz9bS2FeDpfcuTQ6DbRHtnouQI+uBOa5JEZ0Tpde4nLh7Yujz783f9YeQ2bG0Elmu6h4bgUW4+RYlgALcarF/itpFvnEqwnMHul5PBWDDIv1Jj83h8uOn85dbm38+bcuYmc/FRn1cfYVSxVjK4u4/swDeHNzQ7TPlMeepjjOFsZVdnezNc8lMfoKiz3jFkocv9foHmONjOTRHvF3tth4xKVKVW9zH3eq6vMi8hVfrfAJbyZKgKVrB58W8iYKKxuiuHgcOnUE9158GBt2tXDRHYt3u+v3qO9jiuN04ti9RnP6AeO5feEadjV3C2Wze8wGarmfiYws7x7fZJ5LYnhdKWLDYqpKZ5dSnJ/rezdgo29eXL194JUGQTzicu4elp3nqxU+oaoPqOpFAK+8v2vQn/cjLNab2urh/OxTs1m0ZiffuPc19tTLLdoROc1d/y8fM43m9k7+/OLa6DJvnEsmDKIcLGUx3pppS2J4oeDYzshL3BvDg6ZkbCOQtOJ3nz0IgJ3N/o536VNcROQcEXkAqBGR+2MeT9HdCiZteXnNjj1eyPujsTWCCJT43JRy/uzxXHHiDO5ftpHnVn2w2/vxtttPNTPHlnNIzfBoF14g2hre70aeYSB2bI+Nc0mMsoI8cqRnWOzZd5zfyOePrE6RVdnFXLfL++I1/hYB9+e5vAD8DHjT/es9vgak/aikbQ1tLF67k1fX7Yr7Mw1tzlwuyUhyffHoqYyrLOKGx97eTfTqWjrIzZFQ3P2fut843tnayGq3cqylvZMcceb2zjZi+6mZtCRGTo5QXpTfIyy2fEMdeTnCsTPjm7DNGBpVbsTkjpiIhB/0eUVQ1bWq+rSqHqaqz8Q8lnodktOdT/12IWfc9Dz3LF7XZ74jlobWCOVJGmlemJfLJcdOY+n7u6LJSg9vdH4Y4vYfnj4ScCahAtx5R3JDYbvfxN4MmOeSOKUFudHwaqSziyff3EqkKzlzjBi7IyKUFeYxZ3KVr9vtLyz2nPu3QUTqYx4NIlLvqxVJ5hv3vsYx//d0NKfSF439dET2gzNrJzGusohbnl/TY3ldS2TIFWpBUTOylNHlhbz0npP8a27vzMpkPtBjygW7DiZOUX5uNLz6xJtbU2xNduK3sED/nsuR7t9yVa2IeZSraoXvlvjMab06n26ub2W/ax7l1Bv/E50rvTcNbR2+VYrtiYK8HM6YM4HnV30QnS0QSHnrl8EgIuw/sYo3NjrHsLWjk+KC7AuJ9cbEJXEK83Npc8Xl9fV1ANz++bmpNCnr2N7YnlARVH/EdVUQkVwRGS8ik72Hr1YkgV99+kDe/dGpXDN/Fq9fM4/f/teBHLfXaN7YVM+X/ryESOfuNd2O55Lcu/CT9hlLZ5fyfExiv7EtklRR85sZY8p474Mm2iNdtLR3UpIfHtuThYXFEqc4P4fWDuf3+KunVgEw2x05bgTDG33ccA+FeEboXwZsAR4DHnIfD/puSf82nCEivxeRv4rIvHg/l5sjnHdEDeVF+Zy87zhuOe9gfvXpOazZ3swnfrtwt/W9hH4y2Xd8BWWFeT1qyhtbk79fP5k5tpxIl/LeB000d3RSFIJChGRj0pI4Rfm5u+VE070s3xiYeDyXrwAzVXUfVd3Pfewf7w5E5BYR2Soiy3stP1lE3hKRVSJyVX/bUNV/qeqFwMXAWfHue0+cuq8TLlu2bhct7T1P6IYAPJe83Bzm1gzvKS5tEcoKw/Njmu7O8/LO1gZa2zt9L90OI+a5JE5szsVIDT84Y1/ftxmPuKwD6oawj1uBk2MXiEgucBNwCjALOEdEZonIfiLyYK9HbD3i/7ifS5icHOGy45z5Xu5dsq7He8lO6HscOnU4725rYmuD04k0ngnK0okJw5y2J5t2tdLcEcmqicL6wrQlcYpdz2Wz25k3G8vaU838JMzOGc8VbTXwtIg8BERb/Krq9fHsQFWfFZHqXovnAqtUdTWAiNwNnK6q1wKn9d6GODWJPwb+rapDbpp5xYkzeGn1Dn755CrOPHgShXm5dHR20dLRGUh46qApzqClZevqOGHvQhrbIqHqzVVRlEdJQS6b6lppae80ccHavwyFQjfnsmKjcw9r0xAHTzI6Tsezxfdx8i0FQHnMYyhMwPGIPNa7y/riMuAE4JMicvGeVhCRi0RksYgsHl3Qf8mxiHDBh2vY2tAWrZBoaktsLpdEmD7GadW+amsjrR1ddHZpqGZyFBHGVhaxub7FTeibuBiJU5SfS1ukk9fcSrErTpyRYouyj2SEdQe8oqnq933f6yBR1V8AvxhgnZtFZBMwv6gg/6CBtnlozQhEYNF7Ozh06ohoR+QgPJeKonzGVhTxztaGaKw5bC3rx5QXsaW+zRlEaZ6LMQSK8nJpae/kxiecjtujy4sG+IThNzlJiEQOeEVz+4v1btJVh9OK/3eqmsgUZhuASTGvJ7rLhoQ3zXFtbe2A0xxXluQzc0w5L69xRpo3RGehDCaxPnVUKe990BQVl+KQ3f0PK83nrc0N0RH6hpEoxQU5tEa6mFsznJff20GB5VwCJxmeSzz/xdVAI/B791EPNAAz3NeJsAiYLiI1IlIAnA3cn+C2ongt9+vq4qs/mFsznCVrdxLp7IpOehXUXPDjq4rZtKs1WrEWtnLeqpICdjV30B7psgSsMSSK8nKjLfb3GZ/247MzktwUicvhqvppt539A+5EYQer6iXAgQN9WETuwplkbKaIrBeRC9zeZJcCjwArgXtUdcUQvgfQ3XK/srIyrvUPrh5Oc3snKzbWRz2IwMSlsoitDa3ROWTCdvc/rCSf7U3tdGlykoFG9uB11H7m7W27TXdsBIMIPH7F0b5uM55Af5mITFbV9x0jZDLgTR4+4AQAqnpOH8sXAAviNTQZHDCpCoCVm+oZUeZM/BRU6/hxVcV0Kazd7kyBHD5xKYg+zzfPxRgCRfnd58/6nS0ptCR7ERGmjS4beMVBEI+4fA14TkTexRmIXAN8WURKgdt8tWaIiMh8YP60adPiWn9cZRG5OcKGXS2UuIn8oMRlTIUjZu9vb3b3G64LdGwvNPNcjKGQjXMBZQPxVIstEJHpwF7uordikvg/T5ZhiTCYhD44o+XHVhSxfmcLk4aVAARW+eTd+W90B46F7QcWO5dJQa6N8TASJ/bc/8KRNSm0xPCTeOtfpwMzgSJgtoigqrcnz6zEGKznAjChqpgNO1sCr9oaXuqKyy4nDBC2ct7YTsjmuRhDIVZcqqynWMYQT+PK7wG/dB/HAj8FPppkuxJisAl9cFqZbNgVvLgM6y0uIfNcYi8IJi7GUIg998M0mNjon3iuCp8Ejgc2q+r5wGwg/qt3mjOhqpjN9a3REfpBldWWF+aRlyOhFZdYey2hbwyF2HyjiUvmEM9VoUVVu4CIiFQAW+k5ADJtGOw4F3DCU51dyraGNoryc8jJCSZ/ICKUFeXR5I1zCZu4xITxLOdiDIXYcz9MU08Y/ROPuCwWkSqcAZNLgKU441bSjkTCYl6Md1Nda+AX+NiWL2EbiFhsYTHDJ8xzyUziqRb7svv0tyLyMFChqq8l16zg8Epqt9S3Bh6a8gZs5udKYB6TX5i4GH4Re1MXtvCw0Td9iouI9Dn6XkQO9KP1fTrgicumulZGlBYMsLa/eOJSEMKLc2y7GhMXYyjEiktuyG6yjL7pz3NZDCwHvMneY//rChyXLKMSJZFSZC8sVtfSwbjKYLuxemNFwtioL1YQC/LsgmAkTqy45Jm4ZAz9XdWuwGlS2QL8CZivqse6j7QTFkgs51IRM9I86Iu8N0FYGMUl1lsxz8UYCkUx5795LplDn1cFVf25qh6JM1HXJOAJEblHRA4IyrggSGUbk+IQey6xFwETF2Mo5OWauGQiA14V3KmI7wMexZmeOKOmiSvMy41Wq+QHXFJb7O43jDmXWCyUYfiFnUuZQ38J/ak486ycjjMl8d3Aj1Q1bduWJpJzASf30drRHvgduOexFOSFu0ImbJVuRvpi51Lm0F9CfxXwGo7XUg9MBr4k7qQyqnp90q0bJINtXOnhlT8GLS7e/sIYFoslGbPYGdmJeS6ZQ3/i8r90T2/sb6P/NMMLiwV9YnuiUhjysJhdDwy/sBuVzKFPcVHVawK0I6V4rUyC7pFVYJ6LYfQgz1oJZQzWawFnDm8IPrEe9kS+RzZry4tXH09jm03N6xfJmMvdSA0mLnR7LkGHxTxPKdLVFeh+/Uay+IIwtrIIZ5ojww+sFDlzyIxb5yHiJdZTFRYLubZYzsXwDROXzKHPq6mI3Brz/NxArBkiibTch26PJfCwWIZ4LpZzMfzCxCVz6O9qOjvm+VeSbYgfJNL+Bbo9lsCrxVwx6+zSAdZMb0xbDL8wcckc+hOXcF/xBkG+e0IHHhaLei7hPtTmuRh+YeKSOfSX0J8oIr/A6YbsPY+iqpcn1bIA8Xob5Qd8YnujkTXc2mLiYviGVYtlDv2Jy9djni9OtiGpxNOUvIBzLpnyQ8qMb2GkA+a5ZA79DaK8ra/3RGRycsxJDd4JHfSJ7e0u7BpjnovhF9lc1p5p9HurLiKHicgnRWS0+3p/EfkL8Hwg1gVEqi6OmdKkT6yg3TCMXvRXivx/wC3AJ4CHROT/4bTdfwmYHox5weBViQUtMplyx58p38MwDP/oL+fyEWCOqraKyDCctvv7quqaQCxzEZG9cUqhRwJPqOpv/N5HTlRc/N5y/2RI9xcbRGkYxm70d3lrVdVWAFXdCbwzWGERkVtEZKuILO+1/GQReUtEVonIVf1tQ1VXqurFwJnAEYPZf7ykKrGeKfFl81wMw+hNf57LVBG5P+Z1TexrVf1oHNu/FfgVcLu3QERygZuAE4H1wCJ3u7nAtb0+/3lV3SoiHwW+BNwRxz4HjZfID3q4SaZUixnGULly3gzuenldqs0wfKQ/cTm91+ufDXbjqvqsiFT3WjwXWOVOn4yI3A2crqrXAqf1sZ37gftF5CHgL3taR0QuAi4CmDw5sWK2oK/13h1/2DXGPBdjqFx63HQuPS6jUrlZT3/i8p6qvp+EfU7Ayd94rAcO6WtlETkG+DhQCCzoaz1VvRm4GaC2tjYUwxJzLOdiGEaG0p+4/As4EEBE/q6qnwjEol6o6tPA0/GsKyLzgfnTpk1LcF8JfSxhMuWOP1O+h2EY/tHfvXPsFWOqj/vcAEyKeT3RXTZkEm1cmSoyZTSyaYthGL2Jt3Gln/f0i4DpIlIjIgXA2cD9A3wmLhJtue/JqAbcqzNDtCVjqt4Mw/CPflvui0i9iDQA+7vP60WkQUTq49m4iNwFLARmish6EblAVSPApcAjwErgHlVdMdQvAol7LpKi7lh2UTYMI1Ppr7dY7lA3rqrn9LF8Af0k5xNlqDmXoIlWi1nrR8MwMowMqVdyCFvOxSTFMIxMJaPExTAMw0gPMkpcEk7oG4ZhGL6SUeIStrCYh+X1DcPINDJKXMJK2Kc5NgzD6E1GictQw2JBX+QlReNrDMMwkk1GiUvC41xSFJbySpHNczEMI9PIKHFJlFSlPDxR6wy6179hGEaSMXHB3942g8E8F8MwMpWMEpdEcy6purgX5ztNEEZXFKbGAMMwjCTRX8v90KGqDwAP1NbWXjioz7m+S9C5l+qRpdxw1myOmTE62B37xFNXHsPGXS2pNsMwjDQko8QlYVzPJRU9vj42Z2Lg+/SLmpGl1IwsTbUZhmGkIRkVFksULypmgxkNwzD8IaPEJfGcixsWS4ZRhmEYWUhGiUtY278YhmFkGhklLkPFwmKGYRj+YOKCjTMxDMPwGxMXYhL6lnUxDMPwBRMXuj0XC4sZhmH4g4mLYRiG4TsZJS42E6VhGEZ6kFHikmgpss2nYhiG4S8ZJS5DRSzpYhiG4QsmLlgpsmEYht+YuABzJlcBsPfY8tQaYhiGkSFYV2Tg9AMmUFs9nAlVxak2xTAMIyMwz8XFhMUwDMM/TFwMwzAM3wmFuIhIqYgsFpHTUm2LYRiGMTBJFRcRuUVEtorI8l7LTxaRt0RklYhcFcemvgnckxwrDcMwDL9JdkL/VuBXwO3eAhHJBW4CTgTWA4tE5H4gF7i21+c/D8wG3gCKkmyrYRiG4RNJFRdVfVZEqnstngusUtXVACJyN3C6ql4L7Bb2EpFjgFJgFtAiIgtUtWsP610EXAQwefJkH7+FYRiGMVhSUYo8AVgX83o9cEhfK6vqtwFE5Dzggz0Ji7vezcDNALW1tTYs0jAMI4WEZpyLqt460DoiMh+YP23atOQbZBiGYfRJKqrFNgCTYl5PdJcNmUQbVxqGYRj+kgpxWQRMF5EaESkAzgbu92PD1nLfMAwjPUh2KfJdwEJgpoisF5ELVDUCXAo8AqwE7lHVFX7szzwXwzCM9CDZ1WLn9LF8AbDA7/1ZzsUwDCM9CMUI/Xgxz8UwDCM9yChxMQzDMNKDjBIXS+gbhmGkBxklLhYWMwzDSA8ySlwMwzCM9CCjxMXCYoZhGOlBRomLhcUMwzDSg4wSF8MwDCM9ENXMayAsIg3AW6m2I00YCXyQaiPSBDsW3dix6MaORTczVbXcjw2FpivyIHlLVWtTbUQ6ICKL7Vg42LHoxo5FN3YsuhGRxX5ty8JihmEYhu+YuBiGYRi+k6nicnOqDUgj7Fh0Y8eiGzsW3dix6Ma3Y5GRCX3DMAwjtWSq52IYhmGkEBMXwzAMw3cySlxE5GQReUtEVonIVam2J9mIyCQReUpE3hCRFSLyFXf5cBF5TETecf8Oc5eLiPzCPT6viciBqf0G/iMiuSLyiog86L6uEZGX3O/8V3dqbUSk0H29yn2/OqWG+4yIVInIvSLypoisFJHDsvW8EJH/dn8fy0XkLhEpypbzQkRuEZGtIrI8ZtmgzwMROddd/x0ROTeefWeMuIhILnATcAowCzhHRGal1qqkEwG+pqqzgEOBS9zvfBXwhKpOB55wX4NzbKa7j4uA3wRvctL5Cs702R4/AW5Q1WnATuACd/kFwE53+Q3uepnEjcDDqroXMBvnmGTdeSEiE4DLgVpV3RfIBc4me86LW4GTey0b1HkgIsOB7wGHAHOB73mC1C+qmhEP4DDgkZjXVwNXp9qugI/BfcCJON0JxrnLxuEMKgX4HXBOzPrR9TLhAUx0fyzHAQ8CgjPyOq/3OQI8AhzmPs9z15NUfwefjkMl8F7v75ON5wUwAVgHDHf/zw8CJ2XTeQFUA8sTPQ+Ac4DfxSzvsV5fj4zxXOg+iTzWu8uyAtd9nwO8BIxR1U3uW5uBMe7zTD9GPwe+AXS5r0cAu1Q14r6O/b7RY+G+X+eunwnUANuAP7khwj+ISClZeF6o6gbgOuB9YBPO/3kJ2XleeAz2PEjo/MgkcclaRKQM+DvwVVWtj31PnVuNjK83F5HTgK2quiTVtqQBecCBwG9UdQ7QRHfoA8iq82IYcDqO4I4HStk9TJS1JPM8yCRx2QBMink90V2W0YhIPo6w3Kmq/3AXbxGRce7744Ct7vJMPkZHAB8VkTXA3TihsRuBKhHxeujFft/osXDfrwS2B2lwElkPrFfVl9zX9+KITTaeFycA76nqNlXtAP6Bc65k43nhMdjzIKHzI5PEZREw3a0CKcBJ2t2fYpuSiogI8EdgpapeH/PW/YBX0XEuTi7GW/45tyrkUKAuxj0ONap6tapOVNVqnP/9k6r6GeAp4JPuar2PhXeMPumunxF38qq6GVgnIjPdRccDb5CF5wVOOOxQESlxfy/esci68yKGwZ4HjwDzRGSY6wnOc5f1T6qTTT4nrk4F3gbeBb6dansC+L5H4ri0rwGvuo9TcWLETwDvAI8Dw931Baei7l3gdZwKmpR/jyQcl2OAB93nU4GXgVXA34BCd3mR+3qV+/7UVNvt8zE4AFjsnhv/AoZl63kBfB94E1gO3AEUZst5AdyFk2vqwPFoL0jkPAA+7x6TVcD58ezb2r8YhmEYvpNJYTHDMAwjTTBxMQzDMHzHxMUwDMPwHRMXwzAMw3dMXAzDMAzfMXExMhIR6RSRV2Me1am2yW9E5BgRqRORBe7r6tjut+6ya0Tkyn628d8i8r6I/CrZ9hrZRd7AqxhGKGlR1QP29IY7mE5UtWtP74eM/6jqaYl+WFVvEJGdQK2PNhmGeS5GduDe1b8lIrfjDKabJCJfF5FF7twV349Z99si8raIPOfO/3Glu/xpEal1n490W814c8j8X8y2vuguP8b9jDevyp2usCEiB4vICyKyTEReFpFyEXlWRA6IseM5EZnt0/cf38uT6xSRKX5s2zD2hHkuRqZSLCKvus/fA/4bZ56Kc1X1RRGZ576eizMy+X4ROQqnyePZOCPc84ClOF10++MCnFYZB4tIIfC8iDzqvjcH2AfYCDwPHCEiLwN/Bc5S1UUiUgG04LTyOQ/4qojMAIpUddkgv/eHYr43wFjgOlXd6H4nROQS4GhVXTvIbRtG3Ji4GJlKj7CYm3NZq6ovuovmuY9X3NdlOGJTDvxTVZvdz8XTn24esL+IeL2qKt1ttQMvq+p6d1uv4sytUQdsUtVFAOp2shaRvwHfEZGv47TbuHWQ3xng3V7f+5rYN0XkCOBCnNZBhpE0TFyMbKIp5rkA16rq72JXEJGv9vP5CN2h5KJe27pMVXs08xORY4C2mEWd9PObU9VmEXkMp0X8mcBB/dgyaNwOuH8EPqqqjX5u2zB6YzkXI1t5BPi8OxcOIjJBREYDzwJniEixiJQD82M+s4buC/4ne23rS+JMf4CIzBBncq6+eAsYJyIHu+uXx7R//wPwC2CRqu4c0jeMwbXtb8A3VfVtv7ZrGH1hnouRlajqoyKyN7DQzbE3Av+lqktF5K/AMpx5LhbFfOw64B4RuQh4KGb5H3DCXUvdhP024Ix+9t0uImcBvxSRYpx8ywlAo6ouEZF64E/+fNMoh+NUhH0/pnjhVDcXYxi+Y12RDaMf3JxFo6peF9D+xgNPA3sNVCrtht2uHEopsrud83Daq186lO0YRiwWFjOMNEFEPge8hDMXUTxjcNqBfb1BlAnu87+Bq4H6gdY1jMFgnothGIbhO+a5GIZhGL5j4mIYhmH4jomLYRiG4TsmLoZhGIbvmLgYhmEYvvP/AZf4t5Ul7XocAAAAAElFTkSuQmCC", - "image/svg+xml": [ - "\r\n", - "\r\n", - "\r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " 2021-08-26T09:07:46.168643\r\n", - " image/svg+xml\r\n", - " \r\n", - " \r\n", - " Matplotlib v3.4.1, https://matplotlib.org/\r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - " \r\n", - "\r\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAGwCAYAAABvpfsgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5fklEQVR4nO3dd3hUZfo38O+UzKQ3QhJCEoLSa5BApAlIFFGxoOhaQ1n9qWEtsSzsKlYWbLysa1ZsgO66iOsiNgQxghSR3iOhQwgkkIT0ZJLMnPePyZycmbQZpp0z+X6uK9eVKZl5MpPMuc/93M/9qARBEEBEREREl03t7QEQERERKR0DKiIiIiInMaAiIiIichIDKiIiIiInMaAiIiIichIDKiIiIiInMaAiIiIicpLW2wOQO5PJhHPnziEkJAQqlcrbwyEiIiI7CIKAiooKxMXFQa12f/6IAVU7zp07h4SEBG8Pg4iIiC5DXl4e4uPj3f48DKjaERISAsD8hoSGhnp5NERERGSP8vJyJCQkiMdxd2NA1Q7LNF9oaCgDKiIiIoXxVLkOi9KJiIiInMSAqhVZWVno168fhg0b5u2hEBERkcypBEEQvD0IOSsvL0dYWBjKyso45UdERKQQnj5+M0NFRERE5CQGVEREREROYkBFRERE5CQGVEREREROYkBFRERE5CQGVEREREROYkBFRERE5CQGVEREREROYkBFRERE5CQGVEREREROYkBFRERE5CQGVERERERO6hAB1e23346IiAjceeed3h4KERER+aAOEVA98cQT+PTTT709DCIiIvJRHSKgGjduHEJCQrw9DCIiIvJRsg+oNm7ciMmTJyMuLg4qlQqrVq1qdp+srCwkJSXB398fqamp2L59u+cHSkRERB2W7AOqqqoqDB48GFlZWS3evmLFCmRmZuLFF1/E7t27MXjwYEycOBEXLlzw8EiJiIioo9J6ewDtmTRpEiZNmtTq7QsXLsRDDz2E6dOnAwAWL16M77//HkuWLMHs2bMdfj6DwQCDwSBeLi8vd3zQRERE1KHIPkPVlrq6OuzatQtpaWnidWq1Gmlpadi6detlPeb8+fMRFhYmfiUkJLhquEREROSjFB1QFRUVwWg0IiYmxur6mJgYFBQUiJfT0tIwdepUrF69GvHx8W0GW3PmzEFZWZn4lZeX57bxExERkW+Q/ZSfK/z0009231ev10Ov17txNERERORrFJ2hioqKgkajQWFhodX1hYWFiI2Ndeqxs7Ky0K9fPwwbNsypxyEiIiLfp+iASqfTYejQocjOzhavM5lMyM7OxogRI5x67IyMDOTk5GDHjh3ODpOIiIh8nOyn/CorK3Hs2DHx8smTJ7F3715ERkYiMTERmZmZSE9PR0pKCoYPH45FixahqqpKXPVHRERE5G6yD6h27tyJ8ePHi5czMzMBAOnp6Vi2bBnuvvtuXLx4EXPnzkVBQQGSk5OxZs2aZoXqjsrKykJWVhaMRqNTj0NERES+TyUIguDtQchZeXk5wsLCUFZWhtDQUG8Ph4iIiOzg6eO3omuoiIiIiOSAARURERGRkxhQtYJtE4iIiMherKFqB2uoiIiIlIc1VEREREQKw4CKiIiIyEkMqFrBGioiIiLvK6uux085hag3mrw9lDaxhqodrKEiIiLynkl/34Tfz5cj87peeHxCT7t/jjVURERERI1+P18OAPh6b76XR9I2BlREREQkeyqVyttDaBMDKiIiIpI9eYdTDKhaxaJ0IiIi+VAzQ6VMGRkZyMnJwY4dO7w9FCIiog5P5vEUAyoiIiIiZzGgIiIiItmTe5MnBlRERERETmJARZct51w5/vjJDhwuKPf2UIiIyMcJkHeKigFVK7jKr313v78VP/1+AXe//5u3h0JECiYIAmrqjN4eBskcp/wUiqv82ldhaAAAlNXUe3kkRKRkj/x7F/rOXYPTxVXeHgrJmMzjKQZURETkXWsPFQIA/rP9jJdHQnT5GFARudB7G47jrve3cvqC6DKoZN8Lm7xJkPmcHwMqIhd6fc1hbD9ZguU80yZymNyLjsm75P7XwYCKyA1q6pmhIiJyKZlHVAyoiNxA7qlpIjnilB8pGQMqIjdgPEVE5Fpy/1hlQNUK9qEiZ5jk/p9PRKQwcs/8M6BqBftQERF5loozftQGeYdTDKiI3IKrlYiIXEvmCSoGVHIh91QmERERtY4BlQzU1htx/f/biDkrD3h7KOQijI+JHMcZP2qL3DP/DKhkYM3BAhy9UMlmkERERK2Q+4kqAyoZMHJJGBERkaIxoJIBhlO+h+8pkeO4yo/awgwVERERkY9jQCUDXOHng/ieEhG5lNyPlQyoiIiISPbkHU4xoJIFuf+REBEReYPcs1JSDKhawb38yBnK+QggIpIv6SJ4ucdWDKha4dG9/GT+R0JEROQN0rZCbOxJ1AHJ/UyKSI5U7JVONkwK+jBlQCUDco+6iYg8gX2oyJY0oJJ7bMWAioiIZIHxFNmynvKTNwZUMiD3qJscx6wjEZHzTCZvj8B+DKiIiMhrTNzLlNpQZ2yKqOSewWRAJQP8OCGijsqq6JhFVGSjQZKiknuBOgMqIiLyGmmCiuEU2WowNv2BGGWezWRAJQP8EPE9Mj+RIpINuWcdyLvqJVN+DQyoiDoeef/bE8mHNKDijB/ZkgZRcq+3Y0AlA/wQIaKOSubHSPIyaYbKKPNsJgMqIiLyGk75UVtYQ0VERGQHQdJniFvPkC3pKj8GVDLw3XffoXfv3ujZsyc++ugjbw+nTQLP1nwC30Yi+xhZQ0VtqGuQ1FAJ8j5Gar09AHdraGhAZmYm1q9fj7CwMAwdOhS33347OnXq5O2hiaRnZSYB0PBDRZGk/+jslE5kHyXt1Uae12DTKt1oEqCV6UHS5zNU27dvR//+/dG1a1cEBwdj0qRJ+PHHH709rFaxnkC5rPvpyPMfnkhuTDwRoTZIa6gAeRemyz6g2rhxIyZPnoy4uDioVCqsWrWq2X2ysrKQlJQEf39/pKamYvv27eJt586dQ9euXcXLXbt2RX5+vieGbj/JsZcBlXJJ5/c5dUFkH2kCgh9/ZEu6yg+Qdx2V7AOqqqoqDB48GFlZWS3evmLFCmRmZuLFF1/E7t27MXjwYEycOBEXLly4rOczGAwoLy+3+vIkfqAol1U/HS+Og0hJrKf8+AFI1mybeTKgcsKkSZPw2muv4fbbb2/x9oULF+Khhx7C9OnT0a9fPyxevBiBgYFYsmQJACAuLs4qI5Wfn4+4uLhWn2/+/PkICwsTvxISElz7C7WDnyfKxS3JiBwnDahkfKwkL7HNUNmUVMmK7AOqttTV1WHXrl1IS0sTr1Or1UhLS8PWrVsBAMOHD8fBgweRn5+PyspK/PDDD5g4cWKrjzlnzhyUlZWJX3l5eW7/PaQ45adccp7bJ5Ir6b8Na6jIlm0NlW2RupwoepVfUVERjEYjYmJirK6PiYnB4cOHAQBarRZvv/02xo8fD5PJhOeee67NFX56vR56vd6t47YlTWYwoFIu6yk/pqiI7CGdwmGGimw1q6GS8TFS0QGVvW655RbccsstDv1MVlYWsrKyYDQa3TSqlvEDRbmsGhQyniKyi/WUHz8AyVo9a6g8IyoqChqNBoWFhVbXFxYWIjY21qnHzsjIQE5ODnbs2OHU4ziKRZnKZWRROpHDrI6P/PgjG4Z666SG7RSgnCg6oNLpdBg6dCiys7PF60wmE7KzszFixAgvjuzyMZ5SLp5dEzmOGSpqS61NQGV7WU5kP+VXWVmJY8eOiZdPnjyJvXv3IjIyEomJicjMzER6ejpSUlIwfPhwLFq0CFVVVZg+fbpTz+u9KT9+oCiVdYNCIrKHtEZGxrM55CW19dY1VIYGFqVftp07d2L8+PHi5czMTABAeno6li1bhrvvvhsXL17E3LlzUVBQgOTkZKxZs6ZZobqjMjIykJGRgfLycoSFhTn1WO2RfobwA0W5pItPGBgT2UdaE8N/G7LFDJULjRs3rt26olmzZmHWrFkeGpEbSJcN8xNFsbgnmefV1hvRYBIQrJf9Rxm1ot7IKT9qXW2DbUAl3wyVomuofAUb2/kG6fso56W9viT5lR8x4MW1qKmT71krta3BasqP/zdkzTaAknOGigFVK7KystCvXz8MGzbM7c9lPeXHDxSlkk75GWW8EsWXWD5sTxZVeXkkdLmkU36224wQ2QZQcq6hYkDVCk+2TWAxs2+Qvo88MLifYPV/w9dbqaR9hngiQraYoSKHSJNSJh6IFctqyo/vo9tZbVnCl1uxjJLUbr2MtxUh7zDY1lA1MKCiNggsZvYJ1hkqHhjcjf8qvkFalM4TEbJlyUjpNOrGy/L9bLVracw333zj8ANfd911CAgIcPjn5MKTfahYQ+UbpMcCOXfz9RVcEesbWENFbbEEUGGBfrhYYWiWsZITuwKq2267zaEHValUOHr0KK644orLGZMseLIPlclqc1B+oCgVa6g8iy+xb5A29mQNFdmyZKjCAswBlZwzVHZP+RUUFMBkMtn1FRgY6M4x+xzpgUGpHyfMFvBM29NYiO4bpNlcTpWTrerGligRgX4Amu/tJyd2BVTp6ekOTd/df//9CA0NvexBdTTWDSGVeZBg7YN1/ZuRBwa3U+i/CtngiQi1paK2HgDQOUQPQN5tE+ya8lu6dKlDD/ree+9d1mA6KqPVlJ8XB+KEBpMArcbbo/Au6ftYz6kLIrtIV/bxxIykBEFApaEBABAVbA6o5NzEl6v8WuHJxp5GQfk1VPwgtD675uvhfmyb4BusMlQ8ESGJ6jqjmGSICfU3XyfjKT+7N8CaMWNGu/dRqVT4+OOPnRqQXHitKF2+2cw28YPQNkOl0DdSQZR68kHW2DaBWlNRa85OadQqdG7MUFU2TgHKkd0B1aVLl1q9zWg04qeffoLBYPCZgMqTpMdepR4kWExq/RrwwOB+fIV9g3QvPzb2JKlKgzl4CvHXIqhxA/Qqgw9kqL766qsWr//666/xl7/8BXq9HnPnznXZwDoSJW6ka9vRnQEEi2s9jVvP+Ia6Bp6IUMvKGzNUwXotgv3N4YqlpkqOLruGasuWLRgzZgzuvfde3HzzzThx4gRmz57tyrF1GCYFHohtx6mUcbtTg1UtCM+03Y1/cb5BupUISwdIqrIxoArx90Ow3rzqyacCqpycHEyePBnjxo1Dr169kJubi9dffx0RERHuGF+HYF3MrIwDse3UJD8IrZsS8kzb/ViU7hsM9cxQUcssNVQheumUnw8EVHl5eZg+fToGDx4MrVaL/fv34+OPP0Z8fLw7x+c1nlzlJw1OlLLcvnmGShmBoDs1sG2CRym1ZxtZk2aoWENFUiXVdQCA8EA/BOvlP+Vndw1V7969oVKpkJmZiVGjRuHo0aM4evRos/vdcsstLh2gt3hylZ8Slw3bnknyzJJF6Z7GeMo3MENFrSmqMAAAokL0YkBlaDCh3miCn0Z+XZ/sDqhqa2sBAG+++SbefPPNFu+jUqk8spmwr7EuZlbGGZrtB18da4YU+T4qmdDK96QstZKidKWcUJJnFFU2BlTBenHKDzBP+4UH6rw1rFbZHVCZeIBwG6tNdRXygWIbUMl5OwBPsd6TTBnvo5Jxys83SPdmY4aKpCwBVedgHfw0aui1ahgaTKiUaUBld85s7ty52LVrlzvH0mEpMbNhO85aGXev9RQlTt0qmVWGisGVYlllqBhQkURxpbmGqlNjU89gmfeisjugOnv2LCZNmoT4+Hg8+uij+OGHH1BXV+fOsXUYSixKr2+wyVDVKyMQdCfpwcDQIM9/eF9istqyyYsDIadIM1RKOaEkz5BO+QHmBp8AUC7Tbul2B1RLlixBQUEBli9fjpCQEDz55JOIiorCHXfcgU8//RQlJSXuHKdPU2KGyrZmigGEdcuLWgaY7ie0eoEURJqhMirkhJI8o6gxQxUVbJ7eC2uc5iutVnhABQBqtRpjxozBG2+8gdzcXGzbtg2pqal4//33ERcXh2uuuQZvvfUW8vPz3TVenySNTZQyVWS7Vx0DCGaoPE2alWKGSrmkGSq2TSCL2nqj2CIhKsScoQoP8AMAlFbLc3bMqXWHffv2xXPPPYctW7bgzJkzSE9Px6ZNm7B8+XJXja9DsCpKV8iRoXlAxQDCaNOHigW27iXdbsZ2KyRSDumCFqWUPJD7XWxsmaDTqhHSWDsVEWgOqMpq5JmhsnuVX3uio6Mxc+ZMzJw501UP6VVZWVnIysrySBsIowK3LLENqLjKr/nBoLbeaLXUl1xLGkPxMKxclm7YgPmzsMFoglaGPYbIs4qrGqf7gnRQqVQAIK7suyTTDJXDn/a1tbX4xz/+gfXr1+PChQvN2ins3r3bZYPzJo829lRgUXpdQ/PgoaOz3TaIAZV7CVZF6cr4v6HmKmwKjOsYUBGsm3pahIlTfj6SoZo5cyZ+/PFH3HnnnRg+fLgYOdLlU+IecKyhas52uraWWTu34l5+ylfXYGqW3TbUmyDDFkPkYbYr/ADzFjQAUOorU37fffcdVq9ejVGjRrljPB2SVYZKIUWZzaf8mKGyDYaZtXMvaVaKAZUySbNTKpX5fWT5AAHSgKopuo4QV/nJc8rP4bxq165dERIS4o6xdFgmBTaEZIaquWYZKgZUbiVYrfJTxv8NWbPUTwXpNAj00wDgyRmZ5Zeat7vrEhYgXhcWKO8pP4cDqrfffht//vOfcfr0aXeMp0MyCsorSq+zLcDmh2Cz945BpntZZai8OA66fJaAKjTAD/rGgKqOGSoCkF9aAwDoGtEUUIX7Wg1VSkoKamtrccUVVyAwMBB+fn5Wt7PBp+OsG3sq49Bg+6FXW8eAynZBgYEZKrcyMUOleJYpvxB/LYQac3DFKT8CgLOXqgEA8eFNAZXcp/wcDqjuuece5Ofn429/+xtiYmJYlO4CSgyobKf8LA3YOjLbAwGzdu4mraFSxv8NWStvzFCF+PuJ/z+c8iNBEHCupQxV45RfVZ0RdQ0m6LTyWg3qcED166+/YuvWrRg8eLA7xtMhSYMTpWQ1GFA1Z3sgqKnjmbY7mbjKT/GkGSrL99wXlIqr6lBbb4JKZV1DFeLvJy5eKKupR2dJSwU5cDi869OnD2pqatwxlg5LWo+klLoby5SfZbNKaXO+jsp2GrTSIM95fl9hXZTuvXHQ5bM0aIwI1EGvtRSlK+MzkNwnr8Q83RcT4m+VhdKoVZJeVPKb9nM4oFqwYAGefvppbNiwAcXFxSgvL7f6IsdJi5lrFJOhMh/BIoPMc9rMUDUPqBhkupd12wRGVEpk2V6kc4ge+sYDJwMqOtMYUCV2Cmx2m1iYLsNeVA5P+d1www0AgAkTJlhdLwgCVCqVR7Zq8QRPbj0jnT5TylJ7y5gjg3Q4XVzN4AHmDs8A4O+nRm29SawPIfcwWXVK9+JA6LKJAVWwXsxEsIaKLBmqxMjmAVVYoA4orsalKvllqBwOqNavX++OcciOJ7eeka4OU0qGyhL4WbrY2m4f0RFZMlSdgvTIL61BuQzPoHyJdad0RlRKdLGSGSpq7nRx6wFVp8ZZkRJfCKjGjh3rjnF0aNKpIqUUZFpqvSxFgYYGkyxXXXiS5X2MCtYhv7SGWTs3swqovDcMcoL1lB9rqMjMMuXXrYUpP0uZSbEMA6qOe/STkQbJdjNKWWpfY5OhAlhHZZnyY9bOMwRIp/wYUimRVUDlZz4csbEnWTJUCQrLUDGgkgGrKT+FNMi0tHcI0mkQqDOfWVZ28IyMOOXXuPcUM1TuJa2bUsqm4tSkrsGES40dr6OC9dBpWENF5nYIBeXmbWd6RAc3uz2SARW1pb5BeRkqyzgDdBqE+ltWXcjvD9yTmqb8GjNUbJvgVtKslG2XepI/S+NGfz81IgL9xAyVUsoeyD2OFlYAAOLC/MVjixSn/KhNddK2CQppBmmpofLXasSMjBz/wD3JIGaozAFVGYvS3Uo6y6eUPTCpyWnJSi6VSsUaKgIA5DYGVL1iQ1q83XK8KakyeGxM9nI6oKqrq0NlZaUrxtJhSbebUUqndMvUpN5PLQYQxZUdO6CyBMZxYf4AgJIO/nq4m3RlXz2n/BRH7DUUGQQA4io/pbSOIfc4UmAOqHrHtBxQRQaZjzdy/Hx1KKBaunQp/vSnP+Gzzz4DAMyZMwchISEICwvDddddh+LiYrcM0pcZTYJV/Ydi2iZYpvz8NIiypGAr5XfG4EmWKb+4xs08q+qMqOrghfruJI2h6pnVUJwzxVUAmpbGW2oxlVJHSu4hZqhaCag6Sab85NYuxe6Aat68ecjIyMDhw4fx+OOP49FHH8WyZcvwyiuvYMGCBTh8+DCef/55d47VJ9nuiddgEhRxhiZO+flxys/CElBFBukQ4Gc+OBR18CDTnaQfptKVsqQMlpVclqXxgTpzF59qBXz+kXsIgoCcc+YdV3q3MuVnqaEyNJhQLbPg2+4+VMuWLcPHH3+Me+65Bzt37kRqaiq++OIL3HHHHQCAAQMG4JFHHnHbQH2VbUAFmNsP+DcekOXKMjVpDqjMKdiOHjxYpvx0WjWiQnTIK6lBUaUB3ToFeXlkvskqQ8WidMWx3V4kSG/+zKtmVrfDOllUhfLaBug06hZX+AHmTKZeq4ahwYTiyjoE6R1up+k2dmeozpw5g9GjRwMAUlJSoNVqMWDAAPH2QYMG4fz5864foY9rkBwILClvJSy3rxEDKrWs+4J4inTqVqdRo3NjkGnps0OuJ+1D1dKJCcmXIAiSGipzQBXQmKGqqpP/5x+5x28nSgAAg+LDWk0qqFQqcSX1xcpaj43NHnYHVPX19dDrm5o46nQ6+Pk1LWnUarU+s4+fJ1kOBGoVxF20ldAQ0jItGeCnEbulF5TJ64/bk6TNCHVatfiaMKByH+tVfsxQKUlxVR2q64xQqYD4CHPNYRBrqDq8DzedAABcfUWnNu8XHSrPz1eHcmU5OTkoKCgAYD7DOHz4sLjCr6ioyPWj6wAs00R+GjVC/LU4X6aMDJW0hsrygZjf2FemI5IuJvD30yA21LzSL7+04waZ7mbdh4oZKiWx1E91CfUX2yUENAZUVQyoOqTy2nrkXzIfQ8b3iW7zvtGNJ6wXlBxQTZgwwaoQ9OabbwZgTsEJggCVSuXa0bnI7bffjg0bNmDChAn48ssvvT0cK5aeK3qtGiH+yshQCYIgBhDmtglNncHLaurFTFtHYnk9dFo1NGoVEhvrps6UVHlzWD5NYA2VYuXZ1E8BQFDjlB8zVB3T4g3HUWc0oWd0MK5KDG/zvtEh5hPWC+UKDahOnjzpznG41RNPPIEZM2bgk08+8fZQmqmVFHeH+JvfjnKZZ6ikjff8/TQI1GkRGaRDSVUd8i/VdMyAqq5pChQAujXWhVjOxMn1TFzlp1jiCr/IpgUbgWKGSt6ff+R6xy5U4J8bjgMAbh4U125ypilDJa8ZALsDqm7durlzHG41btw4bNiwwdvDaJFl6kzvJ81QyfsDRbo1hCWAiI8IQElVHc5eqka/uFBvDc1rpDVlAJAUZQ6ozhRXyzp7q2TWGSoGVEpyujFzK81QBTau1pLbUnhyr1+PF+HeD7eJl++7OrHdn+ks0yk/u4rS9+/fb/eXozZu3IjJkycjLs4cla5atarZfbKyspCUlAR/f3+kpqZi+/btDj+PXFk2AvXXNmWo5D7lV11vDvi0ahX8Gjc0tdRRWVbudDSWKT9LHUh8RCBUKqDC0NChVz+6k/UqP075KcmJi+aAKknSUiSw8WSkrsHErYQ6iA83nrAKpj6dMVxcwdcWRRelJycn210n5ehKv6qqKgwePBgzZszAlClTmt2+YsUKZGZmYvHixUhNTcWiRYswceJE5ObmIjo6WhxfQ0PzrM6PP/6IuLg4h8ZjMBhgMDS9SeXl5Q79vKMMkuJuy0aQct8DztL9W9r/o0d0CIACHC3smNsQWab8LEt9/f00iAsLQH5pDY5dqBR7dZHrSGf5uP+bcphMAo5dMH9OSHsNBeqblslX1xsRquFWs75s95lLmLf6d/HyT5ljW+09ZUusoVJiQCWtn9qzZw+eeeYZPPvssxgxYgQAYOvWrXj77bfxxhtvODyASZMmYdKkSa3evnDhQjz00EOYPn06AGDx4sX4/vvvsWTJEsyePRsAsHfvXoeftzXz58/Hyy+/7LLHa48lQ6XXqhHVWNxdJMM9iqQqDeYxB0sCKsu+S5ZtAzoaS4bKUgcCAH27hCK/tAa/ny9HajvLgMlx0pwUm0Eqx5mSalQaGqDTqnFF56YMlU6jhlatQoNJQLXBKJ5gkrydKqpCfEQAtA4EwIYGI2Z9tlu8/HF6it3BFNBUQ1VcaYDRJECjlkdJhV0BlbR+aurUqXjnnXdw4403itcNGjQICQkJeOGFF3Dbbbe5bHB1dXXYtWsX5syZI16nVquRlpaGrVu3uux5pObMmYPMzEzxcnl5ORISEtzyXIB1+wHLvHCRzKJuW00ZqqbgoXes+Z/haGEFTCYBapn8gXuKbVE6APSPC8VPvxdi/9kybw3Lp0mL0lnIrBz7883/D31jQ8SSAcC8WjxAp0FFbQPfT4VYfeA8HvtsNx4c0Q2v3Dqg/R9o9JeVB3GusW/h/x4diaHdIhx63k7BeqhV5t0SiioNiGlsU+NtDudUDxw4gO7duze7vnv37sjJyXHJoCyKiopgNBoRExNjdX1MTIzYD8seaWlpmDp1KlavXo34+Pg2gzG9Xo/Q0FCrL3eqlXQcj1LIFi6WgMqy9xYAdOsUBJ1Gjao6Y4fsR1VTbz3lB0D8kNh5+pJXxuTrpC1cqgwsZFaK3Y3/D0MSmx9E2TpBWV785hAA4NOtpx36uf/tPgsAGNMzyuFgCgA0apWYgCgsl89KP4cDqr59+2L+/Pmoq2ualqqrq8P8+fPRt29flw7OVX766SdcvHgR1dXVOHv2rDhV2ZasrCz069cPw4YNc+vYmvpQaZQTUDWePUqn/Pw0Ten7wwUdb9pPzFBJpvyGJIZDrTJPccjpn95XSFf5MaOhHHvOWAKq8Ga3ia0TOIUre5WGBqui8HI7F1P9dqJY/P75m/pd9vPHhpkXQp2X0Q4dDgdUixcvxtq1axEfH4+0tDSkpaUhPj4ea9euxeLFi106uKioKGg0GhQWFlpdX1hYiNjYWJc+l62MjAzk5ORgx44dbn2eWkmDTEsN1aXqelkvA7fUUEmn/ABgQNcwAMDevI6XkRFX+fk1/UuF+PuhT6w5w7njVIlXxuXLpJsj8wCsDMWVBnHK76oWMlSWwvTqemao5O6X3ItWl8/Y2XPvix15AAA/jQq9Y0Mu+/njwszTfOdkNCPicEA1fPhwnDhxAq+99hoGDRqEQYMGYd68eThx4gSGDx/u0sHpdDoMHToU2dnZ4nUmkwnZ2dl2ZZmUQOxDpdUgIlAnFtfJeal9S6v8ACDFMsV1quMFVLZ9qCxSr4gEAGw6wq2ZXE3aNqGaU36K8M2+cxAEoE9siNhqRSrQr7EXFd9P2cv4z26ry/asTi+rrsf3B84DAP77yEinnt/y95NXIp+AyqGtZyyCgoLw8MMPu2QAlZWVOHbsmHj55MmT2Lt3LyIjI5GYmIjMzEykp6cjJSUFw4cPx6JFi1BVVSWu+nOXrKwsZGVluX3DZ7EPlZ8aarUKnYJ0uFBhQGF5rWwK7WyJAZXOJqBKMgcPe/NKcaG8FqEBfq3uGO5rxLYJOuvfd0KfGCzdcgrZhy90yGJ9dzLZTPmxgaq8rcspxMvfmuts7xme2OJ7JWaoOIUra8WSshRLcXi5HQHV1/vyYWgwoU9sCAbHhzk1hsTG3SjktL2XXRmqb775BvX19vdGWr16NWpq7Isad+7ciSFDhmDIkCEAgMzMTAwZMgRz584FANx999146623MHfuXCQnJ2Pv3r1Ys2ZNs0J1V/PclF/TKj+gKeo+e0k+UbetKnHKzzqgurJzECIC/WBoMGH437IxcsHP3hieV9S0kqEa3j0SIXotiioN2He21Asj813SonSTwE115WxdTiEe+nQnAKBreADuSml55bSlhord0uXNEhgDwPje5n6Q9mSo5q8+DAD4w7AEp09+LPulyml7L7sCqttvvx2lpaV2P+gf/vAHnD9/3q77jhs3DoIgNPtatmyZeJ9Zs2bh9OnTMBgM2LZtG1JTU+0ei9zVSvpQAUBCY9SdJ+OO45YMVbBNDZVKpcLVkn5LJVV1MJk6Rgfr1gIqnVaNsb07AwC+3nvO4+PyZYLNn1axzBdzdFS19UYxmAKA9x8YarV4Q8qS9a5kTZysfbOv6bPMsndrewHVQ5/uFD8nbxvS1ekxJHWyZKiqZXOcsWvKTxAETJs2DXq9fd2ea2vlU3UvdwabDFVCRGNAdUm+AVVlXcs1VAAwskcUfjjY1NKitKYekUE6j43NWyxTfoEtHCjuSknAd/vP47878/DUdb065ObR7mCyiaguVhjQTbKVCcnDS41L64H2u2EHN26/xUUG8nX8YtNuGD9ljsW/fzO3TGhpld+2E8W4+4Pfml0fHuj8MaFreAC0ahUMDSYUVtSiS1jzmjxPsyugSk9Pd+hB77vvPrf3b3I3T9VQ1Yp7+VkyVPIrtLPVWlE6AIy60roj+MUKQ8cIqFroQ2UxpmcUesUE40hhJVbsOIOHr7nS08PzSbYnpXJvN9IRNRhN+LxxVdekAbHtdsMO0Vv2M2VAJRc1dUbotGpxwdSPh8yr7sf0jEKP6GCEtpKh2nKsCPd9tA22Drx0vUvGpdWo0TUiAKeLq3G6uFo5AdXSpUvdPQ7ZycjIQEZGBsrLyxEW5lzxXFsMYtuExgxV45TfqWL5FNrZaq0oHQC6R1lnCM6V1ji1NFYpWupDZaFSqfDH0Vfguf/tx7Itp5A+Mgl6bcco1ncnwSZDVVjOgEpu3vwxV/z+ramD272/JUPFKT95GPrqOhQ3rjhf++Q16B0bgrWHzDMQ1/c3ty4KbXzPymua3jNBEFoMprbOuRYhLtxSqFunoMaAqsqq3MRbuPuklzUVpZvfCsueeGdKqmWb9q5qpQ8VYA4epEHV9g7Sf6m1tgkWtyTHITpEj3NltVi65ZQHR+a7bGuo5HwS0pH8erwISbO/R9Ls7/H+LycAmNsktJTRthWsNx9smaHyvo1HLorBFABMXLQRu05fwt68UmjUKlzfz7wwrKUaqgeXbBe//79rrsCpBTfh1IKbXJ5F6taYgJBLYToDKi+zdHi2ZHs6BesRHaKHIMi343hLndKlhiSEi99/s/ccjDIpGHSn1orSLfz9NHjuhj4AgIXrjuAA9/dzmgDrv6tjFypbuSd5SoPRhHs/bJ6Z+OIR+/oGNmWo7F9VTu4hDYos7njvVwDAxP4xYlsfy5SfpYYq5bWfsOloU9+9OTe6bweVbo2F6SeL5HEyxYCqFZ7aeqa6hRYE/eLM9We/ny9363NfrrZqqABg1rU9xO/zS2uwLqewxfv5ErGGqpXVSwAwZUhXpPWNRl2DCY/8exe3o3GSJU631OgdZ0DldZ9tO9Psum9mjUKondM8lhoqTvl51z2SQvJZ43s0u13a5V6aoVqy+aRVLeOJv93oxlFC3O6MAZXMeaoPlSXbI10d1reLOaDKkWlAVWloO0N1Redg5LwyEY+NMxdfv7HmsKy30nEFsYaqjUamarUKb9+VjKROgcgvrcGUf/7KrIoTLKv8ejYWOp8rq8UlGe8w4Gv25pWKU3ul1XUwmgRxs9w7rooXp3kGxYfb/ZghlgwVp/y8YvEvx5E0+3tsley398zE3ljz5BjxckyoHjNHdxcvW4LlExer8Mp3Tf2pfnhijNsbGXePMv/vnyqukkXrBKcCKrZHcJ6lgZ0022PpILtThvVH9UaTWPfVWkAFAIE6LR4ddyWignU4UVSFjzad9NQQvcJSV9bWawKYz+b+NTMV3aOCkF9agzsX/4pdpzveVj2uYKmhigjUoVeM+YNVuvEquY/JJOC2rC3i5eRX1uHVxoNpgJ8Gr97W/7Iel0Xp7mUyCa2e3N6waCMW/HDY6rov/s88VdsnNhSnFtyETc+Nx29zJlg15QwLbJ59nDKkq5gYcKf4iAD4aVSorTdZtXPwFocDKpPJhFdffRVdu3ZFcHAwTpwwFx2+8MIL+Pjjj10+QF9nmT6TZqiuvqITVCrgSGElLlTIK2iVFh6GttNPKcTfT6wbevvHXGw6erHN+yuV0SSIU34t9aGylRAZiC8fGYHBCeEora7HfR/9hv/tOtts1Rq1zfJ6qVTAmJ7m5qmr9uZ7c0gdxhc785pdt+zXUwCAYd0jEdjCCmB7BLNtgktkrtiL9CXbrT5TvtiRhyv+sho9//oDMr/Ya3XbwnVHmtXsfjNrFIZ3j7S6LiEysFmH804ttMVZcMcgV/wa7fLTqMXATZEB1WuvvYZly5bhjTfegE7X9EIOGDAAH330kUsH5+sajCYYGsxnC9IWBOGBOvRvrKP69Zi8zrgt+zWF6LViX5K2TB0aj1uT49BgEvB//9oly6ybsyzBFAC7DySdgvVY/lAqxvfujNp6E57+7z7clrUFPxw43yGK+F3B8jKpVSrcPcy8lcm6nEJsPS6v/xmlqzQ0iFN7j/57F04VVWH2ygMAgGeu74UJfaKt7v/uvUMu+7lCGlf5GRpMqGvw7TIBdzCaBCTN/h4r9+TjlyMXMeHtXwAAX+05i+f+t1+838rd+eg+ZzVMJgEHzpbhneyj4m3ZT491aKrWtvfe+mfGQaf1XDWRpZnv7+e9v4jL4dOITz/9FB988AEmTJiARx55RLx+8ODBOHz4cBs/SbaqpQdimxYE1/TsjIP55fjh4HmXtOl3FUuGqr3slIVKpcIbdw5CcWUdNh8rwgMfb8eSacMw4krv9wxxFctGripVU/sLewTqtPjgwRR8sPEE3v35GPadLcOjn+1GUqdA/HHMFbhzaLzPbS5dXdeApVtOYWL/GPSIdq4/mTRD1SsmBLclx2HV3nN49LNd+OCBlGZn19SyptfRfIJUVlOPIa/82KxxKgD8cLDAaieEmaOvQIBOgy93ncWPhwrwtykD7S5Ab4m0FUuloQGRWt9vCuyI7N8LMfOTnVbXdQ0PwOY/j4dKpcLSLdalFSeKqpA0+/tWH++Kv6y2uvzLs+Mua7eBl2/pjxe/OYTM63o160XobpY+WH/PPoqnruvl0ee25XAYmZ+fjx49mlf9m0wmhzZQljtPrPKzrPDTqlXQaazfiluS4wAA6w9ftGvTSU9xNKACAL1Wgw8fTMGYnlGoqTdi+rLt2CxZVqt04kpNndbhDT/9NGpkjO+BTX8ej8ev7YGwAD+cKq7G86sOYtSCnzFn5QGsPnBeDNqU7u/ZR/Hm2lykLdzo9GNZDviW1/zV2wZgcHwYSqvrcdf7WzFbckauVK98m4MZy3a4pOD2YoUB+aVNOzAIgoAef1mN7nPMX7+fL0dBWS0Gv9xyMGVr6fRhYiPbO4fG44MHUxAVbN/2ZK3RatTiwo6OUJheW29Er7/+gKGvrmv3f9xoEpoFU4B5JXX3OatxobwWr33/u3h9Syd3L9/SH0fnTWrx8XvFBF/21k3pI5NwasFNeHxCz8v6eWdI+zV6e/GTwwFVv379sGnTpmbXf/nllxgy5PJTvXLjiVV+lZL6KdsDcZ/YUPSOCUGd0WS1EaW3lTd+yIUFOJbcDNCZgyrLFNeMT3bgk19Pef0fwBVaWqnpqKhgPTKv741fZ1+LFyf3Q9fwABRX1WH59jN47LPdGPLKOjy4ZDs+3HgCB86WyWJFy+XYc6bUZY9leQUsM88h/n5Y/vDVuLZxCurzHXl4c+1hHL9YibKaerfXqJXV1MPQ0P5WVRW19c3+7o0modnPdp/zPZZsOYmfD1/AFX9ZLY7/7R9zxSm4lqbQ1+UUircnzf4evx4zN9ocNu8njFrwM5Jmf49D58rQfc5qNEj+jib9fROunp/d4phfvW0ATi24CSsfG4m0vjF4dmJvjO8d3eJ9nWUpTK/oAL2o+rywBnVGE4qr6vCfxpYTuQUVGPrqOsxZecDqb/aFrw+2+VjD/9b03q1+fAyynx5ndXvfLqFIH5kEP40a3z8+2uq2F27uhx+fGuvkb+Mddw5NEL/3dvLB4Sm/uXPnIj09Hfn5+TCZTFi5ciVyc3Px6aef4rvvvnPHGH1WdRubDAPA3cMS8Mp3OVi25STuG57o9iWo9rD8wV7OBr/+fhosfmAonvx8L344WIAXvzmET349hWcm9sakAbEOZ3fkoqWVmpcrSK/F9FHd8cDV3bDpaBE2Hr2I7N8v4ExJNTYeuYiNR6wL++dPGYiu4QGIC/dHl7AAl4zBnfQurK2wHGzUkr+bQJ0WHz6YghHzs3GhwoCs9ceRtf44AKBziB63Do7DtX2jUVnbgOo6I67sHIwBXUOhUqlQU2fEz4cv4HBBOfz9NLhzaDzWH76A2SsPIESvxTd/Gi1OZ/xr6yks+ukorr6yE7RqFb7ea33S88qt/c3NXL80Z8lev2MgesaEYNmWU+IJ0pJpKbi2TwxW7DiDP//vgPizJ+ffiIuVhmad4P/922l8sOmE1T6fdy7eKn7fMzoYR1tow3FvC1uA3PTO5jZf27/dPhD3piai3mhCg1EQM1FXJUbgo/SUNn/WWSF6LS5WGHw+Q7X/bKnV5de+/x1/HHMFXv0uRzyZWr79DE4tuAmCIIgBFwDsfuE6BOo0WHuoAE98vrfZY1t6Gf46+1rc8u5m3HFVPJ6Z2Fu8vX9cGE4tuMktv5enjerRVD6yYkceMlrom+UpDn/63nrrrfj222/xyiuvICgoCHPnzsVVV12Fb7/9Ftddd507xuizLEvtW8tsTE2Jx8J1R3D8YhU2HSvC2F6dPTm8FlmK0i+3TkKv1SDr3qvwr99O4+/ZR3GiqAqPfbYbw5Ii8NwNfTAsSXl1L5aUc1s9qByl1agxvk80xveJxtyb++HYhUr8cuQith4vxm8nilHVGMTNWXnA6ue6hgegd2wIEiIC4O+nQWiAH/rHhWJotwiE+Puh3mhCWU09wgP8oNV4vg1dS/s/Xi5LHyrbMFyjVmHbXyZg5e58vPVjLs6XmVfKXqww4KPNJ/HR5uYtPPrHheJkUZUYHAPAm2ub9qGrMDRg/FsboFJZb3nz/f7zLY5t7teHrC5LAyaLGct2YuSVnfCrTRF9+tId+PVY8ynxF2we01ZLwZTUxP4xCPDTYJVN8Hfibzfi0LlyTH7XHGTdMzwB96YmAjBPSXu6jE/MUPl4QHXLu1uaXVdRW4/NNu/9O9lHrT4Xv3pspNjM9tbkrrhpYBf0+OsP4u3SKb248ADsfN63j8vSE3Fv9/W7rE+3MWPGYN26da4eS4fTXoYqxN8PU1PisXTLKSzZfFJWAdXlZKgs1GoV0kcmYcpVXfHhppP4cOMJ7Dh1CVMXb8XoHlG4/+pEjO7Zud2eTnJRU9f63oauoFKp0DMmBD1jQvDHMVegrsGERT8dweJfjmNwQjiqDUacK61BhaEB+aU1VnUyUgF+GnFFop9GheSEcAztFgl/PzVUUEGAgE7BeoQH+EGlMge/3ToFIqlTEHRaNQRBgCDAqUyp9G/dZBKceizBpoZKSqVS4Y6h8bhjaDwEQUB5bQO2Hi/Cih15WJ/bvH3HoXPmJrpdwwOQnBjeaqDU1qzhmJ5RGNurM97JPipOjVsE67XiFP8TE3riy11nkV9a0yyYAmCVhfzfoyPRPy4UfV5YY3WfPS9chwaTgGHzfmpxLHteuA4RQTpsPV6M3Wcu4e5hCWJ9072p3XDX+1tx06AuyLr3KgDAwHj5ZCwsJ2tynfIzmgRU1jaI/Zdq643i+9M1PAD/uHcIpvzzV/H+2U+PxZWdg1Fd14B+c9diaLcI/Oeh1BYfe+ay5jVSC9cdsVpRnSzZ2gswn3wdmzcJm44W4arECPh54UTJ224cGIvVBwrEAnVvUcYRy0dZsgxt1d5MG5mEZb+ewi9HLiK3oAK9Y51bGeUsZ6b8bIX4+yHzul64Z3gC/vHzMXyxIw+bjxVh87EiBOo0uH1IVzw67krERwQ6/Vzu1PQ+eubfSadV47kb+og9vizKa+tx8GwZThVXI+9SNeobzLUZO0+XIK+kxqq9Q71RwI5Tl7DjVPtNRTVqFToF6VBTZ0SFoQEhei36dAlBdIg/TIKA0up6mAQBMaH+6Byix9lL1SipqkNCRCDG9u6M0T2iEKTXwtBgQoCu6cN++Y4zGBAXhkCdBj2igx2e8m0qSm/7fiqVCmEBfrhhQBfcMKCL1W2F5bV46ZtDyC2swPRR3XHv8ERo1Cpk3Wu+zd9Pg7AAP5TX1uNv3/+OYxcqcbqkGv+aORx9YkObrZADgD+OuQJ5JdUI1GkQEagTg0ajSYBaZb7vrGt7YO7Xh7B8u3kaZ2yvzlg2fRj6v7hWzJKl9Y3B0G7mLT42/3k8Xvz6EFQq4P0HUsQDrDQIulRVh7AAP6sgdcSVnZqtqB3ePVI2wVNLQmScoRIEAVdKVsYdmzcJ/V9cK1627IAgNeHtX5B171XI+M9uAMCu05fQ+/mmAPnovEno2Zhhsmwmr1IBXz02Smyeamml8vIt/Vv8P7FktDuqUT2isPpAAc5eavlk0lPsOgJERETY/WFXUuIbfYaysrKQlZUFo7H9ItPLVd3OFi6AucfGDf1j8cPBAsz9+iA+f/hqr9YaWTbAdGSVX3u6hAXgb7cPxKNjr8SyX08h+/dCnCquxmfbzuCLnXm4vn8s4iMCcOvgrujbJUR2tVZNmUbvtjgI9ffDyB5RGNlCCUF5bT0uVdUhSK9FeIAf8ktrsOloEY5dqESd0QQVzEXeFysMKKuph1plzrwdKaxETb0RFyqa9ueqMDTYFYjtOHUJK/e03mjzr181Fdl26xSImaO7IzrEvOFqp2AdesWEtBm4WzZHdqa0MCbUH+/dP7TV2yxC/f1abFbY2t9iQmTzkwBplsFPo8b8KQPx0i398P3+87ihsYZw/4vX4/lVB/H7+XL8876rxPvHRwTi42ltrziOaKHBohJZMlTlXi4wziupxpg31mP6qCS8ONnc+X2+TSdx6VRbWyzBVEv8NGq8fsdAq2nhOZP6NMtEAcCNA7s0u46AuLAAABCn973FroBq0aJF4vfFxcV47bXXMHHiRIwYYW5Lv3XrVqxduxYvvPCCWwbpDRkZGcjIyEB5eTnCwsLc8hz2Zjb+elNfbMi9iG0nS/C/3fm4c2i8W8ZjD1dmqGwlRAbihZv74fmb+mLriWJkrT+GLceKxemX9385gaROgZiakoBbk+Nkk7lqqoWTb8I31N/Pqu6tW6cgu5ZIm0wCLlYacLHCAL1WjYggHQrKanH0QgXKqutRbxQQGaRDg8mEoso6lNfUo3OIHp1D9Mg5X45fci8268AMmLsrB+m1MJoEFFUacLq4ulndkU6jxvRRSXhk7JUtBguCpLGnUum1Gky5qun/WatRe6zLtFx5I0O17UQx7m7cENiSvRvzxnoAwNItp3Dn0Hj0jwvDBxtPtPoYT6b1xKKfmhpk/vz0WFzb2FizNdNHJQEwZyOBpoDq4WvM+6Bu/vN4jH7dPI5pI5PQOcS5thS+KjbMfPJzvkwBGar09HTx+zvuuAOvvPIKZs2aJV73+OOP491338VPP/2Ep556yvWj9FGWDFV7mY34iEA8kdYTC344jJe/PYR+XULFVRye5s6AykKlUmHklVEYeWUUDuaX4a+rDmJfXikA4FRxNd5cm4s31+aia3gARveIwpheURjdIwrhgd45Q692QdsEuVKrVYgJ9bfK1kQF6zGga/snGbcmd8WcSX1RVl0PAQKOX6zEHe+ZV6VtfG68WE9VXdeAf/92Gqv2nEPO+XJo1Spo1CoYGkx4f+MJfLjpBFKSIjF7Uh+rXe4trSMUHE9RCyzZb0s23NXKa+txtLBSnE7NK6kWgynAvIJz39kyq595+NNdeP+BpkxmoE5jtYBh5JWd8GRaLwzvHol6oyDWux5+9Qar+rej8ybhXGkNxr65AT2jgzH35n4AzDsnHHltEj7bdhp3SE6Y4yMCseeF63CurAb949xzYu8LLBmqS9X1qK03eq0hssOn1GvXrsXrr7/e7PobbrgBs2fPdsmgOgpHam9mju6On3+/gO2nSnDvR7/h0xnDHdrF3VXKa8zBQ6iDfagu14CuYfjq0ZHYcrwIfWJDsSH3Ar7YmYfdZ0qRX1qDFTvzsGJnHrRqFcb0jMJViREYkhiBlKQIj/1TVXu4hkppLMW7yQkRSOsbg26dAq2K0wN1Wjx8zZXiWTlgrlX5Zt85/HP9ceQWVmD7yRLctXgr3r13iFgHZakPl9sUMDnHUlhsW9jvChuPXMSDS7aLl08tuAkvf2udGW1pNWV+aQ1u/kdTq4mDL01EUZUBw+eZez/956GrAQAjr4yy+jl/Pw1OLbgJtfVG6LVqqFQqdOsU1GINm06rxvRR3ZtdHxGk85npXHcJDdCKQW5+aQ2u7BzslXE4fATo1KkTvv76azz99NNW13/99dfo1Ml3thPxBLH2xo7Mhp9GjQ/TU/Dgku3Yl1eK+z7chk9nDscQyRm7J4g1VE5sL+EotVolbn47NSUBU1MSUGVowI5TJeZeTUcu4uiFSqzPvSiu4AoL8MOdQ+NxX2oiukcFufWg68j72JFp1Cq7exipVCrcmtwVtyZ3RV5JNeb/8DtWHyjAM//dj+SECMSG+YttE2TQno1cKNiyys/JgKq23ohnv9yP2noj3rvvKmg1aqtgCgAuVNTip98vtPoYlu2MpG4a2AVqtQrRIf52F/f72hZScqNSqZDUKQg558tx8mKVcgKql19+GX/84x+xYcMGpKaal35u27YNa9aswYcffujyAfoyyzLqADszG2EBfvjsj6mYsWwHtp8swYNLtuOzP6Z6LFMlCIL4IefKovTLEaTXYlzvaIxr7NacW1CBTUcvYv/ZMvx2ohgXKgz4ePNJfLz5JGJC9YgI1CExMhCv3zHI5Wd7Yg2VQto8KE1CZCD+/ochOFe6FXvzSrFwXS7euHNw0yq/Zp2oSMmCG0sgpFuKXA7pVFuPv/6A3NduaHYfS4YJAH7KHIu0hdY1T6/fOahZQDV3cj+nxkXuUVhuLkj/ak8+0vrFeGUMDjesmDZtGrZs2YLQ0FCsXLkSK1euRGhoKDZv3oxp06a5YYi+y/KBEeJA74xgvRZLpw3DsKQIVNQ24P6PtuFgfln7P+gC1XVGcfmuI2P2hN6x5h5N79wzBFvnTMDS6cMwukcUdBo1CssNOFxQgR9zCjFywc/454ZjLt2igBkq9/PTqPFCY73J/3bnI6+kWqxKZ4bKt1img50JqFraF0/aqqAlPaKD8dGDTRnUvXOvg16rwcK7BlvdT1pPSPJhKdj//kDLPeQ84bKOiqmpqfjss89cPZYOp9KOtgktCdJrsXT6cKQv2Y5dpy/hng9+w0PXXIFpo5LcOhVnyU5p1SqXdgV3NY1ahfG9ozG+dzRq643Yc6YUH246gZ8PX0BNvRFvrMnFP7KP4bYhXZE+shv6xDpX4G/JUAUwoHKrod0ikNo9EttOlmDtoYJmmyOTb7B8HlY6EVC9/E1Om7cfeW0Sej3f1PLg3zPNsy1p/WKaTeNNuSoevWJCsGTzScy7feBlj4ncK2N8D/xp+R50DQ/w2hgczlCdOXOmzS9fkZWVhX79+mHYsLZ7vzjDslfV5XQED9ZrsWz6MAxPikSFoQEL1x3BxP+3EXvOtN8f6HJZ6qdC/LWKOYj5+2kw4spOWDJtGI7Nm4SFdw1G1/AA1NQbsXz7GUz6+ya8+l2O2O38clQ3Nsx05bYq1LKJ/WMBAD8fviD2oVLInyLZKdjJDNWoBT9jxc488fJAmxWpm54bD51WjTfuNLenmDm6O0b3tC4mtzWgaxgW3p3MkyYZG97dvD3P+bIa1Na7r39kWxw+AiQlJbV5MHVnI0xP8kQfKjFDdZnTZyH+flj+8NX4/sB5vLU2F2cal//Ou20ApqYktP8ADqpwQ1NPT9Jq1JhyVTxuH9IVm44W4bNtp7H2UCE+3nwSP/1eiAVTBjXrKm0PS/uLQC839uwIxveJxivf5WD7yRKx8FTJfaiouaDLzFD9fLgQM2y2btnwzDgkRQVh0EtrUV7bgClXdRWbrt6VkoC73PA5Sd4RHaJHiL8WFbUNOFNSjV4xnt9VxOEj+Z49e6wu19fXY8+ePVi4cCHmzZvnsoF1BJc75SelUatwy+A4jO/dGU+t2Ieffi/Es1/ux7Nf7sfH6SmY0Nd1xXmWlglyq59ylEqlwjW9OuOaXp2xPvcC/rLyAE4XV+OeD3/DhD7ReOPOQegUbH8DPUvbBGao3K97VBC6RwXhZFEVNh01r+hkOOVbLAFVvVGAocEIvbb9E5WF647gneyjVtclRAYgKcrcvHb/SxNdP1CSFZVKJZalLPjhMJa0s7OAOzg85Td48GCrr5SUFDz00EN466238M4777hjjD7LmSk/WyH+fvjggaF4Kq2XeN3MT3birbW5qDeanH58QDLlp1dmhqol43tH48enrsE9wxMBANmHL+CWd7fgQrn9WxhUyWTrmY5iVA9zFvFUcTUATvn5GuniDkt9Yntsg6lhSRHY9Ny1Lh0XKcfPh1tvheFOLtuWunfv3tixY4erHs7nmUyC2NgzyEXL7dVqFZ5I64lPZgwXr3t3/THM/GSnOF3njPJazzb19JQQfz/MnzJQXOGTX1qDez/aZvdKwGqxKN23Xhe56m2ziIBTfr5Fq1GLi17sqaPaecp6/9gTf7sR/31kpFvGRvJmWy/naQ4HVOXl5VZfZWVlOHz4MJ5//nn07NnTHWP0SVWSZb2unkIb26szTs6/EVn3XgV/PzU2HrmI+z/ahpKqOqcet0IsSvedDJVUWr8Y/PLsOMSG+uPYhUrM/fpguz9TbzShrjEDyLYJnnFlZ5s9CBlP+Rx766gEQcCdi7eKlzc9Nx5q9tHosG4f0tWrz+9wQBUeHo6IiAjxKzIyEv369cPWrVvx3nvvuWOMsmDZN8xVLB8UWrUKeq3LEoUilUqFmwZ1wYqHRyDUX4t9Z8twW9YW7Dpd0v4Pt0LcdsZHAyrAvGnwe/dfBY1aha/3nsM3+861eX/pfl7cesYzLPt2WbCxp++xNPdsK6AyNBjRfc5qq+ssBefUMQ2Kb8pQObNy+3I5fARYv3691WW1Wo3OnTujR48e0Gp994ByrrQG4eGuSydWiRsju7cFweCEcPzv0ZGY8ckOnCmpxh3vbUVUsA47/prm8PNWSNom+LIhiRHIGN8D72QfxfNfHcDwpEhxN3NblgaCfhoVdG4IjKk52/eCCQnf016Gqt5oatao88BL17t9XCRvfbs0lQPsO1uKflGePfl3+AigUqkwatQojB07FmPHjsWYMWPQp08fAMDGjRtdPkC5OFFU5dLHq3BhQXp7esaE4LtZY3DzIPOmskWVdVj009F2fqo5y5h9PaACgD9d2wOD48NQXtuAZ/67D4LQcoZS3HaG2SmP8ffTIDyw6YOSJVS+p71u6T8cLLC6/K+Zw322FIHsJ61HbuUj260cDqjGjx+PkpLm00ZlZWUYP368SwYlRy9903wHcmdYDsSeCk7CAv3wj3uGoH+cOYL/e/ZRrHawRX+5wvtQOcJPo8bCu5Ph76fG5mNFra4asWSoAlk/5VGRkv0YOeXne0LaCai+3980Fa/TqMXN04ks/vLVAY8/p8MBlSAILU4VFRcXIygoqIWf8A3SM2JXqDSYgxNXrfCzh0qlwvePj8HM0d0BAM/8dx8OF5Tb/fPixsgdIEMFAFd2Dsa0kebXauG6Iy1mqZoyVAyoPClE8n/DKT/f0zTl13IdzOnGlhkA8Mtz4zwxJFKYky6eVbKH3UfGKVOmADAflKdNmwa9vqnxodFoxP79+zFypO8sVc3KykJWVpbY+f1MSXWrweTl8OSUn605k/pg1+lL2JtXiln/2YPv/jQa/nbszVfe2EbAl4vSbT18zRX419ZTOHSuHBuOXMT43tFWt9fUN9XCkedY7S7AOT+fIwZUtS1nqA4XVAAAHhrTHV3CvLd3G8lba6Ua7mJ3hiosLAxhYWEQBAEhISHi5bCwMMTGxuLhhx/Gv//9b3eO1aMyMjKQk5Mj9taqrTchr6TGZY9f5eS2M87QatRYfP9QRAbpcOxCJd7+Mdeun2uqoeo4AVVkkA53DTNvT/HlzrPNbres8rMnICXXkZ6IMJzyPZZVftL2MhaXJO1fbE9wiCwbXQNNvRM9xe6j+dKlSwGY9/J75plnfHp6rzWHzpUhsZNrluWK2854qZg5Nswfb9wxCH/8dCc+2nwSE/rG4Oor2t7HrqmGqmNlY6YOTcDSLaewLqcQFbX1VgGlZWkup/w8K1jSrZ+NPX1PW6v8/re76cRmZI+2NzWmjke60XVRpf07XriCwzVUL774YocMpoCmNLMrVHgxQ2WR1i8Gd6ckQBCAF78+BGMbvbYajCYxG9ORMlQA0C8uFFd0DkKd0YQNuRetbrPsau5vx35j5DrSxRyMp3xPcBtF6a99/7unh0MKY2n+e7HcuWbWjrLraH7VVVchOzsbERERGDJkSJt1RLt373bZ4OTm6AXXBVRVLtgY2RX+cmNf/HDwPHILK/DNvnzcPiS+xftV1Lqvs7sSpPWNwQcXT2DLsSJMHhwnXl9bb+6SHsAMlUdxys+3tRVQWfTrEtrqbdSxnb1kLs9Zn+vZPf3sOjLeeuutYhH6bbfd5s7xyNqRwkqXPZYrN0Z2RligH/5v7JV4c20ustYfx23JXVsMmC2pd71WDT9Nx2tgOTwpEh9sPIEdNvuG1VgyVH4d7zXxJmkAywyV77FM+VXY1MBIi4zfu/8qj46JlMPQYD7R/WzbGY8+r11H8xdffLHF7zsaSwH3P34+hmkjk/DSLf0v+7EqZTDlZ/HgiG745/pjOHahEluPF7dYl2CZ2uqotUIpSREAgOMXq1BcaUCnYPMJhjjlx6J0j5Ju1+TOnQbIO8QMlU1R+sVKg/h9TGjLuxcQTR4ch2/3nUOvmGDkefB5L/u0uq6uDmfPnsWZM2esvnxVUpS5GP0fPx8DACz79RQW/XREPKA6qtIgn+X2If5+uLVxU8mv9uS3eB9LJiaggwYO4YE69IoJBgDsOn1JvL6jvy7eIs2SMp7yPU2d0q0/X1/5Nkf8nicx1Jrxvc2NXi0nvp7icEB15MgRjBkzBgEBAejWrRu6d++O7t27IykpCd27d3fHGGUhtXtks+sW/XQUw+f9hLLG/kyOsARUITIIqADg1sa6oDWHCmBoaB4kiu0BOmiGCgBSksx/A9KAylJDxQ93z7IKqFhF5XOCW1nl991+x3Z3oI7JsnDKdsrY3Rw+mk+fPh1arRbfffcdunTp0mHS7TcN7IL/7m++5U55bQMGv/wjjs6b5FBtkeXMSw5TfgAwLCkSsaH+KCivxeajRZjQN8bq9poOPuUHAAO7mjfHzjnf1F2+lhkqr5BuRM1O6b4nuJ3GnkRtiWjc2aSowrNtExw+mu/duxe7du0SN0TuKPo3Hkxb0/OvPwAA5t7cDzNGt5+ps0TOQTLZVFetViGtXzT+/dsZrM+90Cygqq1j4NAnNgSAdfuMmjoWpXuDn6Ypiuog53QdSlBjY8+aeiOMJgEam6h55WO+sysHuV5U41SfpXeipzh8FOjXrx+KiorcMRZZ02s1OPTyRBx8eSLG9IyCSgX8+NQ1mDPJOrB85bscfCfZuLM1lr385NSC4No+5q7Dvxy52Oy2GhZf48pocw3VxQqDOBVR28DXxRt0nPLzadLaUkth+tbjxeJ1V0YFe3xMpBxhAeYMVXWdyaPP63BA9frrr+O5557Dhg0bUFxcjPLycqsvXxak1yJYr8V79w/Flj9fi14xIfi/sVfigweGIi6sacXJc1/uR1l165Fxg9Ek1t54u22C1LCkSKhUQF5JDS7YpEpZfG3ew9CSSj5dbN5405KhYh8qz9JpWZTuy/RaNbSNWSlLL6q/Zx8Rbw9z8Wb15Fu8lahwOKBKS0vDb7/9hgkTJiA6OhoRERGIiIhAeHg4IiIi3DFG2QnWaxEX3rQh5/X9Y/HrnAk4Om8SekQHo7rOiJV7mu/7ZlFV11T0HaiXz4E4xN8PvWPM01q7T5da3cbAwSyxk7kD75nG3e5rG/udsFO6Z1mv8mNE5WtUKpVYX2oJqCz/c0Tt0XqpV6LDYdz69evdMQ63ycvLwwMPPIALFy5Aq9XihRdewNSpU93yXH4aNR4c0Q1zvz6El7/NQUq3SAyMb157ZQlONGqV1dSFHAxJjMDhggrsOXMJNwyIFa+vYQ0VAKBbZCD25ZXidEljQMVA0yusV/mRLwrSaVFaXS/Wm54rM2fNx/Rs3iePSA4cDqjGjh3rjnG4jVarxaJFi5CcnIyCggIMHToUN954o9v2I7w1uSvmfn0IAHD7P7fg2N9ubHaf6saagEA/jezOrq9KDMfy7Wew+8wlq+vFKb8OHjh0a9wc+7SYoWJRujdwys/3BbfSi+r6fjEt3Z3I6xwOqPbv39/i9SqVCv7+/khMTBS3qZGDLl26oEuXLgCA2NhYREVFoaSkxG0BlaUYDgAaTAIEQWgWNFXLOKsxtJt52nbf2TLUNZjEAxdrqMy6Wab8SqxrqFiU7lnSzK6aEZVPsvS8s22efPxilTeGQwoTF+aPsxc8O03s8Gl1cnIyhgwZ0uwrOTkZffr0QVhYGNLT01Fba1//h40bN2Ly5MmIi4uDSqXCqlWrmt0nKysLSUlJ8Pf3R2pqKrZv3+7osAEAu3btgtFoREJCwmX9vL1+eGKM+P2B/LJmt8u5p1P3qCBEBPqhrsHEfkst6NpYO3e+cfqBgaZ3aNk2wedZthcyNJhQ19C0Wmv6qCQvjYiUZM6NfT3+nA4HVF999RV69uyJDz74AHv37sXevXvxwQcfoHfv3vjPf/6Djz/+GD///DOef/55ux6vqqoKgwcPRlZWVou3r1ixApmZmXjxxRexe/duDB48GBMnTsSFC027SCcnJ2PAgAHNvs6da2pfUFJSggcffBAffPBBm+MxGAxOr1zs2yUUkxs7j7+34Xiz25syVPJZ4WehUqkwMD4cAHBYElCxKN2sc4g5+3qxwrynmIGd0r1C2peI8ZRvagqojNgoaeXCPfzIHt5omu3wM86bNw9///vfMXHiRPG6gQMHIj4+Hi+88AK2b9+OoKAgPP3003jrrbfafbxJkyZh0qRJrd6+cOFCPPTQQ5g+fToAYPHixfj++++xZMkSzJ49G4C52WhbDAYDbrvtNsyePRsjR7bdEG7+/Pl4+eWX2x13e2aN74Fv953DDwcLUFhea/Uh0FTgLc+6mx6dg7HxyEUcv1gpXsc+VGaWgKqitgHVdQ2oMzKg8gZpn0e51SGSa+gbV87WNZjgJ6mZ4/8a2UPjhc8Fh4/oBw4cQLdu3Zpd361bNxw4cACAOWN0/rzzey7V1dVh165dSEtLE69Tq9VIS0vD1q1b7XoMQRAwbdo0XHvttXjggQfavf+cOXNQVlYmfuXlXd5e1b1jQ3BVYjgAYO2hAqvbauobi9JlmKECgCujzXVC0loFS1ZNjtOUnhTqrxXPnPMv1YjX67XyDI59lbRuivGUb5JO+W1qzFAlNS4KIWqPN2orHT4K9OnTBwsWLEBdXZ14XX19PRYsWCBuR5Ofn4+YGOdXYhQVFcFoNDZ7rJiYGBQUFLTyU9a2bNmCFStWYNWqVUhOTkZycrIY+LVEr9cjNDTU6uty3TjQXAz/vc2GnnIuSgeAKxq7EEszVKyhMlOpVGKWKr+0KaByZB9Hcp71lB8jKl8knfL7aPNJAMAp9qIiO3ljj0+HUyRZWVm45ZZbEB8fj0GDBgEwZ62MRiO+++47AMCJEyfw2GOPuXakl2n06NEwmRxvP5+VlYWsrCwYjcb279yK6/vF4rXvf8eu05dQW28UU9U1Ms/2JDaeBZ4rrYHJJECtVjVN+cl0zJ4UEajD2Us1Yh0VYL23HLkfM1S+T99YEmGpUyRyhDdKARwOqEaOHImTJ0/is88+w5Ej5q0Apk6dinvvvRchIeYu2/ZMrdkjKioKGo0GhYWFVtcXFhYiNja2lZ9yjYyMDGRkZKC8vBxhYW1vjNyahMgARAXrUVRpwMH8MqQkRQKQ//RZTIgeGrUK9UYBFyoMiA3zZ2NPidAA879NUaU5S6vTqFnH42FqyemnN85Eyf0sNVQGyQq//xt7hbeGQwqjiAwVAISEhOCRRx5x9Via0el0GDp0KLKzs3HbbbcBAEwmE7KzszFr1iy3P7+zVCoVhnYLx9pDhdh1+pIYUDUttZdnDZVWo0aXMH+cvVSDs5eqERvmL+49yIDKvKcfABRXmjNUOtZPeZy04JRTfr7JMuVXLdmq66bGMgqi9qi9EFFd9hE9JycHZ86csaqlAoBbbrnFoceprKzEsWPHxMsnT57E3r17ERkZicTERGRmZiI9PR0pKSkYPnw4Fi1ahKqqKnHVn9z1jwvD2kOFyC2oEK+T+5QfYO63ZA6oapCSJOnuLuMxe4oloCpqDKg43ed5Vp+VfPl9kiWgqqht2mi+W6R7GjKT71FEhurEiRO4/fbbceDAAahUKgiCAKBpvtLRmqOdO3di/Pjx4uXMzEwAQHp6OpYtW4a7774bFy9exNy5c1FQUIDk5GSsWbPGJUXvbXFFDRVg7kkFAIfONfV0sgQnci1KB4AuYeY2DxcqrBtYcsly05RfcVXjlB8zVB6nZh8qn2f5v6ps3BwZAIJktJk8yZtOo0GnID9c3jr9y+PwkeCJJ55A9+7dceHCBQQGBuLQoUPYuHEjUlJSsGHDBocHMG7cOAiC0Oxr2bJl4n1mzZqF06dPw2AwYNu2bUhNTXX4eRyVkZGBnJwc7Nixw6nH6RltXjF3uqRKDD6rFVCP1CnYvJKtuLIOJpPQNOUn4yDQUywZKktROlf4eZ43esyQZ1lqqKQBlYYFc2SngfFh+OW5az36nA4fCbZu3YpXXnkFUVFRUKvVUKvVGD16NObPn4/HH3/cHWNUtLjwAKhVQG29STwAK2HKr1OwDoC58FpaFCrnINBTQhv3axQzVAyoPE66yk/w4jjIfSyr/KSrabn4g+TM4SOB0WgUV/NFRUWJ27t069YNubm5rh2dF2VlZaFfv34YNmyYU4+j06rRJcy8/9uZEnMPFbn3oQKAqKDGDFWVQZzuAzjlB0hX+bEo3VvUkpfckvkl32KpoTosqT8lkjOHjwQDBgzAvn37AACpqal44403sGXLFrzyyiu44grfWdLqqik/oGlD3XM2G+rKtVM60JShKq6sE8er06qZckfTlJ/lOM4pP8+T/h0ynvJNPFEhpXH4iP7888+jqsq8Jckrr7yCm2++GWPGjEGnTp2wYsUKlw/QF8SFmwu8zzV21lbGlJ+lhsqAGq7ws2KZ8rPgB7/nSaf8TAyofBJPVEhpHA6opJsi9+jRA4cPH0ZJSQkiIiI4v92KuMYM1fnGgKq6cS8/OU+fdQpqrKGqqlNEEb0n2QaWbJvgefyo8X1atXVANapHJy+NhMg+LplzioyMdMXD+Kw42yk/BWSoIhoDqroGE0qrzX1gGFCZ2QbCPJP2PDbz9H22Jypc/EFyZ3dANWPGDLvut2TJkssejJy4qg8VAEQ3bqZru8pPzgFKoJ8GKpW5PsUybjln1DzJ9nXQc8rP41jK5/tsT1TUTEuSzNkdUC1btgzdunXDkCFDOsSqGlfs5WdhKfAuaVxmX2c0tyGQc+2NWq1CsE6LCkMDLjauZpPzqkRPsg2gmKHyPJYX+D6tTYYq+/AFL42EyD52B1SPPvooli9fjpMnT2L69Om4//77OdVnp05BTQXeJpOAeqM5IJVzQAUAwf6NAVVjhkrOU5SeZJuhkvv76IsYTvk+nqiQ0tj9F5uVlYXz58/jueeew7fffouEhATcddddWLt2bYfIWDkjsjFDVVVnREVtU9dfuR+Ig/XmePsCp/ys+DND5XVMUPk+2/+rIYnh3hkIkZ0cOhLo9Xrcc889WLduHXJyctC/f3889thjSEpKQmVlpbvGqHgheq1YUHm+vEa8Xu61N8H+jQFVubmYXs41X56k1Vj345J7YOyLOOXn+7Q2hXI3DezipZEQ2eeyjwRqtVrcHNkVhdty46pO6YD5wz+ycdXc+dJa8Xq5r1oJsexZZ6mhYkAlkmap/FghTeRythkq1nCS3Dl0RDcYDFi+fDmuu+469OrVCwcOHMC7776LM2fOIDg42F1j9ApXdkoHmgrTzze2TtBp1LI/yw5pnPKz1FDxA62JdPpTK/PAmEiJbDO//lp+/pC82V2U/thjj+Hzzz9HQkICZsyYgeXLlyMqKsqdY/MplgxVQZl5yk8J00SWGipL3RdrqJpIp2u5HQ+R69mWRCjhM5M6NrsDqsWLFyMxMRFXXHEFfvnlF/zyyy8t3m/lypUuG5wvsWxXUtTYOkEJHw6WGioLrvJrIg0uGVB5lwAuivFFXE1LSmN3QPXggw/KfopKzkIbg5PixnokuddPAU0ZKgvWUDXRS6f8GFARuRwzVKQ0DjX2pMtnKfAurlROhsq2ZsqfGSqR9MOeHZyJXM82oNIr4CSUOjb+hbbClav8gKYC72IFTfk1+0BTwJg9RfpaMENF5HpsT0JKw7/QVrh6lV9I45RfkYKm/Gw/wGw3K+3IpEu61QyoiNxCeuLCgIrkjn+hHmKZ8rOsmFPCh4PeZpmyVi3/MXuK9MyZGSoi92BARUrCv1APsV0xp4QPh+abADNwsJC+FlzlR+QeOqupdfl/ZlLHxr9QD7FdIaeEeiTbMWr4gSaSfrgzoPIubiXqu6ym1vlvRjJn9xHymmuuQWlpqXj5m2++QU1NTes/QFZsezgpsYZKywyVSPpacMqPyD10bKBLCmL3UX3z5s2oq6sTL99///04f/68Wwbli5TYpM62hsqPGSoRi9Llg10rfJfOKkPFN5rk7bKPkALz7A6x7emkiIDKjxmq1mhZlE7kdtKsFDNUJHfyP6p7iav7UClxyo9F6a3T8syZyO3OlTaVlfD/jOTO7k7pALB27VqEhYUBAEwmE7Kzs3Hw4EGr+9xyyy2uG50XZWRkICMjA+Xl5eLv7AzbonRFZKhsa6g45SeSBpfM3HmXCnz9fdWl6nrxe378kNw5FFClp6dbXf6///s/q8sqlQpGo9H5UfkgRU752fahYuAgsl7lJ//3kkjpNMxQkczZHVCZTCZ3jsPn6TRqqFWASWi6LHfNp/zkP2ZPsepDxQ96IrdjDRXJnUuPkGyj0DqVSmWV8VHCh0PzTunyH7OnaNnYUzYYz3YMKr7RJHMuCagMBgPefvttdO/e3RUP57OU1l27+V5+zFBZsLGnfMRHBHh7COQmA7qGit/z/4zkzu4jpMFgwJw5c5CSkoKRI0di1apVAIClS5eie/fuWLRoEZ566il3jdMnKK1JnW3NFGuomvixsafXffbHVLxwcz+M7hHl7aGQm/Tv0rQgiFPrJHd211DNnTsX77//PtLS0vDrr79i6tSpmD59On777TcsXLgQU6dOhUajaf+BOjBphkcJB2HbMSohCPQULRt7et2oHlEYxWDKp0nXe3DtB8md3QHVf//7X3z66ae45ZZbcPDgQQwaNAgNDQ3Yt28f57btpLTu2rbvKzulN5GeLSvgrSRSpOq6plXj7ENFcmf3EfLs2bMYOnQoAGDAgAHQ6/V46qmnGEw5QOnTRJzyayL9s+cHPZF7fL33nPg9p/xI7uwOqIxGI3Q6nXhZq9UiODjYLYPyVdIMlRJ7F7EovYl0+pMf80Tup4SsPnVsdk/5CYKAadOmQa/XAwBqa2vxyCOPICgoyOp+K1eudO0IvSQrKwtZWVkubVQq7eukxGSPErNq7mKVleLLQkTU4dkdUD344INW03v333+/WwYkF67eegawyVApMNvDovQm0rNlTvkRucfjE3rineyj3h4GkV3sDqiWLVvmxmF0DEpb5WeL9XJN1ExQEbmd7R6oRHJmd5rkxIkTEATBnWPxeX5WU37KOAwrZJgeZ7XKT4HBMZESCOAxh5TD7oCqZ8+euHjxonj57rvvRmFhoVsG5at0CuuUDnA6qzXS14WvEJF78ByelMTugMo2O7V69WpUVVW5fEC+zGrKTyFV6UrJpHmaNCvFl4jIPUwmRlSkHMqrjFYwq8aeCjkKK2SYHmdVQ8UXicgtGE6RktgdUKlUqmYHDh5IHKPEonSlTE16GvtQEbkfp/xISdiHyoN0WtZQ+QrpyQRPLIjcw8SIihTE7oAqPT3d6rKv96FyB+tO6co4CCtjlJ7HvfyI3I8ry0lJ7A6oli5d6s5xdAjSbI9SAipqmXUfKr6XRO7AcIqUhEXpHiQNqLQK3MuPmnCVH5H7MUFFSsKjugdJsxqMp5TNqg8VAyoit2ANFSkJD+seJM1qMEOlbJzyIyIiKZ8/qpeWliIlJQXJyckYMGAAPvzwQ6+NhTVUvsNqc2Sf/y8i8g7mp0hJ7C5KV6qQkBBs3LgRgYGBqKqqwoABAzBlyhR06tTJ42ORxlCKCagUMkxPs956hi8SkTtwxo+UxOfPrTUaDQIDAwEABoMBgiB4bSmuNIjili7KpmENFRERSXg9oNq4cSMmT56MuLg4qFQqrFq1qtl9srKykJSUBH9/f6SmpmL79u0OPUdpaSkGDx6M+Ph4PPvss4iKinLR6B2j4kHYZ1gtMOB7SeQW8REB3h4Ckd28PuVXVVWFwYMHY8aMGZgyZUqz21esWIHMzEwsXrwYqampWLRoESZOnIjc3FxER0cDAJKTk9HQ0NDsZ3/88UfExcUhPDwc+/btQ2FhIaZMmYI777wTMTExbv/dbCkxq6GQYXqeqtULROQidw9LwJmSaozq4Z2TYCJHeD2gmjRpEiZNmtTq7QsXLsRDDz2E6dOnAwAWL16M77//HkuWLMHs2bMBAHv37rXruWJiYjB48GBs2rQJd955Z4v3MRgMMBgM4uXy8nI7f5P2WWc1eBBWMmndFDNURO7hp1HjLzf29fYwiOzi9Sm/ttTV1WHXrl1IS0sTr1Or1UhLS8PWrVvteozCwkJUVFQAAMrKyrBx40b07t271fvPnz8fYWFh4ldCQoJzv4QEm0H6Dun7x738iIhI1gFVUVERjEZjs+m5mJgYFBQU2PUYp0+fxpgxYzB48GCMGTMGf/rTnzBw4MBW7z9nzhyUlZWJX3l5eU79DlJKXBnGYKFl1u8lERF1dF6f8nO34cOH2z0lCAB6vR56vd4tY2Ehs+9QcfqWiIgkZJ2hioqKgkajQWFhodX1hYWFiI2NdetzZ2VloV+/fhg2bJjLHlOjwCk/7vbeMunbp5T3koiI3EfWAZVOp8PQoUORnZ0tXmcymZCdnY0RI0a49bkzMjKQk5ODHTt2uOwxrafPeBRWMgZRREQk5fUpv8rKShw7dky8fPLkSezduxeRkZFITExEZmYm0tPTkZKSguHDh2PRokWoqqoSV/0piUaBU36soWqZ9HVRK+XNJCIit/F6QLVz506MHz9evJyZmQkASE9Px7Jly3D33Xfj4sWLmDt3LgoKCpCcnIw1a9a4vY9UVlYWsrKyYDQaXfaY1qv8eBBWMuYaiYhIyusB1bhx49qt05k1axZmzZrloRGZZWRkICMjA+Xl5QgLC3PJY1plNXgUVjTr95JvJhFRRyfrGipfo1Fk2wRvj0CeWJRORERSDKg8SJqV4kFY2diHioiIpBhQtcIdbRPYKd13sFM6ERFJMaBqhTvaJlhlNRRyEFbGKL1LIW8lERG5EQMqD9JIXm0WpfsOvpVERMSAyoOUuJcftY+r/IiIiAFVK9xRQ6VSsYbKV6i4wICIiCQYULXCHTVUGgZUPkPaOk0p9XBEROQ+DKg8yCqrwSk/n8F4ioiIGFB5EJtB+ia+lURExIDKS5RSyMzprPYp5b0kIiL3YUDVCncUpUsp5RCslHF6E+MpIiJiQNUKdxSlS7eAVkpWQyHD9CqlvJdEROQ+DKi8RTHHYMUMlIiIyGsYUHkJkxq+g+8lERExoPIgae8ipUwTKWSYXqWU95KIiNyHAZWXKOUQrJRxeppJEh1rGFAREXV4DKha4Y5VfoKkLF0pWQ2FDNPjTNJsI3e6JiLq8BhQtcIdq/yklBKosKN7ywTp/C0REXV4DKioTWN7dQYARIfovTwSeYkO9ff2EIiISEa03h5AR6LEovS5k/uhT5cQTOwf6+2hyErX8AB8nJ6C0AA/bw+FiIhkgAGVlygknkKQXovpo7p7exiyNKFvjLeHQEREMsEpPy9RSDxFREREdmBA5UFK3HqGiIiI2seAyksYTxEREfkOBlStcEsfKklVuooRFRERkc9gQNUKd/ehIiIiIt/BgIqIiIjISQyoiIiIiJzEgIqIiIjISQyoiIiIiJzEgIqIiIjISQyoiIiIiJzEgMqDpJsjExERke9gQEVERETkJAZURERERE5iQEVERETkJAZUrXDLXn5gERUREZEvYkDVCu7lR0RERPZiQEVERETkJAZURERERE5iQEVERETkJAZUHsTGnkRERL6JARURERGRkxhQeVC3TkHeHgIRERG5gdbbA+hIhnaLwJt3DkL3KAZWREREvoQBlYdNTUnw9hCIiIjIxTjlR0REROQkBlRERERETmJARUREROQkBlRERERETuowAVV1dTW6deuGZ555xttDISIiIh/TYQKqefPm4eqrr/b2MIiIiMgHdYiA6ujRozh8+DAmTZrk7aEQERGRD/J6QLVx40ZMnjwZcXFxUKlUWLVqVbP7ZGVlISkpCf7+/khNTcX27dsdeo5nnnkG8+fPd9GIiYiIiKx5vbFnVVUVBg8ejBkzZmDKlCnNbl+xYgUyMzOxePFipKamYtGiRZg4cSJyc3MRHR0NAEhOTkZDQ0Ozn/3xxx+xY8cO9OrVC7169cKvv/7a7ngMBgMMBoN4uby83InfjoiIiDoClSAIgrcHYaFSqfDVV1/htttuE69LTU3FsGHD8O677wIATCYTEhIS8Kc//QmzZ89u9zHnzJmDf//739BoNKisrER9fT2efvppzJ07t8X7v/TSS3j55ZebXV9WVobQ0NDL+8WIiIjIo8rLyxEWFuax47esA6q6ujoEBgbiyy+/tAqy0tPTUVpaiq+//tqhx1+2bBkOHjyIt956q9X7tJShSkhIYEBFRESkIJ4OqLw+5deWoqIiGI1GxMTEWF0fExODw4cPu+U59Xo99Hq9Wx6biIiIfJOsAypXmzZtmt33zcrKQlZWFoxGo/sGRERERD7B66v82hIVFQWNRoPCwkKr6wsLCxEbG+vW587IyEBOTg527Njh1uchIiIi5ZN1QKXT6TB06FBkZ2eL15lMJmRnZ2PEiBFeHBkRERFRE69P+VVWVuLYsWPi5ZMnT2Lv3r2IjIxEYmIiMjMzkZ6ejpSUFAwfPhyLFi1CVVUVpk+f7tZxccqPiIiI7OX1VX4bNmzA+PHjm12fnp6OZcuWAQDeffddvPnmmygoKEBycjLeeecdpKamemR8nl4lQERERM7r0G0T5IgBFRERkfJ4+vgt6xoqIiIiIiVgQNWKrKws9OvXD8OGDfP2UIiIiEjmOOXXDk75ERERKQ+n/IiIiIgUhgEVERERkZMYULWCNVRERERkL9ZQtYM1VERERMrDGioiIiIihWFARUREROQkBlRERERETmJA1QoWpRMREZG9WJTeDhalExERKQ+L0omIiIgUhgEVERERkZMYUBERERE5SevtAcidpcSsvLzcyyMhIiIie1mO254qFWdA1Y7i4mIAQEJCgpdHQkRERI4qLi5GWFiY25+HAVU7IiMjAQBnzpzxyBtCrSsvL0dCQgLy8vK44tLL+F7IB98LeeH7IR9lZWVITEwUj+PuxoCqHWq1ucwsLCyM/xwyERoayvdCJvheyAffC3nh+yEfluO425/HI89CRERE5MMYUBERERE5iQFVO/R6PV588UXo9XpvD6XD43shH3wv5IPvhbzw/ZAPT78X3HqGiIiIyEnMUBERERE5iQEVERERkZMYUBERERE5iQEVERERkZMYULUhKysLSUlJ8Pf3R2pqKrZv3+7tIfmc+fPnY9iwYQgJCUF0dDRuu+025ObmWt2ntrYWGRkZ6NSpE4KDg3HHHXegsLDQ6j5nzpzBTTfdhMDAQERHR+PZZ59FQ0ODJ38Vn7NgwQKoVCo8+eST4nV8LzwnPz8f999/Pzp16oSAgAAMHDgQO3fuFG8XBAFz585Fly5dEBAQgLS0NBw9etTqMUpKSnDfffchNDQU4eHhmDlzJiorKz39qyia0WjECy+8gO7duyMgIABXXnklXn31Vav94fheuM/GjRsxefJkxMXFQaVSYdWqVVa3u+q1379/P8aMGQN/f38kJCTgjTfecHywArXo888/F3Q6nbBkyRLh0KFDwkMPPSSEh4cLhYWF3h6aT5k4caKwdOlS4eDBg8LevXuFG2+8UUhMTBQqKyvF+zzyyCNCQkKCkJ2dLezcuVO4+uqrhZEjR4q3NzQ0CAMGDBDS0tKEPXv2CKtXrxaioqKEOXPmeONX8gnbt28XkpKShEGDBglPPPGEeD3fC88oKSkRunXrJkybNk3Ytm2bcOLECWHt2rXCsWPHxPssWLBACAsLE1atWiXs27dPuOWWW4Tu3bsLNTU14n1uuOEGYfDgwcJvv/0mbNq0SejRo4dwzz33eONXUqx58+YJnTp1Er777jvh5MmTwn//+18hODhY+Pvf/y7eh++F+6xevVr461//KqxcuVIAIHz11VdWt7vitS8rKxNiYmKE++67Tzh48KCwfPlyISAgQHj//fcdGisDqlYMHz5cyMjIEC8bjUYhLi5OmD9/vhdH5fsuXLggABB++eUXQRAEobS0VPDz8xP++9//ivf5/fffBQDC1q1bBUEw/8Op1WqhoKBAvM97770nhIaGCgaDwbO/gA+oqKgQevbsKaxbt04YO3asGFDxvfCcP//5z8Lo0aNbvd1kMgmxsbHCm2++KV5XWloq6PV6Yfny5YIgCEJOTo4AQNixY4d4nx9++EFQqVRCfn6++wbvY2666SZhxowZVtdNmTJFuO+++wRB4HvhSbYBlate+3/+859CRESE1WfUn//8Z6F3794OjY9Tfi2oq6vDrl27kJaWJl6nVquRlpaGrVu3enFkvq+srAxA06bUu3btQn19vdV70adPHyQmJorvxdatWzFw4EDExMSI95k4cSLKy8tx6NAhD47eN2RkZOCmm26yes0Bvhee9M033yAlJQVTp05FdHQ0hgwZgg8//FC8/eTJkygoKLB6L8LCwpCammr1XoSHhyMlJUW8T1paGtRqNbZt2+a5X0bhRo4ciezsbBw5cgQAsG/fPmzevBmTJk0CwPfCm1z12m/duhXXXHMNdDqdeJ+JEyciNzcXly5dsns83By5BUVFRTAajVYHBQCIiYnB4cOHvTQq32cymfDkk09i1KhRGDBgAACgoKAAOp0O4eHhVveNiYlBQUGBeJ+W3ivLbWS/zz//HLt378aOHTua3cb3wnNOnDiB9957D5mZmfjLX/6CHTt24PHHH4dOp0N6err4Wrb0Wkvfi+joaKvbtVotIiMj+V44YPbs2SgvL0efPn2g0WhgNBoxb9483HfffQDA98KLXPXaFxQUoHv37s0ew3JbRESEXeNhQEWykZGRgYMHD2Lz5s3eHkqHlJeXhyeeeALr1q2Dv7+/t4fToZlMJqSkpOBvf/sbAGDIkCE4ePAgFi9ejPT0dC+PrmP54osv8Nlnn+E///kP+vfvj7179+LJJ59EXFwc3wuywim/FkRFRUGj0TRbvVRYWIjY2Fgvjcq3zZo1C9999x3Wr1+P+Ph48frY2FjU1dWhtLTU6v7S9yI2NrbF98pyG9ln165duHDhAq666ipotVpotVr88ssveOedd6DVahETE8P3wkO6dOmCfv36WV3Xt29fnDlzBkDTa9nWZ1RsbCwuXLhgdXtDQwNKSkr4Xjjg2WefxezZs/GHP/wBAwcOxAMPPICnnnoK8+fPB8D3wptc9dq76nOLAVULdDodhg4diuzsbPE6k8mE7OxsjBgxwosj8z2CIGDWrFn46quv8PPPPzdLuw4dOhR+fn5W70Vubi7OnDkjvhcjRozAgQMHrP5p1q1bh9DQ0GYHJWrdhAkTcODAAezdu1f8SklJwX333Sd+z/fCM0aNGtWsfciRI0fQrVs3AED37t0RGxtr9V6Ul5dj27ZtVu9FaWkpdu3aJd7n559/hslkQmpqqgd+C99QXV0Ntdr6UKnRaGAymQDwvfAmV732I0aMwMaNG1FfXy/eZ926dejdu7fd030A2DahNZ9//rmg1+uFZcuWCTk5OcLDDz8shIeHW61eIuc9+uijQlhYmLBhwwbh/Pnz4ld1dbV4n0ceeURITEwUfv75Z2Hnzp3CiBEjhBEjRoi3W5bqX3/99cLevXuFNWvWCJ07d+ZSfReQrvITBL4XnrJ9+3ZBq9UK8+bNE44ePSp89tlnQmBgoPDvf/9bvM+CBQuE8PBw4euvvxb2798v3HrrrS0uFx8yZIiwbds2YfPmzULPnj25VN9B6enpQteuXcW2CStXrhSioqKE5557TrwP3wv3qaioEPbs2SPs2bNHACAsXLhQ2LNnj3D69GlBEFzz2peWlgoxMTHCAw88IBw8eFD4/PPPhcDAQLZNcKV//OMfQmJioqDT6YThw4cLv/32m7eH5HMAtPi1dOlS8T41NTXCY489JkRERAiBgYHC7bffLpw/f97qcU6dOiVMmjRJCAgIEKKiooSnn35aqK+v9/Bv43tsAyq+F57z7bffCgMGDBD0er3Qp08f4YMPPrC63WQyCS+88IIQExMj6PV6YcKECUJubq7VfYqLi4V77rlHCA4OFkJDQ4Xp06cLFRUVnvw1FK+8vFx44oknhMTERMHf31+44oorhL/+9a9WS+z5XrjP+vXrWzxGpKenC4Lgutd+3759wujRowW9Xi907dpVWLBggcNjVQmCpN0rERERETmMNVRERERETmJARUREROQkBlRERERETmJARUREROQkBlRERERETmJARUREROQkBlRERERETmJARUREROQkBlRERB6wYcMGqFQqqFQq3HbbbS5//KSkJPHxbTewJiL3Y0BFRHaZNm2aeMCWfh07dszbQ1OU3NxcLFu2TLw8bdq0FgMsSwBmb3C0Y8cO/O9//3PNIInIYVpvD4CIlOOGG27A0qVLra7r3Llzs/vV1dVBp9N5aliKEh0djfDwcJc/bufOnREZGenyxyUi+zBDRUR20+v1iI2NtfrSaDQYN24cZs2ahSeffBJRUVGYOHEiAODgwYOYNGkSgoODERMTgwceeABFRUXi41VVVeHBBx9EcHAwunTpgrfffhvjxo3Dk08+Kd5HpVJh1apVVuMIDw+3yvLk5eXhrrvuQnh4OCIjI3Hrrbfi1KlT4u2WLNBbb72FLl26oFOnTsjIyEB9fb14H4PBgD//+c9ISEiAXq9Hjx498PHHH0MQBPTo0QNvvfWW1Rj27t3r0QzduHHjWswQSn9PIvIeBlRE5BKffPIJdDodtmzZgsWLF6O0tBTXXnsthgwZgp07d2LNmjUoLCzEXXfdJf7Ms88+i19++QVff/01fvzxR2zYsAG7d+926Hnr6+sxceJEhISEYNOmTdiyZQuCg4Nxww03oK6uTrzf+vXrcfz4caxfvx6ffPIJli1bZhWUPfjgg1i+fDneeecd/P7773j//fcRHBwMlUqFGTNmNMvMLV26FNdccw169OhxeS+Yg1auXInz58+LX1OmTEHv3r0RExPjkecnonYIRER2SE9PFzQajRAUFCR+3XnnnYIgCMLYsWOFIUOGWN3/1VdfFa6//nqr6/Ly8gQAQm5urlBRUSHodDrhiy++EG8vLi4WAgIChCeeeEK8DoDw1VdfWT1OWFiYsHTpUkEQBOFf//qX0Lt3b8FkMom3GwwGISAgQFi7dq049m7dugkNDQ3ifaZOnSrcfffdgiAIQm5urgBAWLduXYu/e35+vqDRaIRt27YJgiAIdXV1QlRUlLBs2bL2XjbR+vXrBQDCpUuXrK5v6XUNCgoS/P39W7y/IAjCwoULhfDwcCE3N9eu5yAi92MNFRHZbfz48XjvvffEy0FBQeL3Q4cOtbrvvn37sH79egQHBzd7nOPHj6OmpgZ1dXVITU0Vr4+MjETv3r0dGtO+fftw7NgxhISEWF1fW1uL48ePi5f79+8PjUYjXu7SpQsOHDgAwDx9p9FoMHbs2BafIy4uDjfddBOWLFmC4cOH49tvv4XBYMDUqVMdGmtrbF9XANi2bRvuv//+Zvf94YcfMHv2bHz77bfo1auXS56fiJzHgIqI7BYUFNTqFJc0uAKAyspKTJ48Ga+//nqz+3bp0sXu2iOVSgVBEKyuk9Y+VVZWYujQofjss8+a/ay0YN7Pz6/Z45pMJgBAQEBAu+P44x//iAceeAD/7//9PyxduhR33303AgMD7fod2tPS63r27Nlm98vJycEf/vAHLFiwANdff71LnpuIXIMBFRG5xVVXXYX//e9/SEpKglbb/KPmyiuvhJ+fH7Zt24bExEQAwKVLl3DkyBGrTFHnzp1x/vx58fLRo0dRXV1t9TwrVqxAdHQ0QkNDL2usAwcOhMlkwi+//IK0tLQW73PjjTciKCgI7733HtasWYONGzde1nNdrqKiIkyePBl33HEHnnrqKY8+NxG1j0XpROQWGRkZKCkpwT333IMdO3bg+PHjWLt2LaZPnw6j0Yjg4GDMnDkTzz77LH7++WccPHgQ06ZNg1pt/bF07bXX4t1338WePXuwc+dOPPLII1bZpvvuuw9RUVG49dZbsWnTJpw8eRIbNmzA448/3mKWpyVJSUlIT0/HjBkzsGrVKvExvvjiC/E+Go0G06ZNw5w5c9CzZ0+MGDHCNS+Une644w4EBgbipZdeQkFBgfhlNBo9Og4iahkDKiJyi7i4OGzZsgVGoxHXX389Bg4ciCeffBLh4eFi0PTmm29izJgxmDx5MtLS0jB69OhmtVhvv/02EhISMGbMGNx777145plnrKbaAgMDsXHjRiQmJmLKlCno27cvZs6cidraWocyVu+99x7uvPNOPPbYY+jTpw8eeughVFVVWd1n5syZqKurw/Tp0514ZS7Pxo0bcfDgQXTr1g1dunQRv/Ly8jw+FiJqTiXYFicQEXnRuHHjkJycjEWLFnl7KM1s2rQJEyZMQF5ensPtCjZs2IDx48fj0qVLbmns6annIKKWMUNFRNQOg8GAs2fP4qWXXsLUqVOd6v0UHx+Pe+65x4WjM+vfvz8mTZrk8sclIvuwKJ2IqB3Lly/HzJkzkZycjE8//fSyHiM1NRVHjx4FgBZbSThr9erV4urHyy3OJ6LLxyk/IiIiIidxyo+IiIjISQyoiIiIiJzEgIqIiIjISQyoiIiIiJzEgIqIiIjISQyoiIiIiJzEgIqIiIjISQyoiIiIiJz0/wHBJ1lbdvXn0wAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -3543,7 +405,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -3554,6 +416,15 @@ "Adding point 2\n", "Adding point 3\n" ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\_d\\prg\\PycharmProjects\\pyuff\\pyuff\\pyuff.py:425: ResourceWarning: unclosed file <_io.TextIOWrapper name='./data/measurement_58b.uff' mode='at' encoding='cp1252'>\n", + " _write58(fh, dset, mode, _filename=self._filename, force_double=force_double)\n", + "ResourceWarning: Enable tracemalloc to get the object allocation traceback\n" + ] } ], "source": [ @@ -3608,63 +479,113 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[1;31mSignature:\u001b[0m\n", + " \u001b[0mpyuff\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mprepare_15\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m\n", + "\u001b[0m \u001b[0mnode_nums\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\n", + "\u001b[0m \u001b[0mdef_cs\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\n", + "\u001b[0m \u001b[0mdisp_cs\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\n", + "\u001b[0m \u001b[0mcolor\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\n", + "\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\n", + "\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\n", + "\u001b[0m \u001b[0mz\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\n", + "\u001b[0m \u001b[0mreturn_full_dict\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mFalse\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\n", + "\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mDocstring:\u001b[0m\n", + "Name: Nodes\n", + "\n", + "R-Record, F-Field\n", + "\n", + ":param node_nums: R1 F1, node label\n", + ":param def_cs: R1 F2, deformation coordinate system numbers, optional\n", + ":param disp_cs: R1 F3, displacement coordinate system numbers, optional\n", + ":param color: R1 F4, color, optional\n", + ":param x: R1 F5, Dimensional coordinate of node in the definition system\n", + ":param y: R1 F6, Dimensional coordinate of node in the definition system\n", + ":param z: R1 F7, Dimensional coordinate of node in the definition system\n", + "\n", + ":param return_full_dict: If True full dict with all keys is returned, else only specified arguments are included\n", + "\n", + "**Test prepare_15**\n", + "\n", + ">>> save_to_file = 'test_pyuff'\n", + ">>> dataset = pyuff.prepare_15(\n", + ">>> node_nums=[16, 17, 18, 19, 20],\n", + ">>> def_cs=[11, 11, 11, 12, 12],\n", + ">>> disp_cs=[16, 16, 17, 18, 19],\n", + ">>> color=[1, 3, 4, 5, 6], # I10,\n", + ">>> x=[0.0, 1.53, 0.0, 1.53, 0.0],\n", + ">>> y=[0.0, 0.0, 3.84, 3.84, 0.0],\n", + ">>> z=[0.0, 0.0, 0.0, 0.0, 1.83])\n", + ">>> if save_to_file:\n", + ">>> if os.path.exists(save_to_file):\n", + ">>> os.remove(save_to_file)\n", + ">>> uffwrite = pyuff.UFF(save_to_file)\n", + ">>> uffwrite._write_set(dataset, 'add')\n", + ">>> dataset\n", + "\u001b[1;31mFile:\u001b[0m c:\\_d\\prg\\pycharmprojects\\pyuff\\pyuff\\datasets\\dataset_15.py\n", + "\u001b[1;31mType:\u001b[0m function" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "? pyuff.prepare_15" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## The ``get_structure_xx()`` functions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The ``get_strucutre_xx()`` is used to get the structure of a particular dataset, e.g. see:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "\u001b[1;31mSignature:\u001b[0m\n", - " \u001b[0mpyuff\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mprepare_15\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m\n", - "\u001b[0m \u001b[0mnode_nums\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\n", - "\u001b[0m \u001b[0mdef_cs\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\n", - "\u001b[0m \u001b[0mdisp_cs\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\n", - "\u001b[0m \u001b[0mcolor\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\n", - "\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\n", - "\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\n", - "\u001b[0m \u001b[0mz\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\n", - "\u001b[0m \u001b[0mreturn_full_dict\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mFalse\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\n", - "\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;31mDocstring:\u001b[0m\n", - "Name: Nodes\n", - "\n", - "R-Record, F-Field\n", "\n", - ":param node_nums: R1 F1, node label\n", - ":param def_cs: R1 F2, deformation coordinate system numbers, optional\n", - ":param disp_cs: R1 F3, displacement coordinate system numbers, optional\n", - ":param color: R1 F4, color, optional\n", - ":param x: R1 F5, Dimensional coordinate of node in the definition system\n", - ":param y: R1 F6, Dimensional coordinate of node in the definition system\n", - ":param z: R1 F7, Dimensional coordinate of node in the definition system\n", + "Universal Dataset Number: 15\n", "\n", - ":param return_full_dict: If True full dict with all keys is returned, else only specified arguments are included\n", - "\n", - "**Test prepare_15**\n", - "\n", - ">>> save_to_file = 'test_pyuff'\n", - ">>> dataset = pyuff.prepare_15(\n", - ">>> node_nums=[16, 17, 18, 19, 20],\n", - ">>> def_cs=[11, 11, 11, 12, 12],\n", - ">>> disp_cs=[16, 16, 17, 18, 19],\n", - ">>> color=[1, 3, 4, 5, 6], # I10,\n", - ">>> x=[0.0, 1.53, 0.0, 1.53, 0.0],\n", - ">>> y=[0.0, 0.0, 3.84, 3.84, 0.0],\n", - ">>> z=[0.0, 0.0, 0.0, 0.0, 1.83])\n", - ">>> if save_to_file:\n", - ">>> if os.path.exists(save_to_file):\n", - ">>> os.remove(save_to_file)\n", - ">>> uffwrite = pyuff.UFF(save_to_file)\n", - ">>> uffwrite._write_set(dataset, 'add')\n", - ">>> dataset\n", - "\u001b[1;31mFile:\u001b[0m d:\\phdpy\\pyuff\\pyuff\\datasets\\dataset_15.py\n", - "\u001b[1;31mType:\u001b[0m function\n" + "Name: Nodes\n", + "-----------------------------------------------------------------------\n", + " \n", + " Record 1: FORMAT(4I10,1P3E13.5)\n", + " Field 1 - node label\n", + " Field 2 - definition coordinate system number\n", + " Field 3 - displacement coordinate system number\n", + " Field 4 - color\n", + " Field 5-7 - 3 - Dimensional coordinates of node\n", + " in the definition system\n", + " \n", + " NOTE: Repeat record for each node\n", + " \n", + "------------------------------------------------------------------------------\n", + "\n" ] } ], "source": [ - "? pyuff.prepare_15" + "pyuff.get_structure_15()" ] }, { @@ -3682,7 +603,8 @@ "hash": "b3ba2566441a7c06988d0923437866b63cedc61552a5af99d1f4fb67d367b25f" }, "kernelspec": { - "display_name": "Python 3.7.4 64-bit ('base': conda)", + "display_name": "Python 3 (ipykernel)", + "language": "python", "name": "python3" }, "language_info": { @@ -3695,7 +617,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.4" + "version": "3.10.6" }, "latex_envs": { "bibliofile": "biblio.bib",