-
Notifications
You must be signed in to change notification settings - Fork 319
Getting Started
Here is an example of how simple it is to use an OpenCV function from MATLAB to detect faces:
% Load a face detector and an image
cascade = cv.CascadeClassifier('haarcascade_frontalface_alt.xml');
im = imread('myface.jpg');
% Preprocess image
gr = cv.cvtColor(im, 'RGB2GRAY');
gr = cv.equalizeHist(gr);
% Detect faces
boxes = cascade.detect(gr, ...
'ScaleFactor',1.3, 'MinNeighbors',2, 'MinSize',[30 30]);
% Draw results
for i = 1:numel(boxes)
im = cv.rectangle(im, boxes{i}, 'Color',[0 255 0], 'Thickness',2);
end
imshow(im);
Would you like to use a camera input? No problem.
% Connect to a camera
camera = cv.VideoCapture();
pause(2);
for i = 1:50
% Capture and show frame
frame = camera.read();
imshow(frame);
drawnow;
end
Interested in deep learning, here is an example of image identification using a pretrained convolutional neural network:
% load pretrained model, along with list of 1000 recognized categories
dname = fullfile(mexopencv.root(), 'test', 'dnn', 'GoogLeNet');
net = cv.Net('Caffe', ...
fullfile(dname, 'deploy.prototxt'), ...
fullfile(dname, 'bvlc_googlenet.caffemodel'));
labels = fileread(fullfile(dname, 'synset_words.txt'));
labels = regexp(strtrim(labels), '\n', 'split');
% open webcam
cap = cv.VideoCapture(0);
hImg = imshow(cap.read());
while ishghandle(hImg)
% read frame and classify image
img = cap.read();
net.setInput(cv.Net.blobFromImages(img, 'Size',[224 224], 'SwapRB',true));
prob = net.forward();
[~,idx] = max(prob);
% show prediction
set(hImg, 'CData',img)
title(sprintf('(%.2f%%) %s', prob(idx)*100, labels{idx}))
drawnow
end
cap.release();
Check out the included samples for more demos (here and here).
The package already contains over 400 OpenCV functions/classes (covering
many opencv
and opencv_contrib
modules). You can check a list of
supported functions in the user documentation.
If you can't find your favorite one, you can easily
add a new MEX function through MxArray
class. MxArray
is a data conversion utility for MATLAB's native array
and OpenCV data types.
With this class, your MEX-function is as simple as the following:
#include "mexopencv.hpp"
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
// Check number of arguments
nargchk(nrhs==2 && nlhs<=1);
// Convert input mxArray to cv::Mat and cv::Size
cv::Mat src(MxArray(prhs[0]).toMat()), dst;
cv::Size ksize(MxArray(prhs[1]).toSize());
// Use your favorite OpenCV function
cv::blur(src, dst, ksize);
// Convert output from cv::Mat back to mxArray
plhs[0] = MxArray(dst);
}
Check the developer documentation for further details.
Help: Stack Overflow (MATLAB, OpenCV) | MATLAB Answers | OpenCV Answers
- Windows + MATLAB
- Windows + Octave
- Linux + MATLAB
- Linux + Octave
- macOS + MATLAB
- macOS + Octave
- Windows + MATLAB
- Linux + MATLAB
- macOS + MATLAB