-
Notifications
You must be signed in to change notification settings - Fork 27
/
keras-demo.py
106 lines (76 loc) · 2.62 KB
/
keras-demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
from __future__ import print_function
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import RMSprop
from keras.utils.data_utils import get_file
from keras.models import model_from_json
# download dataset from aws and load into numpy arrays
path="mnist.npz"
path = get_file(path, origin="https://s3.amazonaws.com/img-datasets/mnist.npz")
f = np.load(path)
x_train = f["x_train"]
y_train = f["y_train"]
x_test = f["x_test"]
y_test = f["y_test"]
f.close()
batch_size = 128
num_classes = 10
epochs = 20
# shuffle and split data between train and test sets
x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype("float32")
x_test = x_test.astype("float32")
x_train /= 255
x_test /= 255
print(x_train.shape[0], "train samples")
print(x_test.shape[0], "test samples")
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
# build model
model = Sequential()
model.add(Dense(512, activation="relu", input_shape=(784,)))
model.add(Dropout(0.2))
model.add(Dense(512, activation="relu"))
model.add(Dropout(0.2))
model.add(Dense(10, activation="softmax"))
model.summary()
model.compile(loss="categorical_crossentropy",
optimizer=RMSprop(),
metrics=["accuracy"])
# train model
history = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
# test model
score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])
# write model to json file
model_json = model.to_json()
with open("result/model.json", "w") as json_file: json_file.write(model_json)
model.save_weights("result/model.h5")
print("Saved model to disk")
# read model from file
json_file = open("result/model.json", "r")
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
# load weights into model
loaded_model.load_weights("result/model.h5")
loaded_model.compile(loss="categorical_crossentropy",
optimizer=RMSprop(),
metrics=["accuracy"])
print("Loaded model from disk")
# test loaded model again
score2 = loaded_model.evaluate(x_test, y_test, verbose=0)
print("(Loaded)Test loss:", score[0])
print("(Loaded)Test accuracy:", score[1])
# predict with loaded model
classes = loaded_model.predict(x_test, batch_size=128)
print("Prediction result:", classes)