-
Notifications
You must be signed in to change notification settings - Fork 27
/
export.py
71 lines (48 loc) · 1.77 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from __future__ import print_function
from keras import backend as K
from tensorflow.python.saved_model import builder as saved_model_builder
from tensorflow.python.saved_model import tag_constants, signature_constants
from tensorflow.python.saved_model.signature_def_utils_impl import build_signature_def, predict_signature_def
from keras.optimizers import SGD
from keras.models import model_from_json
#from keras.models import Model
import shutil
import os
import numpy as np
import tensorflow as tf
# read model from file
json_file = open("result/model.json", "r")
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
# load weights into model
loaded_model.load_weights("result/model.h5")
sgd = SGD(lr=0.1)
loaded_model.compile(loss="binary_crossentropy", optimizer=sgd, metrics=["accuracy"])
print("Loaded model from disk")
if os.path.isdir("./export"):
shutil.rmtree("./export")
# test
classes = loaded_model.predict(np.array([[0,1]]), batch_size=1)
print("Test:", classes)
# prepare model for export
"""
K.set_learning_phase(0)
config = loaded_model.get_config()
weights = loaded_model.get_weights()
model = Model.from_config(config)
model.set_weights(weights)
"""
model = loaded_model
# export model
export_path = "export/main_model/1"
builder = saved_model_builder.SavedModelBuilder(export_path)
print(model.input)
print(model.output)
signature = predict_signature_def(inputs={"inputs": model.input},
outputs={"outputs": model.output})
with K.get_session() as sess:
builder.add_meta_graph_and_variables(sess=sess,
tags=[tag_constants.SERVING],
signature_def_map={'predict': signature})
builder.save()