-
Notifications
You must be signed in to change notification settings - Fork 0
/
face.py
67 lines (53 loc) · 1.93 KB
/
face.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import face_recognition, cv2, csv, os
import numpy as np
import datetime as datetime
video_capture = cv2.VideoCapture(0)
kachkol_image = face_recognition.load_image_file("photos/kachkol.jpg")
kachkol_encoding = face_recognition.face_encodings(kachkol_image)[0]
asa_image = face_recognition.load_image_file("photos/asa.jpg")
asa_encoding = face_recognition.face_encodings(asa_image)[0]
known_face_encoding = [
kachkol_image,
asa_encoding
]
known_faces_names = [
"Kachkol",
"Asa"
]
people = known_faces_names.copy()
face_locations = []
face_encodings = []
face_names = []
s=True
now = datetime.now()
current_date = now.strftime("%Y-%m-%d")
f = open(current_date+".csv", "w+", newline = '')
lnwriter = csv.writer(f)
while True:
_,frame = video_capture.read()
small_frame = cv2.resize(frame,(0,0), fx=0.25, fy=0.25)
rgb_small_frame = small_frame[:,:,::-1]
if s:
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
matches = face_recognition.compare_faces(known_face_encoding, face_encoding)
name = ""
face_distance = face_recognition.face_distance(known_face_encoding, face_encoding)
best_match_index = np.argmin(face_distance)
if matches[best_match_index]:
name = known_faces_names[best_match_index]
face_names.append(name)
if name in known_faces_names:
if name in people:
people.remove(name)
print(people)
current_time = now.strftime("%H-%M-%S")
lnwriter.writerow([name, current_time])
cv2.imshow("attendence system", frame)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
video_capture.release()
cv2.destroyAllWindows()
f.close()