diff --git a/R/ancova.R b/R/ancova.R index 14c842e..61eb11c 100644 --- a/R/ancova.R +++ b/R/ancova.R @@ -2492,7 +2492,7 @@ Ancova <- function(dataset=NULL, options, perform="run", callback=function(...) base_breaks_y(summaryStat, options$plotErrorBars) + base_breaks_x(summaryStatSubset[,"plotHorizontalAxis"]) - p <- JASPgraphs::themeJasp(p, legend.position = "right") + p <- JASPgraphs::themeJaspRaw(p, legend.position = "right") if (nPlots > 1) { descriptivesPlot[["title"]] <- paste(options$plotSeparatePlots,": ",subsetPlots[i], sep = "") @@ -2638,7 +2638,7 @@ Ancova <- function(dataset=NULL, options, perform="run", callback=function(...) p <- JASPgraphs::drawPoints(p, dat = data.frame(xVar, yVar), size = 3) # JASP theme - p <- JASPgraphs::themeJasp(p) + p <- JASPgraphs::themeJaspRaw(p) content <- .writeImage(width = options$plotWidthQQPlot, height = options$plotHeightQQPlot, diff --git a/R/regressionlinearbayesian.R b/R/regressionlinearbayesian.R index 6a7878f..bbb1e62 100644 --- a/R/regressionlinearbayesian.R +++ b/R/regressionlinearbayesian.R @@ -1274,7 +1274,7 @@ RegressionLinearBayesian <- function ( ggplot2::geom_text(data = dfCriText, mapping = ggplot2::aes(x = x, y = y, label = label), size = 6, hjust = c("right", "left"), inherit.aes = FALSE) - g <- JASPgraphs::themeJasp(g) + g <- JASPgraphs::themeJaspRaw(g) return(g) } @@ -1337,7 +1337,7 @@ RegressionLinearBayesian <- function ( g <- JASPgraphs::drawSmooth(g, dat = dfPoints, color = "red", alpha = .7) + ggplot2::ylab("Residuals") + ggplot2::scale_x_continuous(name = "Predictions under BMA", breaks = xBreaks, limits = range(xBreaks)) - g <- JASPgraphs::themeJasp(g) + g <- JASPgraphs::themeJaspRaw(g) return(g) @@ -1356,7 +1356,7 @@ RegressionLinearBayesian <- function ( g <- JASPgraphs::drawPoints(g, dat = dfPoints, size = 4) + ggplot2::scale_y_continuous(name = "Cumulative Probability", limits = 0:1) + ggplot2::scale_x_continuous(name = "Model Search Order", breaks = xBreaks) - g <- JASPgraphs::themeJasp(g) + g <- JASPgraphs::themeJaspRaw(g) return(g) } if (show[3]) { @@ -1374,7 +1374,7 @@ RegressionLinearBayesian <- function ( g <- JASPgraphs::drawPoints(dat = dfPoints, size = 4) + ggplot2::scale_y_continuous(name = "Log(P(data|M))", breaks = yBreaks, limits = range(yBreaks)) + ggplot2::scale_x_continuous(name = "Model Dimension", breaks = xBreaks) - g <- JASPgraphs::themeJasp(g) + g <- JASPgraphs::themeJaspRaw(g) return(g) } @@ -1411,7 +1411,7 @@ RegressionLinearBayesian <- function ( ggplot2::xlab("") + ggplot2::scale_linetype_manual(name = "", values = 2, labels = "Prior\nInclusion\nProbabilities") - g <- JASPgraphs::themeJasp(g, horizontal = TRUE, legend.position = "right") + + g <- JASPgraphs::themeJaspRaw(g, horizontal = TRUE, legend.position = "right") + ggplot2::theme( legend.title = ggplot2::element_text(size = .8*JASPgraphs::graphOptions("fontsize")) ) @@ -1500,7 +1500,7 @@ RegressionLinearBayesian <- function ( xTrans = scales::reverse_trans()) g <- JASPgraphs::drawLines(g, dat = dfLines, mapping = ggplot2::aes(x = x, y = y, group = g), color = "gray50", alpha = .7, size = 2) - g <- JASPgraphs::themeJasp(graph = g, legend.position = "right", axisTickLength = 0, + g <- JASPgraphs::themeJaspRaw(graph = g, legend.position = "right", axisTickLength = 0, bty = "o") # this plot needs some additional treatment @@ -1547,7 +1547,7 @@ RegressionLinearBayesian <- function ( ggplot2::geom_errorbar(, width = 0.2) + ggplot2::scale_x_discrete(name = "") + ggplot2::scale_y_continuous(name = expression(beta), breaks = yBreaks, limits = range(yBreaks)) - plotObj <- JASPgraphs::themeJasp(g) + + plotObj <- JASPgraphs::themeJaspRaw(g) + ggplot2::theme( axis.title.y = ggplot2::element_text(angle = 0, vjust = .5, size = 20) )